Distributed Synthesis for LTL Fragments

Krishnendu Chatterjee, Thomas A. Henzinger, Jan Otop, Andreas Pavlogiannis
IST Austria
{chatterjee, tah, jotop, pavlogiannis}@ist.ac.at

Abstract—We consider the distributed synthesis problem for
temporal logic specifications. Traditionally, the problem has
been studied for LTL, and the previous results show that the
problem is decidable iff there is no information fork in the
architecture. We consider the problem for fragments of LTL
and our main results are as follows: (1) We show that the
problem is undecidable for architectures with information forks
even for the fragment of LTL with temporal operators restricted
to next and eventually. (2) For specifications restricted to globally
along with non-nested next operators, we establish decidability
(in EXPSPACE) for star architectures where the processes
receive disjoint inputs, whereas we establish undecidability for
architectures containing an information fork-meet structure. (3)
Finally, we consider LTL without the next operator, and establish
decidability (NEXPTIME-complete) for all architectures for a
fragment that consists of a set of safety assumptions, and a set
of guarantees where each guarantee is a safety, reachability, or
liveness condition.

I. INTRODUCTION

Synthesis and distributed synthesis. The synthesis problem
is the most rigorous form of systems design, where the goal
is to construct a system from a given temporal logic specifi-
cation. The problem was originally proposed by Church [1]
for synthesis of circuits, and has been revisited in many
different contexts, such as supervisory control of discrete event
systems [2], synthesis of reactive modules [3], and several
others. In a seminal work, Pnueli and Rosner [4] extended
the classical synthesis problem to a distributed setting. In
the distributed synthesis problem, the input consists of (i) an
architecture of synchronously communicating processes, that
exchange messages through communication channels; and
(ii) a specification given as a temporal logic formula; and the
synthesis question asks for a reactive system for each process
such that the specification is satisfied. The most common logic
to express the temporal logic specification is the linear-time
temporal logic (LTL) [5].

Previous results for distributed synthesis for LTL. In gen-
eral the distributed synthesis problem is undecidable for LTL,
but the problem is decidable for pipeline architectures [4]. The
undecidability proof uses ideas originating from the undecid-
ability proof of three-player imperfect-information games [6],
[7]. The decidability results for distributed synthesis have
been extended to other similar architectures, such as one-
way rings [8], and also a distributed games framework was
proposed in [9]. Finally, a complete topological criterion on
the architecture for decidability of distributed synthesis for
LTL was presented [10], where it was shown that the problem
is decidable if and only if there is no information fork in
the underlying architecture. Architectures without information
forks can essentially be reduced to pipelines.

Fragments of LTL. While LTL provides a very rich frame-
work to express temporal logic specifications, in recent years,
several fragments of LTL have been considered for efficient
synthesis of systems in the non-distributed setting. Such
fragments often encompass a large class of properties that
arise in practice and admit efficient synthesis algorithms, as
compared to the whole LTL. In [11], [12] the authors con-
sidered a fragment of LTL with only eventually (reachability)
and globally (safety) as the temporal operators. In [13] LTL
with only eventually and globally operators (but without next
and until operators) was considered for efficient translation
to deterministic automata. The temporal logic specifications
for reactive systems often consist of a set of assumptions
and a set of guarantees, and the reactive system must satisfy
the guarantees if the environment satisfies the assumptions.
In [14] the GR1 (generalized reactivity 1) fragment of LTL was
introduced where each assumption and guarantee is a liveness
condition; and it has been shown that GR1 synthesis is very
effective to automatically synthesize industrial protocols such
as the AMBA protocol [15], [16].

Our contributions. In this work we consider the distributed
synthesis problem for fragments of LTL. The previous results
in the literature considered the whole LTL and characterized
architectures that lead to decidability of distributed synthesis.
In contrast, we consider fragments of LTL to present finer
characterizations of the decidability results. Our main contri-
butions are as follows:

1) Reachability properties. First we consider the fragment
of LTL with next and eventually (reachability) as the
only temporal operators, and establish that the distributed
synthesis problem is undecidable if there is an infor-
mation fork in the underlying architecture. In particular,
the problem is undecidable with one nesting depth of
the next operator and only one eventually operator; i.e.,
if we consider the fragment of LTL that consists of
Boolean combinations of atomic propositions and next
of atomic propositions; and only one eventually as the
temporal operator, then the distributed synthesis problem
is undecidable iff there is an information fork in the
architecture.

2) Safety properties. We then consider the fragment of LTL
with next and globally (safety) as the only temporal op-
erators, with a single occurrence of the globally operator.
We show that the distributed synthesis problem can be
decidable under the existence of information forks; in
particular we establish decidability (in EXPSAPCE) for
the star architecture where processes have no common
inputs from the environment. However, we show that

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 18

the problem remains undecidable for architectures con-
taining an information fork-meet, a structure in which
two processes receive sets of disjoint inputs, (as in the
information fork case), and a third process receives the
union of those sets. Moreover, our undecidability proof
again uses specifications that do not contain nested next
operators. In other words, if there is information fork,
the problem may be decidable, but if there is information
fork, and then the forked information meets again, then
we obtain undecidability.

3) Temporal specifications without the next operator. Since
our results show that even with one nesting depth of the
next operator, distributed synthesis is undecidable with
reachability and safety objectives, we finally consider the
problem without the next operator. We show that if we
consider a set of safety assumptions, and a set of guar-
antees such that each guarantee is a safety, reachability,
or a liveness guarantee, then the distributed synthesis
problem is decidable (and NEXPTIME-complete) for all
architectures.

Hence, our paper improves upon existing results by present-
ing finer (un)decidability characterizations of the distributed
synthesis problem for fragments of LTL. We also remark
that when we establish decidability, it is either EXPSPACE
or NEXPTIME-complete, as compared to previous proofs of
decidability in distributed synthesis setting where the complex-
ity is non-elementary. Thus as compared to the complexity
of previous decidability results (tower of exponentials), our
complexities (at most two exponentials) are very modest.

II. MODEL DESCRIPTION

Architectures. An architecture is a tuple A = (P, p.,V, E),
where P = {pe,p1,p2,...pn} is a set of n + 1 processes,
Pe 1s a distinguished process representing the environment, V'
is a set of (output) binary variables, and E : P x P — 2V
defines the communication variables between processes (i.e,
E(p,q) = {u,v} means that p writes to variables u, v, and ¢
reads from them). For every process p € P, we denote with
O(p) = Uyep E(p, q) the set of output variables of p, and
with I(p) = qup E(q,p) the set of input variables of p. We
require that for all p,g € P : O(p) N O(q) = 0, i.e., no two
processes write to the same variable. Finally, we will denote
with P~ =P\ {p.}.

An architecture describes a distributed reactive system, with
the environment providing the inputs via O(pe), and the
system responding via I(p.). The pair (P, E) describes the
architecture of the system as a multigraph, with P being the
set of nodes, and F(p, q) the set of directed p — ¢ edges with
the corresponding variables as labels.

Trees. We define a (full) B-tree T over some finite set B as the
set of all nodes = € (2%)". A (possibly infinite) sequence of
nodes m = (x1, 2 ...) forms a path in T, if for every i > 1 we
have z;.1 = z;z, for some z € 28 For such a path 7, we will
use 7[¢] to denote the element of 7 at the i-th position, while
m[i, 00] denotes the infinite suffix of 7 starting at position i.
An A-labeled B-tree T), is a B-tree equipped with a labeling
function of its nodes, A : (2%)" — 24. For every node

r =yz € T with z € 28 we denote with £, (x) = z U A(z),
i.e., the £, of = consists of the branch z from the parent and
the label (). For a (possibly infinite) path 7 = (21, 22, ...),
we define with £ (7) = ({x(z1),lx(22) ...).

Local strategies. For every process p € P~, a local strategy
op is a function o), : (21(”))* — 200 setting the output
variables of p according to the history of its input variables.
Observe that every such local strategy o, can be viewed as
a labeling of an O(p)-labeled I(p)-tree T5;,. A local strategy
op has finite memory if there exists a finite set M, my € M,
and functions f : M x 2I® — M and g : M — 200
such that for all z = x125...x, with z; € 2/ we have
op(x) = g(f(...(f(f(mo,x1),22) ..., 2k)). The memory of
op is said to be |[M|, while if [M| = 1, then o, is called
memoryless.

Collective strategies. The collective strategy of the architec-
ture A is a function o : (20(1’6))* — 2V\O(e) mapping every
finite sequence of the outputs of the environment to a subset
of the outputs of the processes p according to the composition
(op : p € P7). The collective strategy o can be viewed as a
(V'\ O(p.))-labeled O(p.)-tree T, and for any infinite path 7
in T,,, we will call ¢, () a computation. Hence, T, describes a
distributed algorithm, and every infinite path 7 = (21, x2,...)
starting from the root represents a distributed computation
4, (), according to the local strategies (o, : p € P7).
Synthesis (realizability). We will consider distributed reactive
systems with specifications given by temporal logic formulae.
For temporal logic formulae we will consider LTL; see [5]
for the formal syntax and semantics of LTL. The problem of
realizability of a temporal logic formula ¢ in an architecture A
asks whether there exist local strategies o, for every process
p, such that for every infinite path 7 of the (V'\ O(p,))-labeled
O(pe)-tree T, of the collective strategy o, with 7 starting from
the root, we have ¢, (7) |= ¢. If ¢ admits such strategies o, for
every p € P, then it is called realizable, and the collective
strategy o gives an implementation for ¢ on A.

ITI. SYNTHESIS FOR REACHABILITY SPECIFICATIONS

In the current section we discuss the synthesis problem
for reachability specifications, where the objective consists of
propositional formulae connected with Boolean operators and
non-nested X’ (next) operators. We will show that even under
such restrictions, the synthesis problem remains undecidable
for all architectures containing an information fork, via a
reduction from the halting problem of Turing machines.

Fragment LTL,. We consider LTL, that consists of formulae
¢ from the following LTL fragment:

QZP‘XP
¢:91A92‘91V6‘2|—|9
¢=0Q — O

where P, @) are propositional formulae, X is the next operator,
¢ is the eventually temporal operator. We consider the standard
semantics of LTL. Formula {1 represents a reachability ob-
jective, and @ will capture the initial input in the architecture.

Turing machines. Let M be a deterministic Turing machine
fixed throughout this section and let Q be the set of states

19

of M (see [17] for detailed descriptions of Turing machines).
The machine M works over the alphabet {0,1,U}, and its
tape is bounded by # symbols. The machine M cannot move
left on a # symbol, and moving right to a # symbol effects
in extending the tape by a blank symbol LI. In our analysis,
M starts with the empty tape. A configuration of M is a word
#vqaull#, where a € {0,1}, v,u € {0,1}* and q € Q. Such
a configuration has the standard interpretation as an infinite
tape such that v is the part of the tape preceding the head, q
is the current state of M, a is the letter under the head, and
u is a sequence of symbols succeeding the head. The blank
symbol U represents the rightmost cell of the tape that has not
been altered by M. We define the projection 7, over words
w from some alphabet containing L, such that 7 (w) is the
result of omitting all L symbols from w. We define a scattered
configuration C' of M as a word over ¥ = {0, 1,1, L, #}UQ
such that 7 (C) is a configuration of M.

Information-fork architecture. We first consider the archi-
tecture Ag (Figure 1), characterized as an information fork
in [10], for which the problem of realizability has been
shown to be undecidable, using LTL formulae with nested
until operators (in [4]). Here we show that the problem
remains undecidable for Ay and specifications in the restricted
fragment of LTL,. This is obtained through a reduction from
the halting problem of M, by constructing a specification
¢ € LTL, which is realizable iff M halts on the empty input.

Proof idea. The architecture A, consists of the environment p,
and two processes p; and p». The processes act as I/O streams,
outputting configurations of M; the environment sends sepa-
rately to each process next and stall signals, indicating that
the corresponding process should output the next letter from
{0, 1,4, #}UQ of the current configuration of M, or it should
output L.

Construction of . First, we will provide a regular safety
property ¢ which specifies that if the environment satisfies an
alternation assumption, i.e., every stall signal is followed by a
next signal, then p; and p, conform with a series of guarantees.
The property ¢ does not belong to the LTL,, fragment, but we
will show how it can be expressed by a safety automaton Ag,ge.
Then, we will prove that if ¢ is realizable, and the environment
conforms with the alternation assumption, then the processes
output a legal sequence of configurations of M, scattered with
the L symbol.

Conversion to LTL. Next, we will provide the specification
for the synthesis problem ¢ € LTL, such that ¢ is real-
izable iff ¢ is realizable and M halts on the empty input.
Formula ¢ does not express ¢ directly, but it asserts that the
environment simulates a run of Agy faithfully, and finally
one of the processes outputs a halting configuration of M.
More precisely, the environment simulates a run of Agug
storing the current state of Ay, in a set of hidden variables
{q1,---,qm} € FE(pe,pe), and ¢ encodes that eventually
either (i) the environment cheats in the simulation of Agp,
or (ii) one of the processes outputs a halting state q of M,
while the current state of Ay is not rejecting (i.e., q was
reached legally with respect to M). We will conclude that ¢
is realizable iff M halts on the empty input.

20

Fig. 1: The architecture Ay which consists an information fork.

Formal proof. A safety automaton cannot express a scattered
configuration that is finite. Thus, we define a scattered precon-
figuration C (of M) as a (possibly infinite) word whose every
finite prefix can be extended to a scattered configuration of M.
A scattered preconfiguration is formally defined as a finite or
infinite word over X that begins with #, there is at most one
symbol from Q, there are no symbols after the second # and
the LI symbol is followed by the # symbol.

Let Cy, C5 be scattered preconfigurations. We denote with
L(C) the set of positions in C' where L occurs, and write
C4 || Cs if the symmetric difference of 1L (C7) and L(C5) has
at most one element, i.e., | L(C1)AL(C2)| < 1. We define as
Cl = CQ if Cl H C2 and

(i) w1 (Cs) follows legally from 7, (C4) according to M,
or

(ii) both C1, Cs are infinite preconfigurations such that every
finite prefix can be extended to finite preconfigurations
C1, C4 such that 7 (C%) follows legally from 7 (CY).

For infinite words wy,ws, we define w; ® wy as a word
over X X X such that the i-th letter of w; ® ws is a pair
of the i-th letters of w;,ws. Observe that there are safety
automata working over ¥ x ¥ that recognize the languages
{01 ®Cy: C4 || CQ} and {Cl RCy:CL CQ}

Construction of p. We first construct the regular safety prop-
ety ¢ = L — MNg<;<q Cond;, where L (the alternation
assumption) and Cond; are defined as follows:

L: for every process, every stall signal is followed by
a next signal.

Condy: each process outputs L when its input is stall,
otherwise it outputs a letter from X\ {L},

Condy: each process produces a sequence of scattered
preconfigurations,

Conday: initially, each process produces two scattered con-
figurations of M, whose projections are the first two
valid configurations of M,

Condg: if starting from some position 4, p; outputs consec-
utively C7,C5 and po outputs consecutively C1, C%,
then Cf + Cy implies C4 = Cy or C4)t Cs,

Condy: if D, D’ are outputs of p1, ps up to some positions
such that D || D" and |7 (D)| = |7 (D")], then
7TJ_(D) = 7TJ_(D/).

We provide a high-level description of the construction of an
alternating safety automaton Agg (see [18] for the definition
of alternating automata) which verifies that every execution
satisfies . Note that Agg can be transformed to a non-
deterministic automaton by a standard power-set construction.
Clearly, conditions £, Condy and Cond; can be expressed
by a safety automaton. For the condition C'onds, observe

that the first two configurations of M have at most 9 letters
#qo U ##qia U #, with a € {0,1,¢}. To show that the
rest of conditions can be expressed by a safety automaton,
we assume that £ is satisfied; otherwise those conditions
do not have to be checked (note that if £ is violated, Agafe
accepts unconditionally). Because of £, Agy can verify that
p1 and py conform with C'onds by checking the first 18 output
letters. For the condition C'onds, Agg operates as follows:
whenever it encounters a # symbol marking the beginning of a
configuration, it splits universally. One copy looks for the next
configuration, and the second copy, denoted by As, verifies
that C'onds holds at the current position, as follows. It ignores
L symbols and compares whether Cy || C7, configurations
w1 (C1) and 7, (C]) are equal everywhere except for positions
adjunct to the head of M, and the letters adjunct to the
head are consistent with the transition of M. If one of these
conditions is violated, Cy I/ Cy, therefore A3 accepts the
word regardless of what follows. Otherwise, if those conditions
hold, ie., C; F C4, As non-deterministically verifies one
of the following conditions: C4 |f C2 or C} + Cs. Both
conditions can be verified by safety automata, since C'y and
CY} either start concurrently, or C5 is delayed by 1 step from
CY. For the condition Cond, observe that if D || D’ and
|7 (D)| = |7 (D), then ||D|—|D’|| <1 and the automaton
needs to remember at most one symbol to compare 7, (D) and
71 (D'). We can now prove the following lemma.

Lemma 1. If o is realizable, then for every k € N, in all
executions where L holds, both p1 and py output sequences of
scattered configurations whose T, projections are sequences
of at least k consecutive valid configurations of M, starting
with the initial configuration on the empty input.

Proof: First note that there exist executions where the
environment indeed satisfies £, and thus p; and p» satisfy con-
ditions C'ondy-Cond,. The lemma clearly holds for &k = 1,2,
due to conditions Condy — Conds. For the inductive step,
assume that the lemma holds for £ > 2. Consider a sequence
of inputs to p; consisting of next signals only. Then, there
is a sequence of inputs to p, consisting of some number
of next signals and exactly |7 (Cy)| stall signals placed
in a such way that p; outputs Cy...CxCki1, p2 outputs
Ci...C,_C,, and CrCryq, C},_,C,, are synchronized, i.e.
they start at the same position and C, || C}._;, Cr+1 || Cf. By
the induction assumption 7, (C},_;) and 7, (Cy) = 7, (C},)
are, respectively, (kK — 1)-th and k-th configurations of M.
Therefore, C},_, F Cj and, by Conds, C}, F Cit1. This
implies that Cy1 is a finite scattered preconfiguration and
71 (Clr+1) is the (k 4 1)-th configuration of M.

Given that for an input consisting of next signals only, p;
outputs Cj ... C,Cyy1 satisfying the statement, we can show
that regardless of the number of stall signals, under condition
L, p1,p2 output k + 1 scattered configurations satisfying the
statement. First, the condition C'ond, implies that if p- also
has an input sequence consisting of next signals alone, it will
output the same sequence, that is, C; ... CxCj41. By a simple
induction on the number of stall signals each process receives,
and condition C'ondy, we conclude that for any number of stall
signals, as long as L is satisfied by the environment, pi,ps

output k + 1 scattered configurations whose projections are
the first k£ + 1 consecutive configurations of M. []

Conversion to LTL.. Given the safety automaton Ag,g which
verifies that ¢ is satisfied, we can construct a specification
¢ € LTLy, such that ¢ is realizable if and only if the Turing
machine M does not halt on the empty input. The environment
uses the hidden (not visible to pq, ps) variables q1,...,qr €
E(pe, pe) to simulate the automaton Ag,e. We provide a high
level description of the following formulae:

@ specifies that the first state of A, according to the output
variables {q1, . . . ¢m } is compatible with the initial values
of x1, ®o, y1 and yo (i.e. {q1,...qm} represent the state
of Agf reached from the initial state after reading the
initial values of x1, x5, y; and ys; @ is propositional)

11 specifies that Agy has a transition from the current state
to the next state, encoded by the values of {q1,...qn}
in the current and the next round, according to the value
of variables x1, x2, y1 and y, in the next round (i.e., pe
simulates A, faithfully; ¢); contains only propositionals
and non-nested X operators).

1o specifies that the current state of Ag,f is not rejecting, and
p1 or po outputs a halting state of M (i.e., some process
reached a halting configuration of M, and both processes
behaved according to Ague; 12 is propositional).

Finally, we construct ¢ = Q — O(—1 V 1)), with

¢ € LTLy. If ¢ is realizable, the processes satisfy 9 in
all runs where the environment faithfully simulates Ay, and
conforms with condition L(i.e., @ and v are true). Then
p1, p2 output a halting state of M and satisfy ¢, which by
Lemma 1, guarantees that the halting state was reached by a
legal sequence of configurations of M. In the inverse direction,
if M halts, then ¢ is realizable by (finite) local strategies
which output a finite, legal sequence of configurations of M
and conform with condition Condy. Hence, we obtain the
following theorem.

Theorem 1. The realizability of specifications from LTL¢ in
Aq is undecidable.

Similarly as in [10], the above argument can be carried out
to any architecture which contains an information fork, by
introducing additional safety conditions in ¢, which require
that all processes propagate the inputs of the environment to
the two processes constituting the information fork. It has also
been shown in [10] that in architectures without information
forks, the realizability of every LTL specification is decidable.
Hence, Theorem 1 together with the results from [10] lead to
the following corollary.

Corollary 1. For every architecture A, the realizability of
specifications from LTL¢ in A is decidable iff A does not
contain an information fork.

IV. SYNTHESIS FOR SAFETY SPECIFICATIONS

In the current section we consider safety specifications
where the safety condition consists of propositional formulae
connected with Boolean operators, and the X temporal oper-
ator. First, we show that the synthesis problem is undecidable

21

for architectures containing an information fork-meet (see
Figure 3), by a similar construction as in the case of LTL,.
Then we show that the problem is decidable for a family of
star architectures, despite the existence of information forks.

Fragment LTL5. We consider LTL that consists of formulae
¢ from the following LTL fragment:
V=P 1 Ahg [1 Viha | = | Xy
¢=QANIY
where P, () are propositional formulae, and [J is the globally
operator. We consider the standard semantics of LTL. The
Ly part of ¢ specifies a safety condition, and we interpret
@ as the initial conditions. The fragment LTLg can express
safety specifications, one of the most basic specifications in
verification.

While the information fork criterion is decisive for the
undecidability of reachability specifications, here we extend
this criterion to the family of star architectures of n + 1
processes, denoted as S,, (i.e., p. is the central process ,
and (J, I(p;) = O(pe)) (Figure 2) and show that: (i) the
realizability of some ¢ € LTLp in S, is decidable if all
processes receive pairwise disjoint inputs, (ii) it is undecidable
if n > 3 and we allow overlapping inputs. The latter can be
generalized to all architectures which contain such a structure,
which we call an information fork-meet.

O(pn) /p_\ I(pn)
O/

Fig. 2: The family of start architectures .S,,.

A. Overlapping inputs

Here we demonstrate undecidability of realizability of spec-
ifications ¢ € LTLp for star architectures with overlapping
inputs, and with ¢ having X-depth 1 (i.e., ¢ belongs to a
subclass of LTLg where X operators are not nested). We
first consider the star architecture A; (Figure 3), and obtain
the undecidability of realizability of such specifications via a
reduction from the (non) halting problem.

A
OfF' SO

qi;---,q9m
Fig. 3: The architecture A; consists an information fork-meet.

Given a Turing machine M, recall the specification ¢ (from
Section 3 for LTL¢) encoding conditions £ and Condy —
Cond, through the safety automaton Agg. In contrast with

22

the previous section, here we require that process ps (instead
of p.) faithfully simulates the safety automaton Agg using
the output variables qi,...¢m € E(ps,pe). Note that Agpe
operates on the variables =1, 2, Y1, y2, While ps does not have
access to y; and y». However, it can infer these values by
simulating p; and p, internally, since ps receives both x; and
x9 (overlapping inputs).

Formal proof. We provide a high level description of the
following formulae:

@ specifies that the first state of Ay, according to the output
variables {qi, . . . g, } is compatible with the initial values
of x1, xa, y1 and yo (i.e. {q1,...qm} represent the state
of Agae reached from the initial state after reading the
initial values of =1, 2, y1 and yo; @ is propositional)

11 specifies that Agy has a transition from the current state
to the next state, encoded by the values of {q1,...¢mn}
in the current and the next round, according to the value
of variables x1, x3, y1 and ys in the next round (i.e., pe
simulates A, faithfully; ¢y contains only propositionals
and non-nested X’ operators).

1o specifies that p; and py do not output a halting state of

M (i.e., M does not terminate; 1) is propositional).

specifies that Ag,g does not reach a rejecting state (i.e.,

the processes conform to conditions C'ondy-Cond, or the
environment violates £; w3 is propositional).

We construct ¢ = Q AO(¢)1 Atha At)s). Similarly as in the
case of LTL,, if ¢ is realizable, p3 faithfully simulates Agate
(Q and 1 are true), and p;, po satisfy ¢ in all runs where
the environment conforms with condition £ (3 is true). By
Lemma 1, p; and p- output a legal sequence of configurations
of M, and 19 guarantees that M does not halt. In the inverse
direction, if M does not halt, ¢ is realizable by local strategies
where (i) p1, p2 output a legal sequence of configurations of
M and conform with condition C'ondy, and (ii) p3 faithfully
simulates Agr. Hence we have the following result.

V3

Theorem 2. The realizability of specifications from LTLg in
A1 is undecidable.

Remark 1. We remark that our proof of undecidability in
Theorem 2 makes use of infinite-memory strategies, since
the processes p1 and py are required to output an infinite,
non-halting computation. However, the realizability problem
for LTLo in Ay remains undecidable even if we restrict the
strategies to be finite-memory. We refer to the longer version
of this paper in [19] for the proof.

Information fork-meet. We say that an architecture A =
(P,pe,V, E) has an information fork-meet if there are three
processes p1,p2,ps € P~ and paths 71, mo in the underlying
graph such that

1) the first edges in w1, ™y are labeled by output variables

of pe,

2) the last edge of m; is an input variable of p;, but not ps

3) the last edge of 79 is an input variable of p,, but not p;

4) the last edges of 7y, mo are input variables of ps

Observe that an information fork-meet is a special case
of information fork, with a third process that collects all
information that is divided between p; and ps.

As in the case of LTL, the undecidablity argument can
be carried to any architecture containing such a structure, by
introducing additional conditions in ¢ which require the rest
of the processes to propagate the inputs of the environment to
p1, p2 and p3 accordingly.

Corollary 2. The realizability of LTLp specifications in archi-
tectures containing an information fork-meet is undecidable.

B. Fairwise disjoint inputs

In this subsection we discuss synthesis for formulae ¢ €
LTLg for the class of star architectures, with the additional
property that all pairs of processes receive disjoint inputs (i.e.,
Vi # j: I(p;) N 1(p;) = 0), denoted as S,,. Our goal is to
prove decidability of realizability of such ¢ € LTLg in every
architecture A € S,,, by showing that whenever such ¢ is
realizable, it admits strategies of bounded memory.

Consider some architecture A € S,, and an arbitrary ¢ =
Q Ny € LTLg, with the nesting level of X operators in v
being k. Assume that ¢ is realizable in A by local strategies
o; for every process p;. These strategies can be represented by
O(p;)-labeled I(p;)-trees T,,,. We will show how to construct
strategies 7; that also realize ¢, where each tree I(p;)-tree T,
representing 7; is defined from first 221Vl 4 1 levels of Ty,
by applying a folding function given below. We first define the
notion of some i € N closing —) in some computation.

Definition 1. For a computation £(r) and some i € N we
say that i closes =) in £() if £(m)[i — k, o0] =).

Remark 2. /(7) = O iff no i closes =) in £().

Let 01,...,0, be local strategies and o be the collective
strategy induced by o1, ...,0,. Forevery i € {1,...,n}, the
local strategy o; is represented by an O(p;)-labeled I(p;)-tree
T,,. For every node = € T,,, with |z| > k, we denote with
Ty = (Tk,Tk—1 ...21) the k-node suffix of the unique path to
x = x1, and define the rype of x under o; as t,,(z) = £y, (Tz).
For every level [> k we define the type of [under o as
to(l) = {to;(z) i € {1,...,n},x € Ty, and |z| = 1}, ie.,
the type of a level [is the set of the types of the nodes of level
[of every T,,, where ¢ € {1,...,n}. Note that there exist at
most 21V distinct types of nodes. Consequently, there exist
at most 22" distinct types of levels.

We naturally extend the definition of types to nodes of
the (V' \ O(pe))-labeled O(p.)-tree T, as ty(z) = £, (7).
Consider some computation £, (7) in T,,. Observe that whether
some ¢ closes =) in m depends only on the ¢, (m)[4] i.e., the
type t,(7[i]) determines whether i closes —) in 7. Hence, we
have the following remark:

Remark 3. For a formula ¢ € LTLO there exists a set of
types A such that for every tree Ty, a path 7 in T, satisfies
¢ if L,(m)[1] E Q and for all i € N, we have t,(x[i]) € A,
i.e., the set of types of nodes in T, is a subset of A.

Folding function. Assume that there exist two levels I; < [y
such that ¢,(l1) = ty(l2). Then for every tree T,,, for every
node z in level [there exists a node y in level /; such that
to; () = t,,(y), i.e., x and y have the same type. For such

l1, I, and every process p;, we define the folding function
fi: (21D)" — (21(®))" recursively as follows:

zif |z] < g
filx) = § yif [z = I where [y| =11 and 5, (2) = t,,(y)
fi(fi(y)z) if |z| > Iy for & = yz with z € 21(®)
and construct local strategies 7;(x) = o;(fi(z)). Hence, every
strategy 7; behaves as o; up to level [, while for nodes further
below, it maps them to nodes between levels [; and [5, by
recursively folding the levels [; and I with respect to the types
of their nodes. Since the collective strategies ¢ and 7 behave
identically on the first [; levels, 7 realizes the propositional
Q. The following analysis focuses on the [y part of ¢.

The strategies 7; preserve the types under o; of all local
nodes up to level lo, and only those. Because of the pairwise
disjoint inputs, this property is implied for the global nodes
of the collective strategy 7 as well. The set of all such types
serves as the set A of Remark 3, which in turn guarantees
that the collective strategy 7 also realizes ¢, as it does not
introduce new types. We formalize these arguments below.

The following lemma establishes that for all nodes z in all
T.., the type of x is the same as the type of its image under
fi in the corresponding T,,.

Lemma 2. For every x € (21(1”))* with |z| > k, we have
that t,,(x) = t,,(fi(x)).
Proof: Our proof proceeds by induction on |z|:

1) |z| < l2: For all nodes w in 7., we have that 7;,(w) =
oi(fi(w)) = o;(w), hence £,(7,) = 4y, (7,) and thus
tr,(x) = to,(f(2)).

2) |x| = l2: The statement holds by definition.

3) |z| = m+1: Let x = yz with |y| = m. By the inductive
hypothesis, ¢, (y) = ty,(fi(y)). We distinguish between
the following cases, depending on whether f;(y) extended
by z hits the level [» (Figure 4):

@ |fi(y)| <2 —1: Then fi(z) = fi(fi(y)2) = fi(y)=,
that is, if we reach node x by extending node y by an
edge z, the same holds for their corresponding images
under f;. Then 7;(z) = o0i(fi(z)) = 0:i(fi(y)z), thus
tr () = ty, (fi(y)z) = to,(fi(x)) (i-e., the strategy 7;
will label x as o; labels its image f;(z), and the types
of these two nodes are equal).
() |fi(y)] = la — 1: By construction, t,,(f;(x)) =
to,(fi(y)z) (.e., fi(y) extended by z hits level lo, and
the folding function f; will bring « to level [, to a node
of the same type). Then 7;(x) = o;(fi(x)) = o:(fi(y)2),
hence as in (i), t,,(x) = ts, (fi(y)2) = ts, ().

The desired result follows.]

The following remark observes that for every architecture

from S,,, every node in the collective strategy tree corresponds
to a unique set of nodes in the local strategy trees and vice
versa, and that the collective strategy on that node equals the
union of the local strategies on the corresponding local nodes.

Remark 4. The following assertions hold:
1) For every global node x = x'x?...x™ in T, with every
xt e 20(’)6), for every tree T,,J., there exists a (unique)

node x; = lex? -..x}" such that a:; = z' N 21®3), and
23

51

/ fi(y)
fi x)

//\//\

(a) Case (i) (b) Case (ii)

Fig. 4: The two cases of the inductive step of Lemma 2.

2) for every set of nodes {x; = xle x'} with one x;
from each T, there exists a (unique) global node x such
that for all i we have x' = ;5

Moreover, for every collective strategy o, we have o(x) =
U; o5 (@;).

It follows from the above remark and Lemma 2, that
for every x € T, we have that t.(x) = t,(f(z)), where
f(xz) =, fi(z;). That is, the local folding functions f; result
in a unique, global folding function f, and the types in the
corresponding collective strategy tree are preserved between
the global nodes, and their images under f. This implies that
the set of types occurring in 7). is a subset of types of T,.
Then, by Remark 3 we conclude:

Lemma 3. The collective strategy T implements ¢.

Hence, whenever for a realizable ¢ € LTLg exist levels
ly and I, with the same type under o, we can construct a
collective strategy 7 for which every local strategy 7; uses
only the first I5 levels of the corresponding o;, and Lemma 3
guarantees that 7 implements ¢. By our previous observation
and the pigeonhole principle, [5 is upper bounded by 92" +1,
and thus every local strategy 7; operates in the first 22"V
levels of the corresponding I(p;)-tree. There are a bounded
number of local strategies with this property, thus the problem
of realizability in this case reduces to exhaustively exploring
all of them. Moreover, it follows from our analysis that local
nodes in the same level and having the same type can be
merged, since the local strategy that behaves identically in both
subtrees preserves the set of types appearing in the global tree.
Hence, the width of each level is bounded by the number of
different possible types, 2¥!V|. This leads to Theorem 3 (we
refer to [19] for the formal proof).

Theorem 3. The realizability of ¢ € LTLg for the class S,
of star architectures with pairwise disjoint inputs is decidable
in EXPSPACE.

V. SYNTHESIS WITHOUT THE NEXT OPERATOR

In the current section we consider a fragment of LTL
without the X" operator, for which the problem of realizability
is decidable in non-deterministic exponential time in the size
of the specification.

Fragment LTL,g. We consider LTLag that consists of for-
mulae ¢ from the following LTL fragment:

24

o= /\OP, — (/\DQM/\DORM\/\OE:>
=0/\P - (D/\Qi/\/\DORiA/\OFi>
=0P — (DQ/\/\DORH\/\OE)

fori € {1,...m}, with P, Q;, R;, F; propositional formulae,
and P = A\, P;, Q@ = A,Q;. We consider the standard
semantics of LTL. The LTLg can express specifications that
consist of conjunction of safety assumptions, and guarantees
where each guarantee is a safety, reachability, or a liveness
condition.

A propositional formula @) has the property that can either
be realized in a single step, or is not realizable. This implies
that realizable formulae [} admit memoryless strategies
which repeat the single step realization of (). A similar
argument establishes that reachability and safety specifications
of propositional formulae are equivalent with respect to real-
izability. We formally state these observations in Lemmas 4
and 5, and refer to [19] for the proofs.

Lemma 4. Let A be any architecture. Every formula ¢ = 1Q),
for some propositional Q, is realizable in A iff it is realizable
by memoryless strategies.

Lemma 5. Let A be any architecture. For every formula ¢ =
aQ for some propositional Q, 1) is realizable in A iff ' = 0Q

is realizable in A.

Lemma 6 shows that the realizability of some ¢ € LTLag
reduces to realizing a set of safety formulae of the form of
Lemma 4.

Lemma 6. Let A be any architecture and ¢ = OP —
(EQ AN, O0R; AN, OF;) € LTLag. The formula ¢ is re-
alizable in A iff every ¢r, = O(P — (Q A R;)) and every
¢, =0O(P — (Q A\ Fy)) is realizable in A.

Proof: (i) For the right to left direction, assume that there
exist families of memoryless (by Lemma 4) local strategies
(0 Ri) and (i) for every process p;, such that the collectlve
strategy ol 1mplements ®r,, and the collective strategy o
implements ¢r,. Construct local strategies 7; such that for
every x = yz with |z] = (1 + |z| mod 2m), we have
Ti(x) = af‘z‘(z) if |z < m, and 7;(x) = aj‘z'f""(z) if
|z| > m (i.e. the local strategy 7; repeatedly alternates between
all the strategies Ufi in the first m steps, and between all
the strategies O'JF i the next m steps). Let 7 be the collective
strategy of all 7; and consider an arbitrary path 7 in T'. Either
£, (m)[k] E —P for some k, or for all k, it holds ¢, ()[k] &= P,
and by construction, for ¢ = 1 + k£ mod 2m we have
L (m)[k] E QA R; when @ < m and £, (m)[k] E QA Fi_p,
when ¢ > m. In both cases, {,(7) = ¢.

(ii) For the left to right direction, assume that for some %, ¢,
is not realizable (the analysis is similar for ¢f,). By Lemma 5,
O(P — (Q A R;) is not realizable. Hence, for any collective
strategy o there exists some path 7 in 7, such that for all

k, we have {,(m)[k] = P A (—-Q V —R;), and o does not
implement ¢.]

Hence, Lemma 6 establishes that every formula ¢ € LTLag
is realizable if and only if it admits local strategies for all the
corresponding ¢r,, ¢r,, by providing a constructive argument.
As a consequence of Lemma 4, deciding whether every
¢r,, ¢r, 1s realizable reduces to realizing the propositional
formulae (P — (QAR;) and (P — (QAF;). This can be done
in NEXPTIME, by having a non-deterministic Turing machine
guessing the local strategies of all processes, and verifying
that such strategies satisfy the formula under all the (expo-
nentially many) possible inputs of the environment. We show
that the problem is also NEXPTIME-hard, via a reduction
from the Dependency Quantifier Boolean Formula (DQBF)
validity problem introduced in [20] to study time bounded
multi-player alternating machines. A DQBF is a quantified
Boolean formula with a succinct description of dependencies
between the quantified variables. Every DQBF has an equiv-
alent form in which all existentially quantified variables are
substituted by existentially quantified Skolem functions de-
fined over their dependencies, and appearing at the beginning
of the formula (e.g. Va1VaoTy: (z1)Iy2(x2)p(x1, T2, Y1, Y2)
is a DQBF stating that y; depends on z;, and has a functional
form Jo1dooVe Vegp(ay, 2, 01(21), 02(x2)) with o1, o the
Skolem functions).

Lemma 7. Given an architecture A and a formula ¢ € LTL,g,
deciding whether ¢ is realizable in A is NEXPTIME-hard.

Proof: Consider any DQBF formula 1 :
Vrq.. .kaﬂyl(f{) . Hyn(x_,z)ga(xl, e Ty Y1 .- -Yn) With
k universally quantified variables x; and n existentially
quantified variables y;. We assume w..o.g. that the
dependencies of each y; are only on some universally
quantified variables Z,. We construct the architecture
A = (P,p.,V,E), where P contains n + 1 processes,
V = {z; € ¥} U {y; € ¥}, process p; receives as inputs
from the environment all 27;, outputs variable y;, while the
environment uses all remaining x; as hidden variables. We
construct the specification ¢ = Oy € LTLag. Both A and
¢ are polynomial in the size of 1. Because of Lemma 4,
¢ is realizable in A iff ¢ is realizable in A. In turn, ¢ is
realizable iff 1) is valid, with local strategies o; corresponding
to the Skolem functions in the functional form of), and
universal variables corresponding to all possible choices of the
environment in 4. Since DQBF validity is NEXPTIME-hard
[20], the statement follows. [|

Hence, we have the following result.

Theorem 4. Given an architecture A and a specification ¢ €
LTLxg, the realizability of ¢ in A is NEXPTIME-complete.

Observe that Lemma 6 reduces the problem of realizability
of some ¢ € LTLag to realizing a set of formulae of the
form 0@, where @ is propositional. This in turn is reducible
to DQBF validity (because of Lemma 4), and because of
Lemma 7, the two problems are equivalent. In consequence,
efficient algorithms for solving DQBF, such as [21], yield
efficient synthesis procedures for LTLag, and vice versa.
Moreover, if the DQBF tool outputs the corresponding Skolem

functions, then a witness collective strategy for realizability
can be obtained.

VI. CONCLUSIONS

In this paper we studied the distributed synthesis prob-
lem for relevant fragments of LTL. We presented a much
finer characterization of undecidability results for distributed
synthesis in terms of LTL fragments that uses eventually,
globally and next operators. In contrast to previous decidability
results that were non-elementary, we identify fragments where
the complexity is EXPSPACE (or NEXPTIME-complete). An
interesting direction of future work would be to develop
algorithms for the problems for which we establish decid-
ability, obtain efficient implementations of the algorithms for
distributed synthesis problems, and finally consider some case-
studies of practical examples.

Acknowledgments. The research was supported by Austrian Science
Fund (FWF) Grant No P 23499- N23, FWF NEN Grant No S11407-
N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft
faculty fellows award, the Austrian Science Fund NFN RiSE (Rig-
orous Systems Engineering), the ERC Advanced Grant QUAREM
(Quantitative Reactive Modeling).

REFERENCES

[11 A. Church, “Logic, arithmetic and automata,” in Proceedings of the
international congress of mathematicians, pp. 23-35, 1962.

[2] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event processes,” SIAM Journal on Control and Optimization, vol. 25,
no. 1, pp. 206-230, 1987.

[3] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” POPL
’89, pp. 179-190, ACM, 1989.

[4] A. Pnueli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” SFCS *90, pp. 746-757 vol.2, 1990.

[5]1 A. Pnueli, “The temporal logic of programs,” in FOCS, pp. 46-57, 1977.

[6] J. H. Reif, “Universal games of incomplete information,” STOC ’79,
pp. 288-308, ACM, 1979.

[71 G. L. Peterson and J. H. Reif, “Multiple-person alternation,” in FOCS,
pp. 348-363, 1979.

[8] O. Kupferman and M. Y. Vardi, “Synthesizing distributed systems,” in
LICS, pp. 389-398, 2001.

[9] S. Mohalik and I. Walukiewicz, “Distributed games,” in FSTTCS,

pp. 338-351, 2003.

B. Finkbeiner and S. Schewe, “Uniform distributed synthesis,” LICS,

pp- 321-330, 2005.

R. Alur, S. La Torre, and P. Madhusudan, “Playing games with boxes

and diamonds,” in CONCUR, pp. 127-141, 2003.

R. Alur and S. La Torre, “Deterministic generators and games for LTL

fragments,” ACM Trans. Comput. Log., vol. 5, no. 1, pp. 1-25, 2004.

J. Kretinsky and J. Esparza, “Deterministic automata for the (F, G)-

fragment of LTL,” in CAV, pp. 7-22, 2012.

N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(l) designs,”

in VMCAI, LNCS 3855, Springer, pp. 364-380, 2006.

Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of AMBA

AHB from formal specification: A case study,” STTT, 2011.

R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and

M. Weiglhofer, “Interactive presentation: Automatic hardware synthesis

from specifications: a case study,” in DATE, pp. 1188-1193, 2007.

C. Papadimitriou, Computational complexity. Addison-Wesley, 1994.

O. Kupferman, M. Y. Vardi, and P. Wolper, “An automata-theoretic

approach to branching-time model checking,” Journal of the ACM

(JACM), vol. 47, no. 2, pp. 312-360, 2000.

K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, “Dis-

tributed synthesis for LTL fragments,” 2013. Technical Report: IST-

2013-128 https://repository.ist.ac.at/130/1/Distributed_Synthesis.pdf.

G. Peterson, J. Reif, and S. Azhar, “Lower bounds for multiplayer non-

cooperative games of incomplete information,” Journal of Computers

and Mathematics with Applications, vol. 41, pp. 957-992, 2001.

A. Frohlich, G. Kovésznai, and A. Biere, “A DPLL algorithm for solving

DQBE,” Pragmatics of SAT, vol. 2012, 2012.

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
[18]

[19]

[20]

[21]

25

