
Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Efficient Handling of Obligation Constraints in
Synthesis from Omega-Regular Specifications

Saqib bin Sohail

Department of Electrical and Computer Engineering
University of Colorado at Boulder

FMCAD 2013

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Outline

1 Introduction: Synthesis from ω-regular properties

2 The Challenges in improving Quality of Results

3 R-Generable languages

4 Experimental Results

5 Conclusions

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Outline

1 Introduction: Synthesis from ω-regular properties

2 The Challenges in improving Quality of Results

3 R-Generable languages

4 Experimental Results

5 Conclusions

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Realizability of an ω-regular property

Let φ be an ω-regular property describing the relation between inputs
XI and outputs XO where ΣI = 2XI and ΣO = 2XO .

The realizability problem for φ is to decide whether there is a strategy
τ : Σ∗

I → ΣO which generates an output word σO ∈ Σω
O for every

input word σI ∈ Σω
I such that the input-output word

σ = (σ0
I , σ

0
O), (σ1

I , σ
1
O), (σ2

I , σ
2
O), . . .

satisfies φ.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Realizability and Synthesis

If a specification (set of ω-regular properties) is realizable then from
the winning strategy we can generate an implementation (transducer)
which guarantees the satisfaction of the specification.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Various approaches of checking Realizability

Pnueli and Rosner (POPL’89)
Requires determinization

“Safraless” approach - Vardi et al. (FOCS’05)
Same worst case complexity but avoids determinization

Reactive(1) Designs - Piterman et al. (VMCAI’06) Subset of
ω-regular languages that can be synthesized efficiently

SAFETY-FIRST - Sohail et al. (VMCAI’08, FMCAD’09)
Two-stage approach improves efficiency
Achieved efficiency without sacrificing generality

BOUNDED SYNTHESIS and its variants - Ehlers, Raskin et al.
Sequence of safety games

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Efficiency and Quality

Current techniques focus on efficiency of the realizability check and
overlook the quality of the implementation.

Quality of Results (QoR) - the amount of combinational and
sequential logic required by the implementation.

The implementation generated by automatic techniques is not good
enough even when compared against an implementation generated by
a novice designer.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Efficiency and Quality

Current techniques focus on efficiency of the realizability check and
overlook the quality of the implementation.

Quality of Results (QoR) - the amount of combinational and
sequential logic required by the implementation.

The implementation generated by automatic techniques is not good
enough even when compared against an implementation generated by
a novice designer.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Outline

1 Introduction: Synthesis from ω-regular properties

2 The Challenges in improving Quality of Results

3 R-Generable languages

4 Experimental Results

5 Conclusions

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings

Symbolic algorithms have had significant impact on the performance
of model checking algorithms.

Symbolic encoding of a game graph plays a significant role in the
efficiency of game playing algorithms.

However, finding an efficient encoding of the game graph is not a
trivial task.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings

Symbolic algorithms have had significant impact on the performance
of model checking algorithms.

Symbolic encoding of a game graph plays a significant role in the
efficiency of game playing algorithms.

However, finding an efficient encoding of the game graph is not a
trivial task.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings

Symbolic algorithms have had significant impact on the performance
of model checking algorithms.

Symbolic encoding of a game graph plays a significant role in the
efficiency of game playing algorithms.

However, finding an efficient encoding of the game graph is not a
trivial task.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings...
(continued)

A common approach of converting the specification to a game graph
is:

obtain a game graph for each property through explicit
techniques

then generate the symbolic representation of the game graph

then composing the symbolic representation of these game
graphs to yield the game graph of the specification.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings...
(continued)

A common approach of converting the specification to a game graph
is:

obtain a game graph for each property through explicit
techniques

then generate the symbolic representation of the game graph

then composing the symbolic representation of these game
graphs to yield the game graph of the specification.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings...
(continued)

This approach often creates game graphs which contain unreachable
states, simulation equivalent states and states that can easily be
identified as winning/losing.

Once these states have been identified and removed, the challenge is
to generate a suitable encoding for the simplified game graph.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Redundancies and Inefficiencies in Symbolic Encodings...
(continued)

This approach often creates game graphs which contain unreachable
states, simulation equivalent states and states that can easily be
identified as winning/losing.

Once these states have been identified and removed, the challenge is
to generate a suitable encoding for the simplified game graph.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Unreachable and simulation equivalent states

The composed automaton may contain simulation equivalent states
even if the original two automata do not.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Unreachable and simulation equivalent states

The composed automaton may contain simulation equivalent states
even if the original two automata do not.

a ∨ ¬c

¬a ∧ c

¬a ∧ c ∧ b
AΦ1

¬a ∧ ¬b ∧ ¬c

a ∧ b

¬a ∧ b ∧ ¬c

a ∧ ¬b ¬a ∧ ¬b ∧ c

¬a ∧ b ∧ c

a ∧ b

¬a ∧ b ∧ ¬cq0

q1

q2

a ∧ ¬b

q3

¬a ∧ b ∧ c

AΦ

(a ∨ ¬c) ∧ b

AΦ2

a ∧ ¬b

¬a ∧ b¬a ∧ ¬b
a ∧ b

¬a

a ∧ ba ∧ ¬b

¬a ∧ c

a ∧ b
¬a ∧ ¬c

In this example, q1 and q2 are simulation equivalent.
Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Unreachable and simulation equivalent states... (continued)

q0 = s0 q2 = ¬s0 ∧ ¬s1 q3 = ¬s0 ∧ s1

s0 = (s0 ∨ b) ∧ ¬a ∧ ¬c

s1 = a ∧ ¬b

¬a ∧ ¬b ∧ ¬c

a ∧ ¬b ¬a ∧ ¬b ∧ c

q0 q2

a ∧ ¬b

q3

AΦ

¬a ∧ ¬c

(a ∨ c) ∧ b
¬a ∧ b ∧ ¬c

(¬a ∧ c) ∨ (a ∧ b)

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Cyclic Dependencies – bad for BDDs

¬s0

AΦ1

b

¬b

b ∧ c

¬b ∧ ¬c

AΦ

s1 · s2

s1 · ¬s2

¬s1 · s2

¬s1 · ¬s2

¬a ∧ ¬b

¬a ∧ b

a ∧ ¬b ∧ c

a ∧ ¬b
¬a ∧ ¬b

a ∧ b

¬a ∧ b ∧ c

a ∧ b ∧ c

¬a ∧ b ∧ c

a ∧ b ∧ c¬a ∧ ¬b ∧ ¬c

a ∧ ¬b ∧ ¬c
a ∧ ¬b ∧ ¬c

a ∧ ¬b

a ∧ b

AΦ2

s1 · ¬s2

a ∧ ¬ ∧ ¬c

a ∧ b ∧ c

¬a ∧ ¬b

¬a ∧ b

a ∧ ¬b ∧ c

a ∧ b ∧ ¬c

s0 s1 · s2

¬a¬s1 · ¬s2

s0 = b, s1 = a, s2 = (a ∧ c ∧ s2) ∨ (a ∧ ¬b ∧ ¬s1) ∨ (a ∧ b ∧ ¬c ∧ s1)

S1 = a ∨ (¬S2 ∧ b)

S2 = (¬a ∧ b) ∨ (a ∧ ¬b ∧ ¬S2) ∨ (a ∧ c ∧ S1) ∨ (a ∧ ¬c ∧ S1)

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Why do Safety Properties exist in a specification?

The safety properties in the specification capture the transition
relation of implementations that can satisfy the specification.

Useful pieces of information about the transition relation are scattered
accross different properties.

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} → set of safety properties.

Both the outputs depend on the previous value of the input a.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Why do Safety Properties exist in a specification?

The safety properties in the specification capture the transition
relation of implementations that can satisfy the specification.

Useful pieces of information about the transition relation are scattered
accross different properties.

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} → set of safety properties.

Both the outputs depend on the previous value of the input a.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Why do Safety Properties exist in a specification?

The safety properties in the specification capture the transition
relation of implementations that can satisfy the specification.

Useful pieces of information about the transition relation are scattered
accross different properties.

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} → set of safety properties.

Both the outputs depend on the previous value of the input a.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Why do Safety Properties exist in a specification?
. . . (continued)

The existing approaches are often unable to take advantage of useful
information because it is often obscured and hard to recover.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Automata Based conversion

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} → set of safety properties.

The states of the game represent the memory that is required to
remember some past event.

q0

q1

¬a

a

¬a ∧ x

a ∧ x

G(a→ X x)

q0

q1

G(¬a→ X y)

¬a

a
a ∧ y

¬a ∧ y

The state space of each game is encoded with a single binary variable.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Automata Based conversion . . . (continued)

¬a ∧ x

a ∧ x

q1, q1

q0, q0

¬a ∧ y

a ∧ y

G(a→ X x) ∧G(¬a→ X y)

The composed game has two reachable states. However, it is encoded
by two binary variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages

AnR-generable language L can be generated by a relation such that
every two consecutive letters of a word in the language satisfy some
relation R.

∀w ∈ L .∀i ≥ 0 .(wi,wi+1) ∈ R

R-generable languages are accepted by 1-definite safety automata
which are initially free.

Not all safety languages areR-generable.

However, every safety language defined over Σ can be embedded in
anR-generable language defined over Σ̂, where Σ ⊆ Σ̂.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages

AnR-generable language L can be generated by a relation such that
every two consecutive letters of a word in the language satisfy some
relation R.

∀w ∈ L .∀i ≥ 0 .(wi,wi+1) ∈ R

R-generable languages are accepted by 1-definite safety automata
which are initially free.

Not all safety languages areR-generable.

However, every safety language defined over Σ can be embedded in
anR-generable language defined over Σ̂, where Σ ⊆ Σ̂.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages

AnR-generable language L can be generated by a relation such that
every two consecutive letters of a word in the language satisfy some
relation R.

∀w ∈ L .∀i ≥ 0 .(wi,wi+1) ∈ R

R-generable languages are accepted by 1-definite safety automata
which are initially free.

Not all safety languages areR-generable.

However, every safety language defined over Σ can be embedded in
anR-generable language defined over Σ̂, where Σ ⊆ Σ̂.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages

AnR-generable language L can be generated by a relation such that
every two consecutive letters of a word in the language satisfy some
relation R.

∀w ∈ L .∀i ≥ 0 .(wi,wi+1) ∈ R

R-generable languages are accepted by 1-definite safety automata
which are initially free.

Not all safety languages areR-generable.

However, every safety language defined over Σ can be embedded in
anR-generable language defined over Σ̂, where Σ ⊆ Σ̂.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages... (continued)

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

G(r → X(r ∨ g))

¬r ∧ g

G(r → X(r W g))

Âψ

r W g

r ∧ ¬g ∧ ¬x

x

g ∧ x

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages... (continued)

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

G(r → X(r ∨ g))

¬r ∧ g

G(r → X(r W g))

Âψ

r W g

r ∧ ¬g ∧ ¬x

x

g ∧ x

R = ¬rL ∨ r ∨ g

where rL and gL represent the previous values of the inputs r and g.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages... (continued)

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

G(r → X(r ∨ g))

¬r ∧ g

G(r → X(r W g))

Âψ

r W g

r ∧ ¬g ∧ ¬x

x

g ∧ x

Γ : Σ̂→ Σ Γ : Σ̂ω → Σω

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages... (continued)

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

G(r → X(r ∨ g))

¬r ∧ g

G(r → X(r W g))

Âψ

r W g

r ∧ ¬g ∧ ¬x

x

g ∧ x

R = (rL ∧ ¬gL ∧ ¬xL) ∧ ((r ∧ ¬g ∧ ¬x) ∨ (g ∧ x)) ∨ (xL ∧ x)

L(Aφ) ⊆ Γ(L(Âφ))

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages... (continued)

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

G(r → X(r ∨ g))

¬r ∧ g

G(r → X(r W g))

Âψ

r W g

r ∧ ¬g ∧ ¬x

x

g ∧ x

R = (rL ∧ ¬gL ∧ ¬xL) ∧ ((r ∧ ¬g ∧ ¬x) ∨ (g ∧ x)) ∨ (xL ∧ x)

I = (r ∧ ¬g ∧ ¬x) ∨ (g ∧ x) .

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

R-Generable languages... (continued)

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

G(r → X(r ∨ g))

¬r ∧ g

G(r → X(r W g))

Âψ

r W g

r ∧ ¬g ∧ ¬x

x

g ∧ x

Γ(L(Âφ)) = L(Aφ)

The projection function Γ when restricted to L(Aφ) and L(Âφ) is a
bijection.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Relation Based conversion

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} is the set of safety properties.

(¬aL ∨ x) ∧ (aL ∨ y)

The past events that need to be remembered are not abstracted by state
variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Relation Based conversion

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} is the set of safety properties.

(¬aL ∨ x) ∧ (aL ∨ y)

The past events that need to be remembered are not abstracted by state
variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Relation Based conversion

{a} → is the set of inputs {x, y} → is the set of outputs
{G(a→ X x),G(¬a→ X y)} is the set of safety properties.

(¬aL ∨ x) ∧ (aL ∨ y)

The past events that need to be remembered are not abstracted by state
variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Checking Realizability

Given I = {r} O = {g, h,m}

R = (¬rL ∨ ¬gL ∨ ¬m) ∧ (¬rL ∨ ¬hL ∨ m)

Z0 = ∃O . ∀I .R ∧ > = ¬rL ∨ ¬gL ∨ ¬hL T = (¬r ∨ ¬g ∨ ¬h)

Z1 = ∃O . ∀I .R ∧ Z = ¬rL ∨ ¬gL ∨ ¬hL

It is an SCC computation using R as the transition relation and
OL ∪ IL as the current state variables.

The variables O ∪ I are interpreted both as the input variables and
next state variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Checking Realizability

Given I = {r} O = {g, h,m}

R = (¬rL ∨ ¬gL ∨ ¬m) ∧ (¬rL ∨ ¬hL ∨ m)

Z0 = ∃O . ∀I .R ∧ > = ¬rL ∨ ¬gL ∨ ¬hL T = (¬r ∨ ¬g ∨ ¬h)

Z1 = ∃O . ∀I .R ∧ Z = ¬rL ∨ ¬gL ∨ ¬hL

It is an SCC computation using R as the transition relation and
OL ∪ IL as the current state variables.

The variables O ∪ I are interpreted both as the input variables and
next state variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Checking Realizability

Given I = {r} O = {g, h,m}

R = (¬rL ∨ ¬gL ∨ ¬m) ∧ (¬rL ∨ ¬hL ∨ m)

Z0 = ∃O . ∀I .R ∧ > = ¬rL ∨ ¬gL ∨ ¬hL T = (¬r ∨ ¬g ∨ ¬h)

Z1 = ∃O . ∀I .R ∧ Z = ¬rL ∨ ¬gL ∨ ¬hL

It is an SCC computation using R as the transition relation and
OL ∪ IL as the current state variables.

The variables O ∪ I are interpreted both as the input variables and
next state variables.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Boolean Equations and Combinational Synthesis

The equation is
R ∧ Z = >

where O are the unknowns and OL ∪ IL ∪ I are the independant
variables.

h = hi

g = (¬r ∨ ¬hi) ∧ gi

m = hL ∨ (¬rL ∧ mi)

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Parameterized Transition relation

Parameterized transition relation is essential for the correctness of this
SAFETY FIRST approach.

Consider the liveness property G F(m) ∧G F(¬m).

h = hi

g = (¬r ∨ ¬hi) ∧ gi

m = hL ∨ (¬rL ∧ mi)

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Parameterized Transition relation

Parameterized transition relation is essential for the correctness of this
SAFETY FIRST approach.

Consider the liveness property G F(m) ∧G F(¬m).

h = hi

g = (¬r ∨ ¬hi) ∧ gi

m = hL ∨ (¬rL ∧ mi)

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Results - Time

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
(s

ec
on

ds
)

Number of clients in AMBA Arbiter

The time Required to Synthesize

’Anzu’
’Relation-Based’

’Safety-First’

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Results - Sequential Logic

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 R

eg
is

te
rs

Number of clients in AMBA Arbiter

The amount of Sequential Logic

’Anzu’
’Relation-Based’

’Safety-First’

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Results - Combinational Logic

 0

 50000

 100000

 150000

 200000

 250000

 300000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 G

at
es

Number of clients in AMBA Arbiter

The amount of Combinational Logic

’Anzu’
’Relation-Based’

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Advantages of Relation based approach

1 The relation often requires fewer symbolic variables.

2 The relation captures the intent of safety properties in the
specification, therefore, debugging is a lot easier.

3 The problem of sequential synthesis is converted to a problem of
combinational synthesis.

4 Retiming may improve the parameteric transition relation.

5 This approach has been extended to obligation properties.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Advantages of Relation based approach

1 The relation often requires fewer symbolic variables.

2 The relation captures the intent of safety properties in the
specification, therefore, debugging is a lot easier.

3 The problem of sequential synthesis is converted to a problem of
combinational synthesis.

4 Retiming may improve the parameteric transition relation.

5 This approach has been extended to obligation properties.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Advantages of Relation based approach

1 The relation often requires fewer symbolic variables.

2 The relation captures the intent of safety properties in the
specification, therefore, debugging is a lot easier.

3 The problem of sequential synthesis is converted to a problem of
combinational synthesis.

4 Retiming may improve the parameteric transition relation.

5 This approach has been extended to obligation properties.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Advantages of Relation based approach

1 The relation often requires fewer symbolic variables.

2 The relation captures the intent of safety properties in the
specification, therefore, debugging is a lot easier.

3 The problem of sequential synthesis is converted to a problem of
combinational synthesis.

4 Retiming may improve the parameteric transition relation.

5 This approach has been extended to obligation properties.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Advantages of Relation based approach

1 The relation often requires fewer symbolic variables.

2 The relation captures the intent of safety properties in the
specification, therefore, debugging is a lot easier.

3 The problem of sequential synthesis is converted to a problem of
combinational synthesis.

4 Retiming may improve the parameteric transition relation.

5 This approach has been extended to obligation properties.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

THANK YOU

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Parameterized Transition relation

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ (X x ∨ X y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

{G(a→ F(x↔ ¬y))} is the liveness property

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Parameterized Transition relation

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ (X x ∨ X y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

{G(a→ F(x↔ ¬y))} is the liveness property

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Parameterized Transition relation

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ (X x ∨ X y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

{G(a→ F(x↔ ¬y))} is the liveness property

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Boolean Equations and Combinational Synthesis

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ X(x ∨ y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Boolean Equations and Combinational Synthesis

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ X(x ∨ y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

(¬aL ∨ yL ∨ x ∨ y) ∧ (aL ∨ ¬xL ∨ ¬a ∨ ¬y) = >

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Boolean Equations and Combinational Synthesis

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ X(x ∨ y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

R = (¬aL ∨ yL ∨ x ∨ y) ∧ (aL ∨ ¬xL ∨ ¬a ∨ ¬y)

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Boolean Equations and Combinational Synthesis

{a} → set of inputs {x, y} → set of outputs
{G((a ∧ ¬y)→ X(x ∨ y)),G((¬a ∧ x ∧ X a)→ X¬y)}
is the set of safety properties

R = (¬aL ∨ yL ∨ x ∨ y) ∧ (aL ∨ ¬xL ∨ ¬a ∨ ¬y)

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

LTL andR-generable Languages

Languages described by certain LTL properties can be identified as
R-generable without constructing the corresponding automaton.

E.g. G(a→ X x) or G((a ∨ X b)↔ X x)

G(a→ X X y) does not describe anR-generable language.

This syntactic characterization is sufficient but not necessary.

E.g. G(r → (r W g))

R-generable languages are those that only need to remember the
previous letter.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

LTL andR-generable Languages

Languages described by certain LTL properties can be identified as
R-generable without constructing the corresponding automaton.

E.g. G(a→ X x) or G((a ∨ X b)↔ X x)

G(a→ X X y) does not describe anR-generable language.

This syntactic characterization is sufficient but not necessary.

E.g. G(r → (r W g))

R-generable languages are those that only need to remember the
previous letter.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

LTL andR-generable Languages

Languages described by certain LTL properties can be identified as
R-generable without constructing the corresponding automaton.

E.g. G(a→ X x) or G((a ∨ X b)↔ X x)

G(a→ X X y) does not describe anR-generable language.

This syntactic characterization is sufficient but not necessary.

E.g. G(r → (r W g))

R-generable languages are those that only need to remember the
previous letter.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

LTL andR-generable Languages

Languages described by certain LTL properties can be identified as
R-generable without constructing the corresponding automaton.

E.g. G(a→ X x) or G((a ∨ X b)↔ X x)

G(a→ X X y) does not describe anR-generable language.

This syntactic characterization is sufficient but not necessary.

E.g. G(r → (r W g))

R-generable languages are those that only need to remember the
previous letter.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

LTL andR-generable Languages

Languages described by certain LTL properties can be identified as
R-generable without constructing the corresponding automaton.

E.g. G(a→ X x) or G((a ∨ X b)↔ X x)

G(a→ X X y) does not describe anR-generable language.

This syntactic characterization is sufficient but not necessary.

E.g. G(r → (r W g))

R-generable languages are those that only need to remember the
previous letter.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

LTL andR-generable Languages

Languages described by certain LTL properties can be identified as
R-generable without constructing the corresponding automaton.

E.g. G(a→ X x) or G((a ∨ X b)↔ X x)

G(a→ X X y) does not describe anR-generable language.

This syntactic characterization is sufficient but not necessary.

E.g. G(r → (r W g))

R-generable languages are those that only need to remember the
previous letter.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Optimal augmentation of the alphabet

Augmenting the alphabet of individual properties may not be the
optimal strategy.

(¬r ∨ g) ∧ ¬y

¬r ∧ ¬g ∧ y

g ∧ x

r ∧ ¬g ∧ ¬x

r ∧ ¬g ∧ ¬y

x

g ∧ ¬y

r ∧ ¬g ∧ ¬y

qin

q2

q1

qin

q1

Âφ1 Âφ2

φ1 = r W g

φ2 = G(r ∧ ¬g→ X(r ∨ g ∨ X(r ∨ g)))

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Optimal augmentation of the alphabet

Augmenting the alphabet of individual properties may not be the
optimal strategy.

¬r ∨ g

r ∧ ¬g

¬r ∨ g

r ∧ ¬g

g
g

r ∧ ¬g
r ∧ ¬g

r ∧ ¬g

Aφ1 × Aφ2
Aφ

r ∧ ¬g

g

g

¬r ∧ ¬g

g

¬r ∧ ¬g

r ∧ ¬g
q3

q4

qin

q1 q2

r ∧ ¬g
gg

r ∧ ¬g

q1

q3

qin

q2

After generating the automaton for φ or composing the automata Aφ1×
Aφ2 it becomes clear that the alphabet needed to be augmented by only
two letters.

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Retiming

{a, xi, yi} → set of inputs
{aL, xL, yL} → set of memory elements
{x, y} → set of outputs

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Retiming

{a, xi, yi} → set of inputs
{aL, xL, yL} → set of memory elements
{x, y} → set of outputs

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Retiming

{a, xi, yi} → set of inputs
{aL, xL, yL} → set of memory elements
{x, y} → set of outputs

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Retiming

{a, xi, yi} → set of inputs
{aL, xL, yL} → set of memory elements
{x, y} → set of outputs

x = xi

y = (aL ∧ ¬yL) ∧ xi ∨ (aL ∨ ¬xL ∨ a) ∧ yi

{m1,m2} → set of memory elements where

m1 = a ∧ ¬y m2 = (a ∨ ¬x)

y = m1 ∧ xi ∨ (m2 ∨ a) ∧ yi

Efficient Handling of Obligation Constraints

Introduction: Synthesis from ω-regular properties
The Challenges in improving Quality of Results

R-Generable languages
Experimental Results

Conclusions

Retiming. . . (continued)

The efficiency of retiming heuristic is dependant on the factorization
of the function.

Efficient Handling of Obligation Constraints

	Introduction: Synthesis from -regular properties
	The Challenges in improving Quality of Results
	R-Generable languages
	Experimental Results
	Conclusions

