Computing prime implicants

David Déharbe Pascal Fontaine Daniel Le Berre Bertrand Mazure

UFRN, Brazil

Inria, U. of Lorraine, France
CRIL-CNRS, U. of Artois, France
FMCAD 2013, October 21, Portland

Model, implicant, prime implicant

Example

- Let $\phi=\{a \vee b, a \vee c, \neg d \vee \neg e \vee \neg f\}$
- $\{a, b, c, d, e, \neg f\}$ is a model of ϕ
- $a \wedge b \wedge c \wedge d \wedge e \wedge \neg f$ and $a \wedge c \wedge \neg d$ are implicants of ϕ
- $a \wedge \neg f, b \wedge c \wedge \neg f$ are prime implicants of ϕ
- A model of a formula is an implicant of that formula
- From one implicant, one can derive at least one prime implicant
- SAT solvers compute models
- How to make them compute prime implicants (efficiently)?

Clauses, cardinality constraints, pseudo-boolean constraints

Various boolean constraints
clauses $a \vee \neg b \vee c$
cardinality $\sum l_{i}\{\leq,=, \geq\} k \quad a+b+c+d \leq 1$
pseudo boolean $\sum w_{i} \times I_{i}\{\leq,=, \geq\} k \quad 4 \times a+2 \times b+c+d \geq 6$

- Boolean variables seen as $0 / 1$ integer variables
- Normalization : $\neg a+\neg b+\neg c+\neg d \geq 3$
- Clauses are specific cardinality constraints with $k=1$ $a \vee \neg b \vee c \equiv a+\neg b+c \geq 1$
- Cardinality constraints are specific PB constraints with $w_{i}=1$.

Motivation : SAT-based MAXSAT

Example

- Let $\phi=\{\neg a \vee b, \neg a \vee c, a, \neg b, a \vee b, \neg c \vee b\}$
- MAXSAT $(\phi)=$ minimize $\sum s_{i}$ such that ϕ^{\prime} with

$$
\phi^{\prime}=\left\{s_{1} \vee \neg a \vee b, s_{2} \vee \neg a \vee c, s_{3} \vee a, s_{4} \vee \neg b, s_{5} \vee a \vee b, s_{6} \vee \neg c \vee b\right\}
$$

- $S=\left\{s_{i}\right\}$ called "selector variables"
- Use SAT solver to find models M of $\phi^{\prime} \wedge\left(\sum s_{i}<k\right)$ with decreasing $k=|M \cap S|$ until formula inconsistent.
- $\sum s_{i}<k$ being either a native cardinality constraints (Sat4j) or translated into CNF (QMaxSat).
- $\sum w_{i} \times s_{i}<k$ (pseudo-boolean constraint) for Weighted [Partial] MaxSat

Motivation : SAT-based MAXSAT

Example

- Let $\phi=\{\neg a \vee b, \neg a \vee c, a, \neg b, a \vee b, \neg c \vee b\}$
- MAXSAT $(\phi)=$ minimize $\sum s_{i}$ such that ϕ^{\prime} with $\phi^{\prime}=\left\{s_{1} \vee \neg a \vee b, s_{2} \vee \neg a \vee c, s_{3} \vee a, s_{4} \vee \neg b, s_{5} \vee a \vee b, s_{6} \vee \neg c \vee b\right\}$
- $S=\left\{s_{i}\right\}$ called "selector variables"
- Use SAT solver to find models M of $\phi^{\prime} \wedge\left(\sum s_{i}<k\right)$ with decreasing $k=|M \cap S|$ until formula inconsistent.
- $\sum s_{i}<k$ being either a native cardinality constraints (Sat4j) or translated into CNF (QMaxSat).
- $\sum w_{i} \times s_{i}<k$ (pseudo-boolean constraint) for Weighted [Partial] MaxSat
- if $M=\left\{a, b, c, s_{1}, s_{2}, s_{3}, s_{4}, \neg s_{5}, \neg s_{6}\right\}, k=4$ The bound is not tight! s_{1}, s_{2}, s_{3} are satisfied while their corresponding clauses are satisfied!

Improve upper bound for SAT-based MAXSAT solvers

- Two possible approaches:
- Change the encoding : equivalence instead of implication for selector variables
$\neg s_{i} \rightarrow c_{i}$ becomes $\neg s_{i} \leftrightarrow c_{i}$
adds $|\phi|$ binary clauses to ϕ^{\prime}
- Use a prime implicant instead of a model to compute the upper bound
- Requirements :
- fast : computation need to be done at each model found
- compatible with incremental SAT (no/small data structure overhead)
- should work with clauses, cardinality constraints, and pseudo-boolean constraints

Abstract computation of prime implicants

1: procedure $\operatorname{Prime}\left(\mathcal{C}, M_{0}, \Pi_{0}\right)$
2: $\quad M, \Pi \leftarrow M_{0}, \Pi_{0}$
3: \quad while $\ell \in M \backslash \Pi$ do
4: \quad if $\operatorname{Required}(M, \ell, \mathcal{C})$ then $\Pi \leftarrow \Pi \cup\{\ell\}$
5: \quad else $M \leftarrow M \backslash\{\ell\}$
6: return Π

- M_{0} is the model returned by the SAT solver
- Required () checks if a given literal ℓ is required in the implicant, i.e. $\exists c \in \mathcal{C}$ such that satisfying ℓ is mandatory to satysfy c [Castell96].
- Π_{0} easy to find required literals (e.g. propagated literals).
- In practice, $\left|M_{0} \backslash \Pi_{0}\right| \ll\left|\Pi_{0}\right|$
- Works for any kind of constraints
- Needs to be refined for efficient implementation!

Prime implicants for clauses (counter based)

```
1: procedure \(\operatorname{Prime}\left(\mathcal{C}, M_{0}, \Pi_{0}\right)\)
2: \(\quad M, \Pi \leftarrow M_{0}, \Pi_{0}\)
3: \(\quad\) for all \(\ell \in M\) do \(W(\ell) \leftarrow \emptyset\)
4: \(\quad\) for all \(c \in \mathcal{C}\) do
    \(\mathrm{N}[c] \leftarrow 0\)
    for all \(\ell \in c\) do \(W(\ell) \leftarrow W(\ell) \cup\{c\}\)
    for all \(\ell \in M\) do
        for all \(c \in W(\ell)\) do \(\mathrm{N}[c] \leftarrow \mathrm{N}[c]+1\)
9: \(\quad\) for all \(\ell \in M \backslash \Pi\) do
10 :
11:
12:
13:
14:
15: return \(\Pi\)
for all \(c \in W(\ell)\) do \(N[c] \leftarrow \mathrm{N}[c]-1\)
\(M \leftarrow M \backslash\{\ell\}\)
```


Prime implicants for cardinality constraints (counter based)

```
1: procedure \(\operatorname{Prime}\left(\mathcal{C}, M_{0}, \Pi_{0}\right)\)
2: \(\quad M, \Pi \leftarrow M_{0}, \Pi_{0}\)
3: \(\quad\) for all \(\ell \in M\) do \(W(\ell) \leftarrow \emptyset\)
4: \(\quad\) for all \(c \in \mathcal{C}\) do
    \(\mathrm{N}[c] \leftarrow 0\)
    for all \(\ell \in c\) do \(W(\ell) \leftarrow W(\ell) \cup\{c\}\)
    for all \(\ell \in M\) do
        for all \(c \in W(\ell)\) do \(\mathrm{N}[c] \leftarrow \mathrm{N}[c]+1\)
    9: \(\quad\) for all \(\ell \in M \backslash \Pi\) do
        if \(\exists c \in W(\ell) . N[c]=\operatorname{degree}(c)\) then
        \(\Pi \leftarrow \Pi \cup\{\ell\}\)
        else
        for all \(c \in W(\ell)\) do \(\mathrm{N}[c] \leftarrow \mathrm{N}[c]-1\)
        \(M \leftarrow M \backslash\{\ell\}\)
15: \(\quad\) return \(П\)
```


About Counter-based approaches

- Complexity is linear in the size of $\mathcal{C}: \mathcal{O}\left(\sum_{c \in \mathcal{C}}|c|\right)$
- Works for both clauses and cardinality constraints
- Easy to implement outside the solver
- What about early detection of required literals?
-What about pseudo boolean constraints?
- What about incremental SAT solving?

Abstract propagation-based algorithm

```
1: procedure \(\operatorname{Prime}\left(\mathcal{C}, M_{0}, \Pi_{0}\right)\)
2: \(\quad M, \Pi \leftarrow M_{0}, \Pi_{0}\)
3: \(\quad \Pi \leftarrow \Pi \cup \operatorname{ImPLIED}(\mathcal{C}, M) \quad \triangleright\) Propagates required literals
4: \(\quad\) while \(\ell \in M \backslash \Pi\) do
5: \(\quad M \leftarrow M \backslash\{\ell\}\)
6 :
    \(\Pi \leftarrow \Pi \cup \operatorname{Implied}(\mathcal{C}, M) \quad \triangleright\) Propagates removal of \(\ell\)
    return \(\Pi\)
```

- Implied() propagates truth value similarly to Unit Propagation
- New invariant : each literal picked up at line 4 is not required
- We can reuse here the data structures found in modern SAT solvers!

Prime implicants using watched literals

```
    1: procedure \(\operatorname{Prime}\left(\mathcal{C}, M_{0}, \Pi_{0}, W\right)\)
    2: \(\quad M, \Pi \leftarrow M_{0}, \Pi_{0}\)
    3: \(\quad\) for all \(\ell \in M \backslash \Pi\) do
    \(\triangleright\) Watch satisfied literals
    4: \(\quad \operatorname{Implied}_{w}(\mathcal{C}, M, \bar{\ell}, \Pi, W)\)
    5: \(\quad\) while \(\ell \in M \backslash \Pi\) do
    6: \(\quad M \leftarrow M \backslash\{\ell\}\)
    7: \(\quad \operatorname{ImPLIED}_{W}(\mathcal{C}, M, \ell, \Pi, W) \quad \triangleright\) Propagates removal of \(\ell\)
    8: return \(П\)
```

 : procedure \(\operatorname{ImPLIED}_{W}(\mathcal{C}, M, \ell\), ref \(\Pi\), ref \(W)\)
 10: $\quad W_{\ell} \leftarrow W(\ell)$
11: \quad for all $c \in W_{\ell}$ do
12: $\quad \operatorname{HDL}$ _CONSTR $(c, M, \ell, \Pi, W) \quad \triangleright$ Specific to each c
$W(\ell)=$ constraints "watched" for literal ℓ

HDL_CONSTR for clause or cardinality constraints

1: procedure HDL_CONSTR $(c, M, \ell$, ref Π, ref W)
2: if $\exists \ell^{\prime} \in c \cap M \cdot \ell^{\prime} \notin W^{-1}(c)$ then
3: $\quad W \leftarrow\left(W \cup\left\{\ell^{\prime} \mapsto c\right\}\right) \backslash\{\ell \mapsto c\}$
4: \quad else $\Pi \leftarrow \Pi \cup\left(W^{-1}(c) \backslash\{\ell\}\right)$

- $W^{-1}(c)=$ literals "watched" in constraint c
- Just like lazy data structure management during unit propagation (in clauses or cardinality constraints)
- Watches satisfied literals : there is at least one such literal per clause.
- One important difference: constraints are traversed only once. that condition must hold to achieve linear time!

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2 ?

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2 ?

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2

Prime Implicant specific propagation

- Triggered when a literal is removed from M
- Procedure looks for a satisfied literal
- Some literals may be deleted
- Propagates a required literal

w1 w2
a is mandatory/required!

HDL_CONSTR for arbitrary constraints

```
    1: procedure HDL_CONSTR \((c, M, \ell\), ref \(\Pi\), ref \(W\) )
2: \(\quad \Pi \leftarrow \Pi \cup\left\{\ell^{\prime} \in W^{-1}(c) \mid \operatorname{Required}\left(M, \ell^{\prime}, c\right)\right\}\)
3: \(\quad\) if \(\Pi \not \vDash c\) then
    Choose \(W^{\prime}\) such that
        \(W^{\prime} \subseteq\left(W^{-1}(c) \cup M\right) \backslash\{\ell\}\)
        \(\left(\Pi \cup W^{\prime}\right) \cap M \models c\)
        \(\forall \ell^{\prime} \in W^{\prime} \backslash \Pi . \neg \operatorname{Required}\left(W^{\prime} \cup \Pi, \ell^{\prime}, c\right)\)
    in \(W^{-1}(c) \leftarrow W^{\prime}\)
```

PB constraints can propagate truth values without being satisfied :
$4 \times a+2 \times b+c+d \geq 6$ propagates a.

Experimental results : some Safarpour et al benchmarks

\#vars (M)	\#cla (M)	\#literals (M)	\#implied (M)	Counters (s)	Watched (s)
2.3	1.7	4.0	0.5	4.842	$\mathbf{0 . 7 3 6}$
1.5	1.1	2.7	0.4	2.860	$\mathbf{0 . 4 9 5}$
2.0	1.5	3.9	0.5	4.191	$\mathbf{0 . 4 8 6}$
1.6	1.2	2.9	0.4	3.956	$\mathbf{0 . 3 7 7}$
1.8	1.0	2.8	0.3	4.008	$\mathbf{0 . 3 5 4}$
2.0	1.6	4.5	0.4	2.567	$\mathbf{0 . 4 8 6}$
2.0	1.6	4.6	0.4	2.493	$\mathbf{0 . 4 9 3}$
2.2	1.7	4.8	0.4	9.225	$\mathbf{0 . 5 1 0}$
2.2	1.7	4.8	0.4	8.946	$\mathbf{0 . 4 9 0}$
2.2	1.7	4.8	0.4	6.086	$\mathbf{0 . 5 5 6}$
1.5	1.2	3.4	0.3	4.250	$\mathbf{0 . 3 6 6}$
1.5	1.2	3.4	0.3	4.172	$\mathbf{0 . 3 7 0}$

Experimental results : MAXSAT 10 benchmarks

Sat4j MaxSat 2.3.6, 2GB of memory, 1200s timeout

	MAXSAT $544(77)$	Partial MS $1122(497)$	Weighted MS $349(-)$	WPMS $660(132)$
models \rightarrow	$10(8)$	$485(269)$	59	$211(36)$
models \leftrightarrow	$7(4)$	$491(270)$	65	$211(35)$
PI counters	$5(3)$	$487(268)$	-	-
PI this work	$10(8)$	$490(269)$	61	$215(38)$

Conclusion

- Prime implicant computation almost for free in CDCL solvers : no computational nor memory overhead
- Works for different kind of constraints.
- Linear behavior depends on the kind of constraints (i.e. guaranteed to be traversed only once during propagation)
- All presented algorithms properly implemented as separate classes in Sat4j 2.3.6 (to be released)
- For MaxSat, few important selector variables removed : might need to consider specific heuristics for that.
- How to enumerate all prime implicants of a formula?

