
Relational STE and Theorem Proving
for Formal Verification of Industrial

Circuit Designs

John O’Leary and Roope Kaivola, Intel

Tom Melham, Oxford

CPU datapath verification at Intel

• Thousands of operations

– Integer, FP, SSE, AVX, …

– “Miscellaneous”

– Various operating modes, flags,
faults

• Live RTL, changing frequently
until a few weeks before
tapeout

Scaling up

• Tens of designs

• Different optimization points

• Different teams

• Different countries

• Not only CPUs

• Not all have FV experts on staff

Integer multiplier

S1 =  BEi * 2ki

PPi = S2 * BEi

P =  PPi * 2ki

10/23/2013 4

Partial Products

Generation

Booth

Encoder

Wallace Tree Adder

Network

S1 S2

PROD

BEi

PPi

The multiplier zoo

• 10-20 multipliers

• Hand designed

• Hand optimized

• All different

Partial Products

Generation

Booth

Encoder

Wallace Tree Adder

Network

S1 S2

PROD

BEi

PPi

FV challenges

• Varying specs and verification strategies

– Implementation changes from design to design

– Multiplier always requires decomposition

• Ten designers but not ten multiplier FV experts

• Same story for integer, MMX, FP, SSE, GPU flavors
of multiplication, addition, division, …

– Some operations require even more intricate
decomposition

The solution

Parameters CVE Per-design specs
Verification runs

Deduction ⊢specs+runs
⇒correct

Development
Regression

The solution done right

• An executable logic for writing the specs and
verification scripts: reFLect

• A symbolic simulator that admits relational
specifications written in logic: rSTE

• A tightly integrated theorem prover for
executing the deductive proofs: Goaled

The solution done right

• An executable logic for writing the specs and
verification scripts: applicative common lisp

• A symbolic simulator that admits relational
specifications written in logic: ESIM+GL

• A tightly integrated theorem prover for
executing the deductive proofs: ACL2

[Slobodová et al, MEMOCODE’11]

The reFLect Language

• Core syntax:

 n,o,p ::= k | v | n o | p. n  o |  n  | ^n:s

• … plus extensions driven by necessity
– BDDs built in as a primitive type
– Quotient types
– Overloading
– Named function parameters
– Records
– Possibly unsafe features: references, I/O, recursion

pattern matching reflection

Higher Order Logic of reFLect
• HOL, following Church:

Logic =

• The reFLect logic:

Logic =

-calculus

 +

logical constants

 +

rules

• Basic idea in both systems:

n  p means ├ n = p

Define , , etc by axioms

Add rules for function equality

Proof by evaluation

reFLect

 +

logical constants

 +

rules

Goaled Theorem Prover
• LCF-style implementation, following in the footsteps of HOL

and HOL Light
– Thm is a protected data type, constructible only through a small set of

trusted function calls (a.k.a. inference rules)

• Features driven by necessity
– Theories: of reFLect data types, natural numbers, integers, rationals,

lists, pairs, reFLect ADTs

– Proof automation: rewriting, first order solving, linear arithmetic

– Bitstring arithmetic

– Support for the reflect language extensions

The last bit

• An executable logic for writing the specs and
verification scripts: reFLect

• A symbolic simulator that admits relational
specifications written in logic: rSTE

• A tightly integrated theorem prover for
executing the deductive proofs: Goaled

Limitations of STE

• Trajectory assertion:
– ckt |= [[S is v ==>> (BEi is fi(v))]]

• But,
– You need a special purpose

reasoning system for this special
purpose logic

– Relational specifications cannot
be expressed directly

Booth

Encoder

S

BEi

𝑆 = 𝐵𝐸𝑖 ∗ 2
𝑘𝑖

𝑁−1

𝑖=0

Relational STE

• STE’s antecedent and consequent are replaced
with lists of constraints

– A constraint is a relationship between a finite set
of circuit nodes at specified points in time

• Idea:

– rSTE ckt cin cout means “In any behavior of ckt in
which all of the constraints cin hold, all of the
constraints cout hold”

Relational STE Intuition

rSTE ckt

 ["! (𝑐𝑖, 1)"] [" 𝑎, 1 + 𝑏, 1 = 𝑠, 2 + 2 × (𝑐, 2)"]

(𝑐𝑖, 1)

(𝑎, 1)

(𝑏, 1)

(𝑠, 2)

(𝑐, 2)

Full
Add

ci

a

b
s

c

Constraints

• A constraint c has three components:

– name(c) : string

– sig(c) : (𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑛𝑢𝑚) 𝑙𝑖𝑠𝑡

– pred(c) : 𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑛𝑢𝑚 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙

• The behavior of the circuit is also formulated
as a constraint:
𝑐𝑘𝑡 ∶ ((𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑛𝑢𝑚) → 𝑏𝑜𝑜𝑙) → 𝑏𝑜𝑜𝑙

From Relational STE to Logic

• Theorem:

 ∀𝑐𝑘𝑡 𝑐𝑖𝑛 𝑐𝑜𝑢𝑡.

 𝑟𝑆𝑇𝐸 𝑐𝑘𝑡 𝑐𝑖𝑛 𝑐𝑜𝑢𝑡 ⇒

 ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
 𝑝𝑟𝑒𝑑𝑙 𝑐𝑖𝑛 𝑒 ⇒ 𝑝𝑟𝑒𝑑𝑙 𝑐𝑜𝑢𝑡 𝑐

• For lists of constraints,
– 𝑝𝑟𝑒𝑑𝑙 [] 𝑒 ≜ 𝑇

– 𝑝𝑟𝑒𝑑𝑙 (𝑐: : 𝑐𝑠) 𝑒 ≜ 𝑝𝑟𝑒𝑑(𝑐) 𝑒 ∧ 𝑝𝑟𝑒𝑑𝑙(𝑐𝑠) 𝑒

Relational STE in Action

• Define boothc such that

– 𝑝𝑟𝑒𝑑 𝑏𝑜𝑜𝑡ℎ𝑐 = 𝜆𝑒. 𝑒𝑞𝑛1(𝑠2𝑖 𝑒 𝑠1)

– 𝑒𝑞𝑛1(𝑥) ≜ (𝑥 = 𝐵𝐸𝑖(𝑥) × 2
𝑘𝑖𝑁−1

𝑖=0)

• Then, rSTE ckt [] [boothc] → T
implies
 ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒

 𝑝𝑟𝑒𝑑𝑙 [] 𝑒 ⇒ 𝑝𝑟𝑒𝑑𝑙 [𝑏𝑜𝑜𝑡ℎ𝑐] 𝑒

Booth

Encoder

S1

BEi

Relational STE in Action

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
𝑝𝑟𝑒𝑑𝑙 [] 𝑒 ⇒ 𝑝𝑟𝑒𝑑𝑙 [𝑏𝑜𝑜𝑡ℎ𝑐] 𝑒

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 𝑝𝑟𝑒𝑑(𝑏𝑜𝑜𝑡ℎ𝑐) 𝑒

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 𝑒𝑞𝑛1(s2i e s1)

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒

 𝑠2𝑖 𝑒 𝑠1 = 𝐵𝐸𝑖 𝑠2𝑖 𝑒 𝑠1 × 2
𝑘𝑖𝑁−1

𝑖=0

Booth

Encoder

S1

BEi

Completing a Multiplier proof

  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
 𝑠2𝑖 𝑒 𝑝𝑝𝑖 = 𝐵𝐸𝑖 𝑠2𝑖 𝑒 𝑠1 × 𝑠2𝑖 𝑒 𝑠2

  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
 𝑠2𝑖 𝑒 𝑝𝑟𝑜𝑑 = 𝑠2𝑖 𝑒 𝑝𝑝𝑖 × 2

𝑘𝑖𝑁−1
𝑖=0

  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
 𝑠2𝑖 𝑒 𝑠1 = 𝐵𝐸𝑖 𝑠2𝑖 𝑒 𝑠1 × 2

𝑘𝑖𝑁−1
𝑖=0

  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
 𝑠2𝑖 𝑒 𝑝𝑟𝑜𝑑 = 𝑠2𝑖 𝑒 𝑠1 × 𝑠2𝑖 𝑒 𝑠2

Partial Products

Generation

Booth

Encoder

Wallace Tree Adder

Network

S1 S2

PROD

BEi(S1)

PPi

Proof engineering

• Additional arguments to rSTE
– Constant antecedent: clock, reset

– rSTE options: bdd variable ordering, param, …

– Not shown here, but see paper

• Analysis of CVE verification scripts
– N layers of function calls between input

parameters and generation of specs

– Much deductive effort toward exposing the specs

– Routine rewriting, also not shown here

Status and prospects

• reFLect and rSTE are the main workhorses of
datapath verification across Intel

• Frameworks for integer and FP multipliers,
FMAs, adders, divide/sqrt are widely deployed

• Goaled checking of integer multipliers is used
on a mainline design project and being pushed
to others

• We plan to integrate Goaled checking with our
other frameworks

