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Abstract—Model checking and counter-example guided ab-
straction refinement are examples of applications of SAT solving
requiring the production of models for satisfiable formulas. Better
than giving a truth value to every variable, one can provide an
implicant, i.e. a partial assignment of the variables such that
every full extension is a model for the formula. An implicant is
prime if every assignment is necessary. Since prime implicants
contain no literal irrelevant for the satisfiability of the formula,
they are considered as highly refined information.

We here propose a novel algorithm that uses data structures
found in modern CDCL SAT solvers to efficiently compute prime
implicants starting from an existing model. The original aspects
are (1) the algorithm is based on watched literals and a form
of propagation of required literals, adapted to CDCL solvers (2)
the algorithm works not only on clauses, but also on generalized
constraints (3) for clauses and, more generally for cardinality
constraints, the algorithm complexity is linear in the size of the
constraints found. We implemented and evaluated the algorithm
with the Sat4j library.

I. INTRODUCTION

Although SAT is a decision problem whose answer on an
input formula is “satisfiable” or “unsatisfiable”, it is often
necessary or useful to obtain an explanation of this output,
i.e. proofs of unsatisfiability for unsatisfiable formulas and
models for satisfiable formulas. As a side effect of the data
structures they use, modern SAT solvers output full models for
satisfiable formulas, i.e. they assign a value to every variable
in the input (even if the value of some variables is irrelevant).
For some applications, a partial model or implicant (i.e. a
partial assignment that is sufficient to satisfy all clauses) is
preferred to a full assignment. Bounded model checking is
one such application: an assignment corresponds to an error
trace, and the smaller the assignment, the simpler it usually
is to understand the flaw [1]. Using implicants instead of
models is also useful when performing Boolean optimization
(e.g. Pseudo Boolean Optimization or MaxSAT). Evaluating
an objective function over an implicant provides a range of
values (which may contain a single element) instead of a
single value with a model. As such, optimization approaches
based on strengthening may compute better upper bounds
from implicants rather than from models. Generating partial
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assignments is also useful in Satisfiability Modulo Theories
(see [2] for a thorough introduction) when the theory reasoner
has a high complexity. Implicants are also used in the context
of compilation of knowledge base, the cover of implicants
being a classical way to compile a knowledge base [3]–[5].

An implicant is prime if none of its proper subsets is an
implicant. The paper addresses the problem of efficiently de-
riving a prime implicant from an existing model of a satisfiable
formula. A prime implicant can be derived from a model by
iteratively removing the assignments that are not necessary.
In this paper, we present two instances of this greedy ap-
proach. The first associates counters to constraints, yielding
the algorithm sketched in [6]. This algorithm has complexity
linear in the size of the constraints, but requires specialized
indexing and dedicated counters as found in DPLL-based
solvers. We propose a new algorithm benefiting from the lazy
data structures (i.e. watched literals [7]) available in modern
SAT solvers. Our approach is not only suitable for clauses but
generalizes to e.g. cardinality constraints. For sets of clauses
and cardinality constraints, the complexity of this algorithm
is also linear, thanks to a dedicated propagation procedure on
the constraints.
Related work. We focus on computing one prime implicant
(not necessarily of minimum size) out of a given model, using
the data structures used in modern SAT solvers. Algorithm 1
(Section II-C) is quickly discussed in [6] and [8], without
concrete implementation or complexity study; in Section II-C
we provide a concrete instantiation of it, and discuss its
complexity. An algorithm embedding SAT solving techniques
is proposed in [9] and motivated by experimental results. Some
other techniques, e.g. [10], involve encoding the problem
of finding prime implicants to linear programming. Getting
minimal assignments (i.e. prime implicants) for a CNF (Con-
junctive Normal Form) from a model provided by a SAT solver
is discussed in [1], and several techniques are sketched. The
authors of this work notably notice that literals assigned by
propagation are mandatory in any prime implicant included in
the model; for completeness, we restate formally this result in
Section II-C. They also mention brute-force lifting, noticing
it can be implemented in time quadratic in the size of the
CNF formula. In the same context, the time complexity of our
algorithms is linear.

A lot of research concentrates on the problem of generating
one prime implicant or the set of all prime implicants for a
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formula, without previous knowledge of models, e.g. [3], [8],
[11]–[13]. Also, many works focus on the more complex prob-
lem of finding prime implicants of minimum size (e.g. [14]
in propositional logic, and [15] in the context of SMT); the
techniques presented here could be used repeatedly to find
prime implicants of minimum size, but this goes beyond the
scope of this paper.
Overview. Section II introduces definitions and notations. In
Section II-C, we give an original formal presentation of some
of the results mentioned above. Section III then presents our
algorithm based on watched literals and propagation. This
algorithm has been implemented in the Sat4j library [16];
experimental results are given in Section IV.

II. BASIC PRINCIPLES

A. Definitions and notations

We assume the standard notions of propositional logic,
model, propositional variable, literal and clause. A (set of)
formula(s) B is a logical consequence of a (set of) formula(s)
A (A |= B) if every model of (all elements in) A is also
a model of (all elements in) B. In this paper, we use the
term constraint for formula, implicitly understanding that a
constraint c most often denotes:

• a clause, a disjunctive set of literals;
• a cardinality constraint

P
`i2c `i � k where k (the

degree) is an integer and each literal `i is either 0 (false)
or 1 (true) — a clause can be seen as a cardinality
constraint of degree 1;

• a pseudo-Boolean constraint
P

`i2c wi`i � k, where k
and each wi are positive integers.

A set of constraints is viewed as the conjunctive combination
of its elements and a literal as a Boolean assignment of a
propositional variable. Throughout this paper, a set of literals
cannot contain two opposite literals, so that sets of literals es-
sentially are partial mappings from the lexicon of propositional
variables to the Boolean values. In the following we identify
a model for a (set of) formula(s) with the set of all the literals
it satisfies.

A set of literals M is an implicant for a set of constraints
C if, for every constraint c 2 C, M |= c. An implicant M of
C is a prime implicant if, for every proper subset M 0 of M ,
M 0 is not an implicant of C. Assuming M |= c and ` 2 M ,
we say ` is a required literal in M for constraint c, and write
Req(M, `, c), when M \ {`} 6|= c. In particular, for a clause
c such that M |= c, we have Req(M, `, c) iff M \ c = {`}.
A required literal ` for M and a set of constraints C, denoted
Req(M, `, C), is such that there exists a constraint c 2 C with
Req(M, `, c).

B. Elements of SAT solving

Modern CDCL-based SAT solvers assume their input is
given as a set of clauses, but the techniques described here
may be generalized to handle cardinality and pseudo-Boolean
constraints. To decide if a set of clauses is satisfiable, a
solver must find a variable assignment that satisfies all clauses.
Three key aspects of this search are decision, propagation and

learning. Decision consists in setting an unassigned variable
to a Boolean value. A variable assignment is propagated if
it is enforced by the previous assignments, i.e. this happens
when all but one literal in a clause have been assigned to
false. Then this last literal must be true for the set of clauses
to be satisfiable. It may happen that propagation implies
a conflicting assignment. In that case, a new clause (the
conflict) is learnt, being recorded as a new constraint. Then
backtracking and further propagation occur. If propagation
terminates without conflict, either all variables are assigned
and the set is satisfiable, or a new decision occurs. On an
unsatisfiable set of constraints, the algorithm will eventually
reach a conflicting assignment with no decided variable.

In practice, the computation cost is dominated by prop-
agation. A naı̈ve algorithm could be: whenever a variable
is assigned a value, all clauses containing the literal set to
false are checked for unsatisfiability or new propagations. The
watched literals technique is a heuristic that effectively reduces
that cost in practice. In the case of clauses, it is based on the
observation that a clause needs to be inspected only when all
but one literal are assigned to false. So, for each clause, only
two of its literals are watched, and the clause is inspected only
when one of the two watched literals is assigned to false. This
technique generalizes to cardinality constraints, by watching
at most k + 1 literals, for a constraint of degree k.

C. Greedy computation of prime implicants from models

Consider a model M for a set of constraints C. Most often,
the model M is computed with a solver using propagation;
knowing which literals in M are propagated, and which
are not, is highly valuable information for computing prime
implicants out of M . Indeed, the following simple lemma
allows to directly identify elements in M that have to be in
every prime implicant included in M .

Lemma 1: Assume 1) M is an implicant for a set of formulas
C, 2) c is a logical consequence of C, 3) and M \ {`} 6|= c.
Then M \ {`} is not an implicant of C. In other words, the
literal ` belongs to every prime implicant included in M .
Proof. If c is a logical consequence of C, then every implicant
of C is an implicant of c. As M \ {`} is not an implicant of
c, M \ {`} is not an implicant of C. ut

In the context of CDCL solvers, the above trivial lemma
has an interesting corollary. Assume ` 2 M is propagated,
i.e. there exists a constraint c in C or learnt from C — in
both cases, c is a logical consequence of C — and a subset
M 0 ✓ M \ {`} such that M 0, c |= `. Then M , C, c and `
fulfill the requirements of the lemma: ` is mandatory in every
implicant included in M . Only decision literals may possibly
be removed from M to obtain a stronger implicant.

The abstract Algorithm 1 computes a prime implicant for
a set of constraints C, starting from a model M0 of C and a
subset ⇧0 of the literals known to be in a prime implicant
(e.g., the empty set, or the set of all propagated literals in the
CDCL solver that produced M0). Variable M is an implicant
for C of decreasing size, and ⇧ is an increasing subset of a
prime implicant included in M . The algorithm checks each
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literal ` in M \⇧ and greedily adds it to ⇧ if it is required or
removes it from M otherwise. There may be several different
prime implicants included in M0; the successive choices of `
in line 3 determine which of those prime implicants is returned
by the algorithm.

Algorithm 1 Abstract computation of prime implicants
1: procedure PRIME(C,M0,⇧0)
2: M,⇧ M0,⇧0

3: while ` 2M \⇧ do
4: if Req(M, `, C) then ⇧ ⇧ [ {`}
5: else M  M \ {`}
6: return ⇧

The algorithm can be refined in a practical and efficient
algorithm. Remember that checking if Req(M, `, C) is true
comes to check if Req(M, `, c) is true for some constraint in
c 2 C. It is thus useful, in order not to check every constraint
in C, to have an index W (`) that gives the set of constraints
containing `. This index can be built efficiently, though it
requires to read the entire set of constraints.

Algorithm 2 was sketched in [6] and is specialized for sets
of clauses; it can be extended easily (at the expense of heavier
notations) to cardinality constraints while preserving the linear
complexity. It can also be extended to arbitrary constraints, but
requires to define the concrete code for Req(M, `, c) for an
arbitrary constraint c. If c is a clause, Req(M, `, c) is true if
and only if M \ c = {`}. Such a test can be done efficiently
using counters for the true literals in every clause c; in Alg. 2,
line 10, 9c 2 W (`) . N[c] = 1 stands for a loop on W (`)
that stops returning true if N[c] = 1 for some c, and returns
false otherwise. For every clause c, N[c] has to be initialized
to |M0 \ c|. The counters in N have to be updated each time
a literal is removed from M (line 13).

Algorithm 2 Prime implicants for CNFs.
1: procedure PRIME(C,M0,⇧0)
2: M,⇧ M0,⇧0

3: for all ` 2M do W (`) ;
4: for all c 2 C do
5: N[c] 0
6: for all ` 2 c do W (`) W (`) [ {c}
7: for all ` 2M do
8: for all c 2W (`) do N[c] N[c] + 1

9: for all ` 2M \⇧ do
10: if 9c 2W (`) . N[c] = 1 then
11: ⇧ ⇧ [ {`}
12: else
13: for all c 2W (`) do N[c] N[c]� 1

14: M  M \ {`}
15: return ⇧

Theorem 1: Given a satisfiable set of clauses C, a model
M0, and a set ⇧0 of literals mandatory in all prime implicants

included in M0, Algorithm 2 returns a prime implicant for C.
It runs in time O(

P
c2C |c|).

Proof. If the set of literals given as argument of the function
is a model, then the returned set of literals is also a (partial)
model for C. Indeed, a literal ` is removed from the model if
and only if all clauses are still satisfied when ` is removed.

Furthermore, the returned partial model M is minimal.
Assume M \ {`} is also a partial model for C. If ` has not
been removed, either there exists a clause c 2 C such that ` is
the sole true literal, or ` was initially in ⇧0. In the first case,
M \ {`} cannot be a partial model for c and hence for C. The
second case would contradict the theorem hypothesis on ⇧0.

Assume that, for each clause c, the counter N[c] can be read
and modified in constant time. Assume also that, for each `,
the indexing W (`) of clauses containing literal ` is such that
1) it can be emptied in constant time, 2) an element can be
added in constant time, 3) all its elements can be iteratively
read in cumulative linear time. We also suppose that iterating
on C, M and M\⇧ has a cumulative cost which is respectively
O(|C|), O(|M |), and O(|M |).

Under the above assumptions, Algorithm 2 is linear with
respect to the size of the clause set

P
c2C |c|. We consider

that every literal is present in at least one clause so that
O(

P
c2C |c|+ |M |) = O(

P
c2C |c|). Line 3 is O(|M |). Lines

4–6 involve inspecting each clause and each literal in the
clause, and execute a constant time operation (at line 6) for
each of those literals. This block is thus O(

P
c2C |c|). Lines 7–

8 involve inspecting each clause c at most |c| times, and is thus
also O(

P
c2C |c|). In the last loop at lines 9-14, each clause

c from C is again examined at most 2⇥ |c| times. Overall, all
four loops are O(

P
c2C |c|). ut

Algorithm 2 has linear complexity, but requires to build an
index of constraints by literals and counters. Also, a constraint
is examined once for every of its literals satisfied in the model
(not unlike what happens in SAT solving with counters instead
of watched literals). Rather than preventing a counter from
decreasing to 0 (which, for SAT solving, would correspond
to a conflict), it is more reasonable to directly put in ⇧ the
last satisfied literal of a clause as soon as the counter reaches
one (i.e. using some kind of propagation). This motivates the
version presented in the next section, using watched literals,
instead of indexes and counters.

III. COMPUTING PRIME IMPLICANTS BY PROPAGATION

It can be argued that the above algorithm uses late detection
of literals to add in the prime implicant. Indeed, a literal `
is iteratively selected, and Req(M, `, c) is checked for every
constraint c containing `. Another possibility is to use early
detection of literals for addition to ⇧, similarly to Boolean
constraint propagation in SAT solvers. This yields the algo-
rithms described in this section.

A. An abstract version

Algorithm 3 is the early detection equivalent of abstract
Algorithm 1: it computes a prime implicant out of an implicant
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M0 for a set of constraints C, and any subset ⇧0 of the required
literals in M0. Variable M , initialized to M0, is an implicant
for C of strictly decreasing size, and ⇧ is an increasing subset
of a prime implicant included in M . The larger ⇧0 is, the
faster the convergence1; also it is optional as the algorithm is
sound if it is empty. We introduce it for future specializations.

Algorithm 3 Abstract propagation-based algorithm
1: procedure PRIME(C,M0,⇧0)
2: M,⇧ M0,⇧0

3: ⇧ ⇧ [ IMPLIED(C,M)
4: while ` 2M \⇧ do
5: M  M \ {`}
6: ⇧ ⇧ [ IMPLIED(C,M)

7: return ⇧

Algorithm 3 first identifies and adds to ⇧ the required
literals of M (l. 3). Repeatedly one of the remaining literals
in M \ ⇧ is removed (l. 4) until M \ ⇧ is empty. This may
trigger other remaining literals to be added to ⇧ (l. 6). The
call IMPLIED(C,M) yields a subset of M such that

IMPLIED(C,M) \⇧ =
�
` | Req(M, `, C) \⇧,

i.e. IMPLIED(C,M) returns the set of literals in M that
should be added to ⇧ because, for each of these literals, a
constraint requires this literal to be true. Note that, in contrast
to Algorithm 1, the literal chosen in l. 4 is removed from the
prime implicant without further test. Lines 3 and 6 establish
the property that no literal in M \⇧ is required.

Proposition 1: Given a set of constraints C, an implicant
M0, and ⇧0, a subset of {` | Req(M0, `, C)}, Algorithm 3
terminates and returns a prime implicant of C included in M0.
Proof. The loop in Algorithm 3 satisfies the following
invariants:
I1: ⇧ = {` | Req(M, `, C)};
I2: ⇧ ✓M ✓M0;
I3: M is an implicant.
Invariant I1 is verified at the start of the loop as a consequence
of line 3 (assuming the pre-condition ⇧0 ✓ {` | Req(M, `, C)}
for the call to PRIME) and is preserved thanks to line 6.
I2 is trivial, and I3 is verified at the start of the loop as a
consequence of line 2. It is preserved since ` at lines 4 and 5
is not in ⇧, thus is not required: 8c .M \ {`} |= c. The new
value of M is again an implicant for all c.

The loop variant |M \⇧| is a strictly decreasing sequence of
natural numbers; the loop terminates when M ✓ ⇧, i.e. when
M = ⇧ (thanks to invariant I2) and ⇧ ✓M0. From invariant
I3, ⇧ is an implicant and from invariant I1, this implicant is
prime. This establishes the property.

The above proof is suitable for any type of Boolean con-
straints. For the special case of a clause c 2 C, notice that, as a
direct consequence of the loop invariant, c\⇧ 6= ;_|c\M | �
2. ut

1Technically, a SAT solver should assign ⇧0 to the set of literals assigned
by unit propagation while establishing M0 |= C.

There may exist several prime implicants in M0. The one
produced by Algorithm 3 depends only on the successive
choices of ` in line 4. Any prime implicant subset of M0

may be produced, given the right sequence of chosen literals.
A prime implicant produced by Algorithm 1 or Algorithm 2
is obtained by Algorithm 3 by picking literals in the same
sequence and dropping literals that are already in prime.

B. Implementation with watched literals

A concrete implementation of the above abstract algorithm
would best use the data structures implemented in state-of-
the-art SAT solvers. This is the approach of Algorithm 4: in
addition to the model M0, it reuses the watched literals relation
at the ending state of the SAT solver. We consider a general
notion of watched literals as a relation W between literals and
constraints such that, for every literal `, W (`) is a (sub)set of
constraints containing `. We now require ⇧0 to initially contain
all the literals that are directly entailed by one constraint in
C.2 Since such literals are included in {` | Req(M, `, C)} the
precondition for Algorithm 3 is verified.

Algorithm 4 Prime implicants using watched literals
1: procedure PRIME(C,M0,⇧0,W )
2: M,⇧ M0,⇧0

3: IMPLIEDW,0(C,M,⇧,W )
4: while ` 2M \⇧ do
5: M  M \ {`}
6: IMPLIEDW (C,M, `,⇧,W )

7: return ⇧

8: procedure IMPLIEDW,0(C,M, ref ⇧, ref W )
9: for all ` 2M \⇧ do

10: IMPLIEDW (C,M, ¯̀,⇧,W )

11: procedure IMPLIEDW (C,M, `, ref ⇧, ref W )
12: W`  W (`)
13: for all c 2W` do
14: HDL CONSTR(c,M, `,⇧,W )

The data in Algorithm 4 includes the variables of Algo-
rithm 3, namely M and ⇧, and the watched literals relation W .
The inherent property of the watched literals for a constraint
c, i.e. W�1(c), is that, as long as all watched literals remain
either undefined or true, nothing can be deduced from c in the
current assignment. In our context ⇧ plays a role similar to the
current partial assignment in the SAT solver. Let us define, for
a constraint c, the set of literals S(c) = ⇧[W�1(c). Formally,
W is always such that:
W1(c): 8` 2W�1(c) \⇧ .¬Req(S(c), `, c)
W2(c): S(c) \M |= c

Both properties should be satisfied by the inputs given to our
algorithm. Observe that: 1) if ⇧ |= c, then W1(c) is true; 2)

2In particular, ⇧0 should contain all literals in unit clauses.
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when a literal ` is removed from M , W1(c) is not affected;
and 3) if ` furthermore satisfies ¬Req(M, `, c), then W2(c)
is also preserved. The algorithm first establishes an additional
loop invariant (line 3):
W3(c): S(c) ✓M

As in Algorithm 3, the main loop repeatedly removes one
(unrequired) literal ` from M \⇧ (line 5), possibly augmenting
⇧ with new literals, and repairs the invariant properties for
the watched literals (line 6). Function HDL CONSTR (Algo-
rithm 5) reestablishes these properties for each c affected by
the removal of ` from M . Its definition is left general enough
so that it can be specialized for different classes of constraints
and watched literals strategies. This greedy approach is similar
to Boolean propagation in SAT solving, ⇧ emulating the
assignment whereas M restricts the choice for watched literals
and possible propagations.

Algorithm 5 HDL CONSTR for arbitrary constraints
1: procedure HDL CONSTR(c,M, `, ref ⇧, ref W )
2: ⇧ ⇧ [ {`0 2W�1(c) | Req(M, `0, c)}
3: if ⇧ 6|= c then
4: Choose W 0 such that
5: W 0 ✓ (W�1(c) [M) \ {`}
6: (⇧ [W 0) \M |= c
7: 8`0 2W 0 \⇧ .¬Req(W 0 [⇧, `0, c)
8: in W�1(c) W 0

Proposition 2: Given a set of constraints C, an implicant
M0, a set of literals ⇧0, and a relation W between literals
and constraints in C such that:

• {` | 9c 2 C . c |= `} ✓ ⇧0 ✓ {` | Req(M0, `, C)},
• 8c 2 C .W1(c) ^W2(c)

then Algorithm 4 terminates and returns a prime implicant of
C contained in M0.
Proof. The proof is similar to that of Algorithm 3, the same
invariants being satisfied: we prove that lines 3 and 6 estab-
lish these invariants through the successive calls to function
HDL CONSTR (Algorithm 5).

First, consider the call in line 3. Before the call, invariants
I2 and I3 are satisfied, as well as W1(c) and W2(c) for each
constraint c, and ⇧ ✓ {` | Req(M0, `, C)}, thanks to the
preconditions of PRIME. The call establishes W3(c) for every
constraint c, and at the same time, introduces literals in ⇧ so
that {` | Req(M0, `, C)} ✓ ⇧. This is a direct consequence
of line 2 in Algorithm 5, the other lines ensuring that W1(c),
and W2(c) remain preserved even if ¯̀ is removed. When all
the negations of literals in M have been removed from the
watched literals by the successive calls, W3(c) is also satisfied
for each c. Every element ` added in ⇧ can be related to a
constraint c such that Req(M, `, c).

Now consider the call in l. 6. The invariants are satisfied,
if it were not for the absence of ` in M . Again, for each
constraint c, the successive calls to HDL CONSTR repair the
invariant W3(c) while preserving W1(c) and W2(c). This may
insert new literals in ⇧ if they are required by c. ut

Algorithm 6 HDL CONSTR for clause or cardinality con-
straints

1: procedure HDL CONSTR(c,M, `, ref ⇧, ref W )
2: if 9`0 2 c \M . `0 /2W�1(c) then
3: W  (W [ {`0 7! c}) \ {` 7! c}
4: else ⇧ ⇧ [ (W�1(c) \ {`})

Function HDL CONSTR in Algorithm 5 is generic and
may be refined to handle specific classes of constraints. One
such concrete implementation is given for clauses and, more
generally, for cardinality constraints in Algorithm 6. Assuming
|W�1(c)| � 2, c 2 W (`) and ` 62 M , either there exists
another literal `0 that may be watched by c, in which case W
is updated with the new association, or there is no such literal,
and the literals in W�1(c) must be in the prime implicant and
are inserted into ⇧. In the special case of clauses, then there
is only one such literal.

Proposition 3: When C is a set of clauses and HDL CONSTR
is specified as in Algorithm 6, Algorithm 4 runs in time
O(

P
c2C |c|).

Proof. IMPLIEDW (C,M, `,⇧,W ) has cumulated complexity
in O(

P
c2C |c|). To achieve this rate, one has to ensure

that, for every clause c, the cumulative time for the calls to
HDL CONSTR with c is O(|c|). This can simply be done by
storing clauses as arrays of literals indexed from 1 to |c|, using
a pointer initialized to 1 in this array, and looking for the
suitable literal from this pointer on (and updating its value).
The successive calls to HDL CONSTR on clause c would then
resume their search from the previous position. Each literal in
each clause would therefore be processed at most once.

For every literal ` in M , there is one call to
IMPLIEDW (C,M, ¯̀,⇧,W ) in function IMPLIEDW,0. Every
clause in C is satisfied by at least one of its watched literals.
If a clause appears in W (¯̀), its other watched literal is thus
in M , and the watched ¯̀will be replaced by another watched
literal in M (or the clause stays in W (¯̀) and its other watched
literal is added to ⇧). So every clause will be examined at most
once for the whole run of IMPLIEDW,0. Assuming the search
for another watched literal in line 2 of Algorithm 6 remains
linear with respect to the size of the clause, IMPLIEDW,0 runs
in time O(

P
c2C |c|).

IMPLIEDW is called at most once for each literal ` in M0

on line 6 in Algorithm 4. If the watch relation for clause c
is modified (on line 3 in Algorithm 6), c will never occur
again in W (`), since ` is removed forever from M . As a
consequence, every clause c will be considered at most |c|
times by the successive calls of Algorithm 6. In these calls,
the cumulated searches for a new watched literal (condition
on line 2 in Alg. 6) accounts for a factor linear in the size of
c. ut

Prop. 3 may be generalized to any class of constraints
and watched literals strategy where the cumulated time of
HDL CONSTR(c) has a complexity linear in the size of c.
This holds for cardinality constraints, as the watched literals
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strategy may also be employed.

IV. EXPERIMENTAL EVALUATION

A classical implementation of Algorithm 1 with quadratic
complexity in the size of M0 \⇧0 has already been available
in Sat4j for several years. In practice, this implementation
performed well on many SAT benchmarks because a vast
majority of the literals of the model found by the SAT solver
are implied by unit propagation, so M0 \ ⇧0 was initially
much smaller than M0 (⇧0 containing all propagated literals
initially). There are however classes of problems for which
this is not true.

Sat4j MaxSAT uses selector variables to translate MaxSAT
problems into Pseudo-Boolean Optimization problems [16].
In that context, counting the number of satisfied selector
variables provides an upper bound on the minimum number of
constraints that must be falsified. However, despite a strategy
to always branch first on falsified selector variables, some se-
lector variables may be satisfied even if the original constraint
is satisfied. To improve the bounds, two solutions exist: using
an encoding enforcing that the selector variable can only be
satisfied if the original constraint is falsified, or counting the
selector variables on a prime implicant. The former solution
adds many binary clauses to the original CNF (as many binary
clauses as literals in the original formula) and is inefficient in
practice.

We present here some experimental results of the proposed
algorithm on a specific set of benchmarks from the MaxSAT
2010 evaluation. The previous version of Sat4j could not com-
pute prime implicants for industrial MaxSAT benchmarks from
circuit debugging with millions of variables and clauses [17].
We used those benchmarks to compare the proposed algorithm
based on watched literals against one based on counters, both
of linear complexity.

Since we use prime implicants to improve the upper bounds
computed by our MaxSAT solver, prime implicants have to be
computed on a set of clauses plus one cardinality or pseudo-
boolean constraint representing the bound of the objective
function. On the following, we present the time required to
compute the first prime implicant of each benchmark, thus on
clauses only.

Algorithm 4 (for clauses) and Algorithm 6 (for clauses,
cardinality and pseudo-Boolean constraints) have been im-
plemented in the Sat4j library. As described in the previous
section, the implementation includes a propagation procedure
similar to the classical unit propagation scheme found in
CDCL solvers with two key differences: i) the propagation
always eventually finds a satisfied literal and ii) the number
of steps to update the watched literals is reduced by storing
the last position in the search between each call to the
propagation procedure. Note that for clauses, where only two
literals are watched, a constraint with n literals is traversed
at most n times if there is no bookkeeping, and it may be
a good tradeoff to avoid storing that information for short
clauses to save memory. For larger clauses, or cardinality
constraints, bookkeeping the state of the search as proposed

for Algorithm 6 is crucial: on some examples, the time spent
to compute a prime implicant was dramatically reduced (e.g.
from 240 seconds to less than one second) by such a simple
implementation detail, that guarantees the linearity of the
algorithm. For pseudo-Boolean constraints, we use a counter
based implementation and extra care is required to update the
state during backtracking and to handle the literals that do not
belong to the implicant. Finally, learned clauses are ignored
for the propagation. The implementation details can be found
in the source code of Sat4j.

The results are summarized in Table I. The Sean Safarpour
benchmark set contains 52 benchmarks. Sat4j is able to load
36, running out of memory for the others (when given 2GB
of memory). For those 36 benchmarks, we give the number
of variables (including the selector variables, one per clause),
the number of clauses, the total number of literals in the
formula (the cumulated size of the clauses), the number of
literals implied by unit propagation in the model (#implied),
and the time taken respectively by the counter vs. watched
literals approaches to compute a prime implicant from the first
model found by the MaxSAT solver. We also give the median
values on those 36 benchmarks. The proposed algorithm was
able to compute prime implicants for all benchmarks within a
second, while the counter based approach missed one (due to
memory out) and lead in some cases to much greater runtimes
(up to one order of magnitude). Those results illustrate the
advantage of reusing the solver data structures to minimize
memory requirements and the advantage in practice of using
those lazy data structure for computing prime implicants.

V. CONCLUSION

We propose and discuss an algorithm to compute prime
implicants in time linear in the size of the input formula
designed for easy integration in modern SAT solvers. This
algorithm is based on lazy data structures such as watched
literals [7]. The efficiency of the algorithm is maintained
for other kinds of constraints as long as some data structure
ensures the constraint will be traversed at most once during the
successive calls to the propagation procedure. This applies to
both clauses and cardinality constraints. The same algorithm
can also be applied to other kind of constraints, but linear
complexity may be lost.

We implemented the algorithm for clauses, cardinality and
pseudo-Boolean constraints in the Sat4j platform. On a class
of problems with millions of variables, we compare a counter
based algorithm against our watched literal algorithm. While
both algorithms are linear, our algorithm computed all prime
implicants in less than a second, which was not the case for the
other algorithm. These results show that applying the proposed
algorithm to compute prime implicants instead of models has
a negligible overhead.

Good prime implicant computation procedures are useful
for many applications. In particular, we investigate prime
implicants for Boolean optimization by strengthening, as the
value of the objective function computed on a prime implicant
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TABLE I
EXPERIMENTAL COMPARISON OF THE PRIME IMPLICANT ALGORITHMS ON

SELECTED SEAN SAFARPOUR BENCHMARKS (2GB MEMORY).

#vars #cla #literals #implied Alg. 2 Alg. 4
(M) (M) (M) (M) (s) (s)
2.3 1.7 4.0 0.5 4.842 0.736
1.3 0.9 2.2 0.4 0.347 0.377
1.5 1.1 2.7 0.4 2.860 0.495
2.6 1.8 4.4 0.6 MO 3.463
1.5 1.0 2.5 0.3 0.541 0.380
0.7 0.5 1.3 0.2 0.210 0.230
0.7 0.5 1.3 0.2 0.212 0.237
1.0 0.7 1.8 0.3 0.729 0.364
0.9 0.7 1.8 0.2 0.225 0.252
1.0 0.7 1.9 0.2 0.559 0.283
1.0 0.7 1.9 0.2 0.552 0.283
1.0 0.8 2.1 0.2 0.578 0.301
0.2 0.16 0.4 0.04 0.154 0.120
0.5 0.4 1.1 0.1 0.552 0.221
0.2 0.9 2.4 0.25 0.280 0.353
2.0 1.5 3.9 0.5 4.191 0.486
1.6 1.2 2.9 0.4 3.956 0.377
1.0 0.8 2.1 0.2 0.638 0.284
1.8 1.0 2.8 0.3 4.008 0.354
2.0 1.6 4.5 0.4 2.567 0.486
1.1 0.9 2.6 0.2 0.326 0.304
1.1 0.9 2.6 0.2 0.333 0.289
1.1 0.9 2.6 0.2 0.319 0.330
1.1 0.9 2.6 0.2 0.343 0.684
2.0 1.6 4.6 0.4 2.493 0.493
0.8 0.7 1.9 0.1 0.232 0.269
1.2 0.9 2.5 0.2 0.621 0.348
0.2 0.1 0.3 0.04 0.152 0.102
0.2 0.1 0.3 0.04 0.154 0.077
2.2 1.7 4.8 0.4 9.225 0.510
2.2 1.7 4.8 0.4 8.946 0.490
2.2 1.7 4.8 0.4 6.086 0.556
1.5 1.2 3.4 0.3 4.250 0.366
1.5 1.2 3.4 0.3 4.172 0.370
1.0 0.8 1.9 0.3 0.643 0.285
1.0 0.8 1.9 0.3 0.645 0.273

Median
1.168 0.930 - 0.268 0.578 0.301

yields a better upper bound than the value obtained with a
model.
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