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CPU datapath verification at Intel 

• Thousands of operations 

– Integer, FP, SSE, AVX, … 

– “Miscellaneous” 

– Various operating modes, flags, 
faults 

• Live RTL, changing frequently 
until a few weeks before 
tapeout 

 



Scaling up 

• Tens of designs 

• Different optimization points 

• Different teams 

• Different countries 

• Not only CPUs 

• Not all have FV experts on staff 

 



Integer multiplier 

S1 =  BEi * 2ki 

PPi = S2 * BEi 

P =  PPi * 2ki 
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The multiplier zoo 

• 10-20 multipliers 

• Hand designed 

• Hand optimized 

• All different 
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FV challenges 

• Varying specs and verification strategies 

– Implementation changes from design to design 

– Multiplier always requires decomposition 

• Ten designers but not ten multiplier FV experts  

 

• Same story for integer, MMX, FP, SSE, GPU flavors 
of multiplication, addition, division, … 

– Some operations require even more intricate 
decomposition  

 

 



The solution 

Parameters CVE Per-design specs 
Verification runs 

Deduction ⊢specs+runs 
⇒correct 

Development 
Regression 



The solution done right 

• An executable logic for writing the specs and 
verification scripts: reFLect 

• A symbolic simulator that admits relational 
specifications written in logic: rSTE 

• A tightly integrated theorem prover for 
executing the deductive proofs: Goaled 



The solution done right 

• An executable logic for writing the specs and 
verification scripts: applicative common lisp 

• A symbolic simulator that admits relational 
specifications written in logic: ESIM+GL 

• A tightly integrated theorem prover for 
executing the deductive proofs: ACL2 

 

[Slobodová et al, MEMOCODE’11] 



The reFLect Language 

• Core syntax: 

 n,o,p  ::=  k  |  v  |  n o  |  p. n  o |   n   |  ^n:s 

  

  

• … plus extensions driven by necessity 
– BDDs built in as a primitive type 
– Quotient types 
– Overloading 
– Named function parameters 
– Records 
– Possibly unsafe features: references, I/O, recursion 

pattern matching reflection 



Higher Order Logic of reFLect 
• HOL, following Church: 

 
 

Logic = 

 

 

 

 

• The reFLect logic: 

 
 

Logic = 

 

 

 

-calculus 

  + 

logical constants  

  + 

rules 

• Basic idea in both systems: 

n  p  means  ├ n = p 

Define , , etc by axioms 

Add rules for function equality 

 

Proof by evaluation 

reFLect 

  + 

logical constants 

  + 

rules 



Goaled Theorem Prover 
• LCF-style implementation, following in the footsteps of HOL 

and HOL Light 
– Thm is a protected data type, constructible only through a small set of 

trusted function calls (a.k.a. inference rules) 

• Features driven by necessity 
– Theories:  of reFLect data types, natural numbers, integers, rationals, 

lists, pairs, reFLect ADTs 

– Proof automation: rewriting, first order solving, linear arithmetic 

– Bitstring arithmetic 

– Support for the reflect language extensions 

 

 



The last bit 

• An executable logic for writing the specs and 
verification scripts: reFLect 

• A symbolic simulator that admits relational 
specifications written in logic: rSTE 

• A tightly integrated theorem prover for 
executing the deductive proofs: Goaled 



Limitations of STE 

• Trajectory assertion: 
– ckt |= [[ S is v ==>> (BEi is fi(v)) ]] 

 

• But, 
– You need a special purpose 

reasoning system for this special 
purpose logic 

– Relational specifications cannot 
be expressed directly 
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𝑆 =   𝐵𝐸𝑖 ∗ 2
𝑘𝑖

𝑁−1

𝑖=0

 



Relational STE 

• STE’s antecedent and consequent are replaced 
with lists of constraints 

– A constraint is a relationship between a finite set 
of circuit nodes at specified points in time 

• Idea:  

– rSTE ckt cin cout means “In any behavior of ckt in 
which all of the constraints cin hold, all of the 
constraints cout hold” 

 

 



Relational STE Intuition 

rSTE ckt  

    ["! (𝑐𝑖, 1)"] [" 𝑎, 1 + 𝑏, 1 = 𝑠, 2 + 2 × (𝑐, 2)"] 

(𝑐𝑖, 1) 

(𝑎, 1) 

(𝑏, 1) 

(𝑠, 2) 

(𝑐, 2) 

Full 
Add 

ci 

a 

b 
s 

c 



Constraints 

• A constraint c has three components: 

– name(c) : string 

– sig(c) : (𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑛𝑢𝑚) 𝑙𝑖𝑠𝑡 

– pred(c) : 𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑛𝑢𝑚 → 𝑏𝑜𝑜𝑙 → 𝑏𝑜𝑜𝑙 

 

• The behavior of the circuit is also formulated 
as a constraint: 
𝑐𝑘𝑡 ∶  ((𝑠𝑡𝑟𝑖𝑛𝑔 × 𝑛𝑢𝑚) → 𝑏𝑜𝑜𝑙) → 𝑏𝑜𝑜𝑙 

 



From Relational STE to Logic 

• Theorem: 

 

 ∀𝑐𝑘𝑡 𝑐𝑖𝑛 𝑐𝑜𝑢𝑡.  

 𝑟𝑆𝑇𝐸 𝑐𝑘𝑡 𝑐𝑖𝑛 𝑐𝑜𝑢𝑡 ⇒  

 ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 
 𝑝𝑟𝑒𝑑𝑙 𝑐𝑖𝑛 𝑒 ⇒ 𝑝𝑟𝑒𝑑𝑙 𝑐𝑜𝑢𝑡 𝑐 

 

• For lists of constraints, 
– 𝑝𝑟𝑒𝑑𝑙 [] 𝑒 ≜ 𝑇 

– 𝑝𝑟𝑒𝑑𝑙 (𝑐: : 𝑐𝑠) 𝑒 ≜  𝑝𝑟𝑒𝑑(𝑐) 𝑒 ∧  𝑝𝑟𝑒𝑑𝑙(𝑐𝑠) 𝑒 

  



Relational STE in Action 

• Define boothc such that 

– 𝑝𝑟𝑒𝑑 𝑏𝑜𝑜𝑡ℎ𝑐 = 𝜆𝑒. 𝑒𝑞𝑛1(𝑠2𝑖 𝑒 𝑠1) 

– 𝑒𝑞𝑛1(𝑥) ≜ (𝑥 =  𝐵𝐸𝑖(𝑥) × 2
𝑘𝑖𝑁−1

𝑖=0 ) 

 

• Then, rSTE ckt [] [boothc] → T 
implies  
 ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 

 𝑝𝑟𝑒𝑑𝑙 [] 𝑒 ⇒ 𝑝𝑟𝑒𝑑𝑙 [𝑏𝑜𝑜𝑡ℎ𝑐] 𝑒 
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Relational STE in Action 

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 
𝑝𝑟𝑒𝑑𝑙 [] 𝑒 ⇒ 𝑝𝑟𝑒𝑑𝑙 [𝑏𝑜𝑜𝑡ℎ𝑐] 𝑒 

 

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 𝑝𝑟𝑒𝑑(𝑏𝑜𝑜𝑡ℎ𝑐) 𝑒 
 

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒ 𝑒𝑞𝑛1(s2i e s1) 
 

• ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒

          𝑠2𝑖 𝑒 𝑠1 =  𝐵𝐸𝑖 𝑠2𝑖 𝑒 𝑠1 × 2
𝑘𝑖𝑁−1

𝑖=0  
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Completing a Multiplier proof 

  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
     𝑠2𝑖 𝑒 𝑝𝑝𝑖 = 𝐵𝐸𝑖 𝑠2𝑖 𝑒 𝑠1 × 𝑠2𝑖 𝑒 𝑠2  
 
  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
    𝑠2𝑖 𝑒 𝑝𝑟𝑜𝑑 =  𝑠2𝑖 𝑒 𝑝𝑝𝑖 × 2

𝑘𝑖𝑁−1
𝑖=0  

 
  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
    𝑠2𝑖 𝑒 𝑠1 =  𝐵𝐸𝑖 𝑠2𝑖 𝑒 𝑠1 × 2

𝑘𝑖𝑁−1
𝑖=0  

 
 
 
  ∀𝑒. 𝑐𝑘𝑡 𝑒 ⇒
       𝑠2𝑖 𝑒 𝑝𝑟𝑜𝑑 = 𝑠2𝑖 𝑒 𝑠1 × 𝑠2𝑖 𝑒 𝑠2  
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Proof engineering 

• Additional arguments to rSTE 
– Constant antecedent: clock, reset 

– rSTE options: bdd variable ordering, param, … 

– Not shown here, but see paper 

• Analysis of CVE verification scripts 
– N layers of function calls between input 

parameters and generation of specs 

– Much deductive effort toward exposing the specs 

– Routine rewriting, also not shown here 



Status and prospects 

• reFLect and rSTE are the main workhorses of 
datapath verification across Intel 

• Frameworks for integer and FP multipliers, 
FMAs, adders, divide/sqrt are widely deployed 

• Goaled checking of integer multipliers is used 
on a mainline design project and being pushed 
to others 

• We plan to integrate Goaled checking with our 
other frameworks 


