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CPU datapath verification at Intel

 Thousands of operations
— Integer, FP, SSE, AVX, ...
— “Miscellaneous”

— Various operating modes, flags,
faults

* Live RTL, changing frequently
until a few weeks before
tapeout




Scaling up

Tens of designs

Different optimization points
Different teams

Different countries

Not only CPUs

Not all have FV experts on staff
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The multiplier zoo
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FV challenges

* Varying specs and verification strategies
— Implementation changes from design to design
— Multiplier always requires decomposition

* Ten designers but not ten multiplier FV experts

* Same story for integer, MMX, FP, SSE, GPU flavors
of multiplication, addition, division, ...

— Some operations require even more intricate
decomposition



The solution
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The solution done right

* An executable logic for writing the specs and
verification scripts: reFlLect

* A symbolic simulator that admits relational
specifications written in logic: rSTE

* Atightly integrated theorem prover for
executing the deductive proofs: Goaled



The solution done right

* An executable logic for writing the specs and
verification scripts: applicative common lisp

* A symbolic simulator that admits relational
specifications written in logic: ESIM+GL

* Atightly integrated theorem prover for
executing the deductive proofs: ACL2

[Slobodova et al, MEMOCODE’11]



The reFLect Language

* (Core syntax:

nop : =k | v|no| Ap.nllo]| {(n) | *n:oc
pattern matching reflection

* ... plus extensions driven by necessity
— BDDs built in as a primitive type
— Quotient types
— Overloading
— Named function parameters
— Records
— Possibly unsafe features: references, /0O, recursion



Higher Order Logic of reFLect

 HOL, following Church:
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* The reFlLect logic:

Logic =

e Basic idea in both systems:

n— p means |—n=p

Define V, 3, etc by axioms

Add rules for function equality
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Goaled Theorem Prover

* LCF-style implementation, following in the footsteps of HOL
and HOL Light

— Thm is a protected data type, constructible only through a small set of
trusted function calls (a.k.a. inference rules)

* Features driven by necessity

— Theories: of reFLect data types, natural numbers, integers, rationals,
lists, pairs, reFLect ADTs

— Proof automation: rewriting, first order solving, linear arithmetic
— Bitstring arithmetic

— Support for the reflect language extensions



The last bit

* A symbolic simulator that admits relational
specifications written in logic: rSTE



Limitations of STE
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* Trajectory assertion:
— ckt |=[[ Sis v ==>>(BE, is f(v)) ]]

* But,

— You need a special purpose
reasoning system for this special
purpose logic

— Relational specifications cannot
be expressed directly



Relational STE

 STE’s antecedent and consequent are replaced
with lists of constraints

— A constraint is a relationship between a finite set
of circuit nodes at specified points in time

e |dea:

— rSTE ckt cin cout means “In any behavior of ckt in
which all of the constraints cin hold, all of the
constraints cout hold”



Relational STE Intuition

N (ci,1) A
] L (a,1) X
S L (b,1) X
b
L (s,2)
C L (c,2)
rSTE ckt

[" (ci, 1)"]["(a,1) + (b,1) = (s5,2) + 2 X (c,2)"]



Constraints

* A constraint c has three components:
—name(c) : string
—sig(c) : (string X num) list

— pred(c) : ((String X num) - bool) — bool

e The behavior of the circuit is also formulated

as a constraint:
lckt] : ((string X num) — bool) — bool



From Relational STE to Logic

e Theorem:

Vckt cin cout.
rSTE ckt cin cout =
Ve.[ckt]e =
predl cin e = predl cout c

* For lists of constraints,
— predl|[l]e £T
— predl (c::cs)e = pred(c)e A predl(cs) e



Relational STE in Action
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* Define boothcsuch that
—pred(boothc) = Ae.eqnl(s2ie s1)
—eqnl(x) £ (x = Yoot BE;(x) x 2k

* Then, rSTE ckt|| | boothc] —
implies
Ve.[ckt]e =
predl || e = predl [boothc] e



Relational STE in Action
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* Ve.[ckt]e =

predl [| e = predl |boothc] e

* Ve.[ckt]le = pred(boothc) e

* Ve.[ckt]le = eqnl(s2iesl)

* Ve.[ckt]e =

(s2i e s1 = ZiLg! BEi(s2i e s1) x 2K7)



Completing a Multiplier proof

o1 < Ve.|ckt]e =
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Proof engineering

e Additional arguments to rSTE
— Constant antecedent: clock, reset
— rSTE options: bdd variable ordering, param, ...
— Not shown here, but see paper

* Analysis of CVE verification scripts

— N layers of function calls between input
parameters and generation of specs

— Much deductive effort toward exposing the specs
— Routine rewriting, also not shown here



Status and prospects

reFLect and rSTE are the main workhorses of
datapath verification across Intel

Frameworks for integer and FP multipliers,
FMAs, adders, divide/sqrt are widely deployed

Goaled checking of integer multipliers is used
on a mainline design project and being pushed
to others

We plan to integrate Goaled checking with our
other frameworks



