Relational STE and Theorem Proving
for Formal Verification of Industrial
Circuit Designs
John O’Leary and Roope Kaivola, Intel
Tom Melham, Oxford

CPU datapath verification at Intel

 Thousands of operations
— Integer, FP, SSE, AVX, ...
— “Miscellaneous”

— Various operating modes, flags,
faults

* Live RTL, changing frequently
until a few weeks before
tapeout

Scaling up

Tens of designs

Different optimization points
Different teams

Different countries

Not only CPUs

Not all have FV experts on staff

Integer multiplier

S1 S2

l

Rooth

Sl = Z BEI * 2ki Encoder

BE. —

\ 4 \ 4 \ 4 A\ 4

Partial Products

Generation * PPI - 52 * BEI

PP,

1
— \ 4 \ 4 A 4 -

Wallace Tree Adder

P=Y PPi * 2ki - Network

: l

PROD

10/23/2013

The multiplier zoo

S1 S2

l

Rooth

Encoder ¢ 10'20 mUItlplierS

BE;

* Hand designed

Partial Products
Generation

* Hand optimized

PP,

Wallace Tree Adder o A” dlfferent

Network

!

PROD

FV challenges

* Varying specs and verification strategies
— Implementation changes from design to design
— Multiplier always requires decomposition

* Ten designers but not ten multiplier FV experts

* Same story for integer, MMX, FP, SSE, GPU flavors
of multiplication, addition, division, ...

— Some operations require even more intricate
decomposition

The solution

Regression

Development

Parameters

Per-design specs “
Verification runs

Fspecs-+runs
=correct

Deduction

The solution done right

* An executable logic for writing the specs and
verification scripts: reFlLect

* A symbolic simulator that admits relational
specifications written in logic: rSTE

* Atightly integrated theorem prover for
executing the deductive proofs: Goaled

The solution done right

* An executable logic for writing the specs and
verification scripts: applicative common lisp

* A symbolic simulator that admits relational
specifications written in logic: ESIM+GL

* Atightly integrated theorem prover for
executing the deductive proofs: ACL2

[Slobodova et al, MEMOCODE’11]

The reFLect Language

* (Core syntax:

nop : =k | v|no| Ap.nllo]| {(n) | *n:oc
pattern matching reflection

* ... plus extensions driven by necessity
— BDDs built in as a primitive type
— Quotient types
— Overloading
— Named function parameters
— Records
— Possibly unsafe features: references, /0O, recursion

Higher Order Logic of reFLect

 HOL, following Church:

Logic =

A

(\-calculus
+

logical constants
+

L rules

* The reFlLect logic:

Logic =

e Basic idea in both systems:

n— p means |—n=p

Define V, 3, etc by axioms

Add rules for function equality

Proof by evaluation

\

[reFlLect
+

logical constants
+

. rules

Goaled Theorem Prover

* LCF-style implementation, following in the footsteps of HOL
and HOL Light

— Thm is a protected data type, constructible only through a small set of
trusted function calls (a.k.a. inference rules)

* Features driven by necessity

— Theories: of reFLect data types, natural numbers, integers, rationals,
lists, pairs, reFLect ADTs

— Proof automation: rewriting, first order solving, linear arithmetic
— Bitstring arithmetic

— Support for the reflect language extensions

The last bit

* A symbolic simulator that admits relational
specifications written in logic: rSTE

Limitations of STE

S

|

Booth
Encoder

* Trajectory assertion:
— ckt |=[[Sis v ==>>(BE, is f(v))]]

* But,

— You need a special purpose
reasoning system for this special
purpose logic

— Relational specifications cannot
be expressed directly

Relational STE

 STE’s antecedent and consequent are replaced
with lists of constraints

— A constraint is a relationship between a finite set
of circuit nodes at specified points in time

e |dea:

— rSTE ckt cin cout means “In any behavior of ckt in
which all of the constraints cin hold, all of the
constraints cout hold”

Relational STE Intuition

N (ci,1) A
] L (a,1) X
S L (b,1) X
b
L (s,2)
C L (c,2)
rSTE ckt

[" (ci, 1)"]["(a,1) + (b,1) = (s5,2) + 2 X (c,2)"]

Constraints

* A constraint c has three components:
—name(c) : string
—sig(c) : (string X num) list

— pred(c) : ((String X num) - bool) — bool

e The behavior of the circuit is also formulated

as a constraint:
lckt] : ((string X num) — bool) — bool

From Relational STE to Logic

e Theorem:

Vckt cin cout.
rSTE ckt cin cout =
Ve.[ckt]e =
predl cin e = predl cout c

* For lists of constraints,
— predl|[l]e £T
— predl (c::cs)e = pred(c)e A predl(cs) e

Relational STE in Action

S1

|

Rooth
Encoder

BE

* Define boothcsuch that
—pred(boothc) = Ae.eqnl(s2ie s1)
—eqnl(x) £ (x = Yoot BE;(x) x 2k

* Then, rSTE ckt|| | boothc] —
implies
Ve.[ckt]e =
predl || e = predl [boothc] e

Relational STE in Action

S1

|

Rooth
Encoder

BE

* Ve.[ckt]e =

predl [| e = predl |boothc] e

* Ve.[ckt]le = pred(boothc) e

* Ve.[ckt]le = eqnl(s2iesl)

* Ve.[ckt]e =

(s2i e s1 = ZiLg! BEi(s2i e s1) x 2K7)

Completing a Multiplier proof

o1 < Ve.|ckt]e =
l (As2iepp; = BE;(s2iesl) X s2ies2)
S Ve, [ckt]e = |
BE, (S1) (s2i e prod = Yo' (s2i e pp;) x 2K1)
Partial Products
Generation ve. [[th]]e =

2. (s2iesl =Y BE,(s2ies1) x 2K)

Wallace Tree Adder

Network e;

PROD Ve.[ckt]e =
(s2ieprod = s2ie sl X s2ies2)

Proof engineering

e Additional arguments to rSTE
— Constant antecedent: clock, reset
— rSTE options: bdd variable ordering, param, ...
— Not shown here, but see paper

* Analysis of CVE verification scripts

— N layers of function calls between input
parameters and generation of specs

— Much deductive effort toward exposing the specs
— Routine rewriting, also not shown here

Status and prospects

reFLect and rSTE are the main workhorses of
datapath verification across Intel

Frameworks for integer and FP multipliers,
FMAs, adders, divide/sqrt are widely deployed

Goaled checking of integer multipliers is used
on a mainline design project and being pushed
to others

We plan to integrate Goaled checking with our
other frameworks

