Bilinear Prediction Using Low-Rank Models

Inderjit S. Dhillon
Dept of Computer Science
UT Austin

26th International Conference on Algorithmic Learning Theory Banff, Canada
Oct 6, 2015

Joint work with C-J. Hsieh, P. Jain, N. Natarajan, H. Yu and K. Zhong

Outline

- Multi-Target Prediction
- Features on Targets: Bilinear Prediction
- Inductive Matrix Completion
(1) Algorithms
(2) Positive-Unlabeled Matrix Completion
(3) Recovery Guarantees
- Experimental Results

Sample Prediction Problems

Predicting stock prices

$\frac{\text { S\&P 500 }}{\text { S\&P 500 }} .96$
$+7.27(0.35 \%)$

Predicting risk factors in healthcare

Give Statin

Lifestyle only

Regression

- Real-valued responses (target) t
- Predict response for given input data (features) a

Linear Regression

- Estimate target by a linear function of given data \mathbf{a}, i.e. $\mathbf{t} \approx \hat{\mathbf{t}}=\mathbf{a}^{T} \mathbf{x}$.

Linear Regression: Least Squares

- Choose \mathbf{x} that minimizes

$$
J_{\mathrm{x}}=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{a}_{i}^{T} \mathbf{x}-t_{i}\right)^{2}
$$

- Closed-form solution: $\mathbf{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{t}$.

Prediction Problems: Classification

Spam detection

Gmail -

COMPOSE

Inbox $(8,439)$
Starred
Important
Sent Mail
Drafts
Notes
Less 4

Chats
All Mail

Character Recognition

Spam (298)
Trash

Binary Classification

- Categorical responses (target) t
- Predict response for given input data (features) a
- Linear methods - decision boundary is a linear surface or hyperplane

Linear Methods for Prediction Problems

Regression:

- Ridge Regression: $J_{\mathbf{x}}=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{a}_{i}^{T} \mathbf{x}-t_{i}\right)^{2}+\lambda\|\mathbf{x}\|_{2}^{2}$.
- Lasso: $J_{\mathbf{x}}=\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{a}_{i}^{T} \mathbf{x}-t_{i}\right)^{2}+\lambda\|\mathbf{x}\|_{1}$.

Classification:

- Linear Support Vector Machines

$$
J_{\mathrm{x}}=\frac{1}{2} \sum_{i=1}^{n} \max \left(0,1-t_{i} \mathbf{a}_{i}^{T} \mathbf{x}\right)+\lambda\|\mathbf{x}\|_{2}^{2}
$$

- Logistic Regression

$$
J_{\mathbf{x}}=\frac{1}{2} \sum_{i=1}^{n} \log \left(1+\exp \left(-t_{i} \mathbf{a}_{i}^{T} \mathbf{x}\right)\right)+\lambda\|\mathbf{x}\|_{2}^{2}
$$

Linear Prediction

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

Springer

3 Linear Methods for Regression

3.1 Introduction
3.2 Linear Regression Models and Least Squares
3.2.1 Example: Prostate Cancer
3.2.2 The Gauss-Markov Theorem
3.2.3 Multiple Regression
from Simple Univariate Regression
3.2.4 Multiple Outputs
3.3 Subset Selection
3.3.1 Best-Subset Selection

4 Linear Methods for Classification
4.1 Introduction
4.2 Linear Regression of an Indicator Matrix
4.3 Linear Discriminant Analysis
4.3.1 Regularized Discriminant Analysis
4.3.2 Computations for LDA
4.3.3 Reduced-Rank Linear Discriminant Analysis
4.4 Logistic Regression
4.4.1 Fitting Logistic Regression Models

Linear Prediction

3 Linear Models for Regression

3.1 Linear Basis Function Models
3.1.1 Maximum likelihood and least squares
3.1.2 Geometry of least squares
3.1.3 Sequential learning
3.1.4 Regularized least squares
3.1.5 Multiple outputs
3.2 The Bias-Variance Decomposition

4 Linear Models for Classification
4.1 Discriminant Functions
4.1.1 Two classes
4.1.2 Multiple classes
4.1.3 Least squares for classification
4.1.4 Fisher's linear discriminant
4.1.5 Relation to least squares
4.1.6 Fisher's discriminant for multiple classes
4.1.7 The perceptron algorithm
4.2 Probabilistic Generative Models

Multi-Target Prediction

Modern Prediction Problems in Machine Learning

Ad-word Recommendation

Modern Prediction Problems in Machine Learning

Ad-word Recommendation

- geico auto insurance
- geico car insurance
- car insurance
- geico insurance
- need cheap auto insurance
- geico com
- car insurance coupon code

geico.com

Modern Prediction Problems in Machine Learning

Wikipedia Tag Recommendation

- Learning in computer vision
- Machine learning
- Learning
- Cybernetics
WIKIPEDIA

Machine learning

See also: Patem recognition
Machine learning is a scientifc ciaccipine that explores the canstruction and sturdy of algorithms that can learn from data. [1] Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, a/2 2 2 rather than following strictly static program instructions. Macchine leaming is clossly related to and otien overiaps with computational statistics; a disciphine thet also specialzes in prediction-making.
Machine learning is a subtield d compuser science stemming from research into arficial inteligence, ${ }^{\text {PI }}$ It has strong tes haming is emplay in inteasibla. Example applications include spam filitering, optical character recognition (OCCR) $)^{1 / 5}$ search engines and computer vision, Macchine learning is sometmes confleted with data mining, ${ }^{\text {I/ }}$ a although thai focuses more on explorator When employed in industrial contaxts, machine leaming methods may be referred to as presicitive anay fics or prodictive modeling.

Ovaniew
1.1 Types of problersstasce

2 History and relationstips to ocher fiedss
2.1 Machire learning and satisics
a Thoory
4.1. Decition vee leaming

Caestration Cuserino Req Anomaly detoction, Association rules. Achitwomert lioaring. Sovectred prodiction - widinelearing-Orime learing:
 Decisin rees - Ensembes Barging. Linsser regressicn - Nave Beyes
Perceptron - Support vedoc mactine (SVMM)

Neural Netwarks and Fuzzy Logic Vocetis sh. The MIT Prese, Cambridge. MA. 608 pp. 268 IUs, 158 N $0-268-11255-1$.

External links [edt|

- Imtemationa Machine Leaming Sociaty ma
- Popular online course by Andew Ng , al Courserag. Il uses GNU Octeve. The course is a Iree version of Starflard Universitys actual course taught by Ng , whose lectures are also suvilisble tor trees?
- Machine Larring Video Lectureac
- miose e is an scademic catabasese of open-scource machine leaming sotware.

Categones: Leaming in computer vision |Machine learning Leaming |Cyberretics

Modern Prediction Problems in Machine Learning

Predicting causal disease genes

Prediction with Multiple Targets

- In many domains, goal is to simultaneously predict multiple target variables
- Multi-target regression: targets are real-valued
- Multi-label classification:targets are binary

Prediction with Multiple Targets

Applications

- Bid word recommendation
- Tag recommendation
- Disease-gene linkage prediction
- Medical diagnoses
- Ecological modeling

Prediction with Multiple Targets

- Input data \mathbf{a}_{i} is associated with m targets, $\mathbf{t}_{i}=\left(t_{i}^{(1)}, t_{i}^{(2)}, \ldots, t_{i}^{(m)}\right)$

Multi-target Linear Prediction

- Basic model: Treat targets independently
- Estimate regression coefficients \mathbf{x}_{j} for each target j

Multi-target Linear Prediction

- Assume targets $\mathbf{t}^{(j)}$ are independent
- Linear predictive model: $\mathbf{t}_{i} \approx \mathbf{a}_{i}^{T} X$

Multi-target Linear Prediction

- Assume targets $\mathbf{t}^{(j)}$ are independent
- Linear predictive model: $\mathbf{t}_{i} \approx \mathbf{a}_{i}^{T} X$
- Multi-target regression problem has a closed-form solution:

$$
V_{A} \Sigma_{A}^{-1} U_{A}^{\top} T=\arg \min _{X}\|T-A X\|_{F}^{2}
$$

where $A=U_{A} \Sigma_{A} V_{A}^{T}$ is the thin SVD of A

Multi-target Linear Prediction

- Assume targets $\mathbf{t}^{(j)}$ are independent
- Linear predictive model: $\mathbf{t}_{i} \approx \mathbf{a}_{i}^{T} X$
- Multi-target regression problem has a closed-form solution:

$$
V_{A} \Sigma_{A}^{-1} U_{A}^{\top} T=\arg \min _{X}\|T-A X\|_{F}^{2}
$$

where $A=U_{A} \Sigma_{A} V_{A}^{T}$ is the thin SVD of A

In multi-label classification: Binary Relevance (independent binary classifier for each label)

Multi-target Linear Prediction: Low-rank Model

- Exploit correlations between targets T, where $T \approx A X$
- Reduced-Rank Regression [A.J. Izenman, 1974] — model the coefficient matrix X as low-rank

A. J. Izenman. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis 5.2 (1975): 248-264.

Multi-target Linear Prediction: Low-rank Model

- X is rank- k
- Linear predictive model: $\mathbf{t}_{i} \approx \mathbf{a}_{i}^{T} X$

Multi-target Linear Prediction: Low-rank Model

- X is rank- k
- Linear predictive model: $\mathbf{t}_{i} \approx \mathbf{a}_{i}^{T} X$
- Low-rank multi-target regression problem has a closed-form solution:

$$
\begin{aligned}
X^{*} & =\min _{X: \operatorname{rank}(X) \leq k}\|T-A X\|_{F}^{2} \\
& = \begin{cases}V_{A} \Sigma_{A}^{-1} U_{A}^{\top} T_{k} & \text { if } A \text { is full row rank }, \\
V_{A} \Sigma_{A}^{-1} M_{k} & \text { otherwise },\end{cases}
\end{aligned}
$$

where $A=U_{A} \Sigma_{A} V_{A}^{T}$ is the thin SVD of $A, M=U_{A}^{\top} T$, and T_{k}, M_{k} are the best rank- k approximations of T and M respectively.

Modern Challenges

Multi-target Prediction with Missing Values

- In many applications, several observations (targets) may be missing
- E.g. Recommending tags for images and wikipedia articles

Modern Prediction Problems in Machine Learning

Ad-word Recommendation

- geico auto insurance
- geico car insurance
- car insurance
- geico insurance
- need cheap auto insurance
- geico com
- car insurance coupon code

geico.com

Multi-target Prediction with Missing Values

Multi-target Prediction with Missing Values

- Low-rank model: $\mathbf{t}_{i}=\mathbf{a}_{i}^{T} X$ where X is low-rank

Canonical Correlation Analysis

Bilinear Prediction

Bilinear Prediction

- Augment multi-target prediction with features on targets as well
- Motivated by modern applications of machine learning bioinformatics, auto-tagging articles
- Need to model dyadic or pairwise interactions
- Move from linear models to bilinear models - linear in input features as well as target features

Bilinear Prediction

Bilinear Prediction

Bilinear Prediction

- Bilinear predictive model: $T_{i j} \approx \mathbf{a}_{i}^{T} X \mathbf{b}_{j}$

Bilinear Prediction

- Bilinear predictive model: $T_{i j} \approx \mathbf{a}_{i}^{T} X \mathbf{b}_{j}$
- Corresponding regression problem has a closed-form solution:

$$
V_{A} \Sigma_{A}^{-1} U_{A}^{\top} T U_{B} \Sigma_{B}^{-1} V_{B}^{T}=\arg \min _{X}\left\|T-A X B^{\top}\right\|_{F}^{2}
$$

where $A=U_{A} \Sigma_{A} V_{A}^{\top}, B=U_{B} \Sigma_{B} V_{B}^{\top}$ are the thin SVDs of A and B

Bilinear Prediction: Low-rank Model

- X is rank- k
- Bilinear predictive model: $T_{i j} \approx \mathbf{a}_{i}^{T} X \mathbf{b}_{j}$

Bilinear Prediction: Low-rank Model

- X is rank- k
- Bilinear predictive model: $T_{i j} \approx \mathbf{a}_{i}^{T} X \mathbf{b}_{j}$
- Corresponding regression problem has a closed-form solution:

$$
\begin{aligned}
X^{*} & =\min _{X: \operatorname{rank}(X) \leq k}\left\|T-A X B^{\top}\right\|_{F}^{2} \\
& = \begin{cases}V_{A} \Sigma_{A}^{-1} U_{A}^{\top} T_{k} U_{B} \Sigma_{B}^{-1} V_{B}^{T} & \text { if } A, B \text { are full row rank, } \\
V_{A} \Sigma_{A}^{-1} M_{k} \Sigma_{B}^{-1} V_{B}^{T} & \text { otherwise, }\end{cases}
\end{aligned}
$$

where $A=U_{A} \Sigma_{A} V_{A}^{\top}, B=U_{B} \Sigma_{B} V_{B}^{\top}$ are the thin SVDs of A and B, $M=U_{A}^{\top} T U_{B}$, and T_{k}, M_{k} are the best rank- k approximations of T and M

Modern Challenges in Multi-Target Prediction

- Millions of targets
- Correlations among targets
- Missing values

Modern Challenges in Multi-Target Prediction

- Millions of targets (Scalable)
- Correlations among targets (Low-rank)
- Missing values (Inductive Matrix Completion)

Bilinear Prediction with Missing Values

Matrix Completion

- Missing Value Estimation Problem
- Matrix Completion: Recover a low-rank matrix from observed entries
- Matrix Completion: exact recovery requires $O\left(k n \log ^{2}(n)\right)$ samples, under the assumptions of:
(1) Uniform sampling
(2) Incoherence

Inductive Matrix Completion

- Inductive Matrix Completion: Bilinear low-rank prediction with missing values
- Degrees of freedom in X are $O(k d)$
- Can we get better sample complexity (than $O(k n)$)?

Algorithm 1: Convex Relaxation

(1) Nuclear-norm Minimization:

$$
\begin{aligned}
& \min \|X\|_{*} \\
& \text { s.t. } \mathbf{a}_{i}^{T} X \mathbf{b}_{j}=T_{i j},(i, j) \in \Omega
\end{aligned}
$$

- Computationally expensive
- Sample complexity for exact recovery: $O(k d \log d \log n)$
- Conditions for exact recovery:
- C1. Incoherence on A, B.
- C2. Incoherence on $A U_{*}$ and $B V_{*}$, where $X_{*}=U_{*} \Sigma_{*} V_{*}^{T}$ is the SVD of the ground truth X_{*}
- $\mathbf{C 1}$ and $\mathbf{C} 2$ are satisfied with high probability when A, B are Gaussian

Algorithm 1: Convex Relaxation

Theorem (Recovery Guarantees for Nuclear-norm Minimization)

Let $X_{*}=U_{*} \Sigma_{*} V_{*}^{T} \in \mathbb{R}^{d \times d}$ be the SVD of X_{*} with rank k. Assume A, B are orthonormal matrices w.l.o.g., satisfying the incoherence conditions. Then if Ω is uniformly observed with

$$
|\Omega| \geq O(k d \log d \log n)
$$

the solution of nuclear-norm minimization problem is unique and equal to X_{*} with high probability.

The incoherence conditions are
C1. $\max _{i \in[n]}\left\|\mathbf{a}_{i}\right\|_{2}^{2} \leq \frac{\mu d}{n}, \max _{j \in[n]}\left\|\mathbf{b}_{j}\right\|_{2}^{2} \leq \frac{\mu d}{n}$
C2. $\max _{i \in[n]}\left\|U_{*}^{T} \mathbf{a}_{i}\right\|_{2}^{2} \leq \frac{\mu_{0} k}{n}, \max _{j \in[n]}\left\|V_{*}^{T} \mathbf{b}_{j}\right\|_{2}^{2} \leq \frac{\mu_{0} k}{n}$

Algorithm 2: Alternating Least Squares

- Alternating Least Squares (ALS):

$$
\min _{Y \in \mathbb{R}^{d_{1} \times k} Z \in \mathbb{R}^{d_{2} \times k}} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} Y Z^{T} \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

- Non-convex optimization
- Alternately minimize w.r.t. Y and Z

Algorithm 2: Alternating Least Squares

- Computational complexity of ALS.
- At h-th iteration, fixing Y_{h}, solve the least squares problem for Z_{h+1} :

$$
\sum_{(i, j) \in \Omega}\left(\tilde{\mathbf{a}}_{i}^{T} Z_{h+1}^{T} \mathbf{b}_{j}\right) \mathbf{b}_{j} \tilde{\mathbf{a}}_{i}^{T}=\sum_{(i, j) \in \Omega} T_{i j} \mathbf{b}_{j} \tilde{\mathbf{a}}_{i}^{T}
$$

where $\tilde{\mathbf{a}}_{i}=Y_{h}^{T} \mathbf{a}_{i}$. Similarly solve for Y_{h} when fixing Z_{h}.
(1) Closed form: $O\left(|\Omega| k^{2} d \times(n n z(A)+n n z(B)) / n+k^{3} d^{3}\right)$.
(2) Vanilla conjugate gradient: $O(|\Omega| k \times(n n z(A)+n n z(B)) / n)$ per iteration.
(3) Exploit the structure for conjugate gradient:

$$
\sum_{(i, j) \in \Omega}\left(\tilde{\mathbf{a}}_{i}^{T} Z^{T} \mathbf{b}_{j}\right) \mathbf{b}_{j} \tilde{\mathbf{a}}_{i}^{T}=B^{T} D \tilde{A}
$$

where D is a sparse matrix with $D_{j i}=\tilde{\mathbf{a}}_{i}^{T} Z^{T} \mathbf{b}_{j},(i, j) \in \Omega$, and $\tilde{A}=A Y_{h}$. Only $O((n n z(A)+n n z(B)+|\Omega|) \times k)$ per iteration.

Algorithm 2: Alternating Least Squares

Theorem (Convergence Guarantees for ALS)

Let X_{*} be a rank-k matrix with condition number β, and $T=A X_{*} B^{T}$. Assume A, B are orthogonal w.l.o.g. and satisfy the incoherence conditions. Then if Ω is uniformly sampled with

$$
|\Omega| \geq O\left(k^{4} \beta^{2} d \log d\right)
$$

then after H iterations of $A L S,\left\|Y_{H} Z_{H+1}^{T}-X_{*}\right\|_{2} \leq \epsilon$, where $H=O\left(\log \left(\left\|X_{*}\right\|_{F} / \epsilon\right)\right)$.

The incoherence conditions are:
C1. $\max _{i \in[n]}\left\|\mathbf{a}_{i}\right\|_{2}^{2} \leq \frac{\mu d}{n}, \max _{j \in[n]}\left\|b_{j}\right\|_{2}^{2} \leq \frac{\mu d}{n}$
C2'. $\max _{i \in[n]}\left\|Y_{h}^{T} \mathbf{a}_{i}\right\|_{2}^{2} \leq \frac{\mu_{0} k}{n}, \max _{j \in[n]}\left\|Z_{h}^{T} b_{j}\right\|_{2}^{2} \leq \frac{\mu_{0} k}{n}$,
for all the Y_{h} 's and Z_{h} 's generated from ALS.

Algorithm 2: Alternating Least Squares

- Proof sketch for ALS
- Consider the case when the rank $k=1$:

$$
\min _{y \in \mathbb{R}^{d_{1}, z \in \mathbb{R}^{d_{2}}}} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} y z^{T} \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

Algorithm 2: Alternating Least Squares

- Proof sketch for rank-1 ALS

$$
\min _{y \in \mathbb{R}^{d_{1}}, z \in \mathbb{R}^{d_{2}}} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} y z^{T} \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

(a) Let $X_{*}=\sigma_{*} y_{*} z_{*}^{T}$ be the thin SVD of X_{*} and assume A and B are orthogonal w.l.o.g.
(b) In the absence of missing values, $\mathrm{ALS}=$ Power method.

$$
\begin{gathered}
\frac{\partial\left\|A y_{h} z^{T} B^{T}-T\right\|_{F}^{2}}{\partial z}=2 B^{T}\left(B z y_{h}^{T} A^{T}-T^{T}\right) A y_{h}=2\left(z\left\|y_{h}\right\|^{2}-B^{T} T^{T} A y_{h}\right) \\
z_{h+1} \leftarrow\left(A^{T} T B\right)^{T} y_{h} ; \text { normalize } z_{h+1} \\
y_{h+1} \leftarrow\left(A^{T} T B\right) z_{h+1} ; \text { normalize } y_{h+1}
\end{gathered}
$$

Note that $A^{T} T B=A^{T} A X_{*} B^{T} B=X_{*}$ and the power method converges to the optimal.

Algorithm 2: Alternating Least Squares

- Proof sketch for rank-1 ALS

$$
\min _{y \in \mathbb{R}^{d_{1}}, z \in \mathbb{R}^{d_{2}}} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} y z^{T} \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

(c) With missing values, ALS is a variant of power method with noise in each iteration

$$
z_{h+1} \leftarrow Q R(\underbrace{X_{*}^{\top} y_{h}}_{\text {power method }}-\underbrace{\sigma_{*} N^{-1}\left(\left(y_{*}^{T} y_{h}\right) N-\tilde{N}\right) z_{*}}_{\text {noise term } \mathbf{g}})
$$

where $N=\sum_{(i, j) \in \Omega} \mathbf{b}_{j} \mathbf{a}_{i}^{T} y_{h} y_{h}^{T} \mathbf{a}_{i} \mathbf{b}_{j}^{T}, \tilde{N}=\sum_{(i, j) \in \Omega} \mathbf{b}_{j} \mathbf{a}_{i}^{T} y_{h} y_{\tilde{*}}^{T} \mathbf{a}_{i} \mathbf{b}_{j}^{T}$.
(d) Given C1 and C2', the noise term $\mathbf{g}=\sigma_{*} N^{-1}\left(\left(y_{*}^{\top} y_{h}\right) N-\tilde{N}\right) z_{*}$ becomes smaller as the iterate gets close to the optimal:

$$
\|\mathbf{g}\|_{2} \leq \frac{1}{99} \sqrt{1-\left(y_{h}^{T} y_{*}\right)^{2}}
$$

Algorithm 2: Alternating Least Squares

- Proof sketch for rank-1 ALS

$$
\min _{y \in \mathbb{R}^{d_{1}}, z \in \mathbb{R}^{d_{2}}} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} y z^{T} \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

(e) Given $\mathbf{C 1}$ and $\mathbf{C} 2^{\prime}$, the first iterate y_{0} is well initialized, i.e. $y_{0}^{\top} y_{*} \geq 0.9$, which guarantees the initial noise is small enough
(f) The iterates can then be shown to linearly converge to the optimal:

$$
\begin{aligned}
1-\left(z_{h+1}^{T} z_{*}\right)^{2} & \leq \frac{1}{2}\left(1-\left(y_{h}^{T} z_{*}\right)^{2}\right) \\
1-\left(y_{h+1}^{T} y_{*}\right)^{2} & \leq \frac{1}{2}\left(1-\left(z_{h+1}^{T} y_{*}\right)^{2}\right)
\end{aligned}
$$

Algorithm 2: Alternating Least Squares

- Proof sketch for rank-1 ALS

$$
\min _{y \in \mathbb{R}^{d_{1}}, z \in \mathbb{R}^{d_{2}}} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} y z^{T} \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

(e) Given $\mathbf{C 1}$ and $\mathbf{C 2}$ ', the first iterate y_{0} is well initialized, i.e. $y_{0}^{T} y_{*} \geq 0.9$, which guarantees the initial noise is small enough
(f) The iterates can then be shown to linearly converge to the optimal:

$$
\begin{aligned}
& 1-\left(z_{h+1}^{T} z_{*}\right)^{2} \leq \frac{1}{2}\left(1-\left(y_{h}^{T} z_{*}\right)^{2}\right) \\
& 1-\left(y_{h+1}^{T} y_{*}\right)^{2} \leq \frac{1}{2}\left(1-\left(z_{h+1}^{T} y_{*}\right)^{2}\right)
\end{aligned}
$$

- Similarly, the rank- k case can be proved.

Inductive Matrix Completion: Sample Complexity

- Sample complexity of Inductive Matrix Completion (IMC) and Matrix Completion (MC).

methods	IMC	MC
Nuclear-norm	$O(k d \log n \log d)$	$k n \log ^{2} n$ (Recht, 2011)
ALS	$O\left(k^{4} \beta^{2} d \log d\right)$	$k^{3} \beta^{2} n \log n$ (Hardt, 2014)

where β is the condition number of X

- In most cases, $n \gg d$
- Incoherence conditions on A, B are required
- Satisfied e.g. when A, B are Gaussian (no assumption on X needed)
B. Recht. A simpler approach to matrix completion. The Journal of Machine Learning Research 12: 3413-3430 (2011).
M. Hardt. Understanding alternating minimization for matrix completion. Foundations of Computer Science (FOCS), IEEE 55th Annual Symposium, pp. 651-660 (2014).

Inductive Matrix Completion: Sample Complexity Results

- All matrices are sampled from Gaussian random distribution.
- Left two figures: fix $k=5, n=1000$ and change d.
- Right two figures: fix $k=5, d=50$ and change n.
- Darkness of the shading is proportional to the number of failures (repeated 10 times).

$|\Omega|$ vs. d (ALS)

$|\Omega|$ vs. d (Nuclear)

$|\Omega|$ vs. $n(A L S)$

$|\Omega|$ vs. n (Nuclear)
- Sample complexity is proportional to d while almost independent of n for both Nuclear-norm and ALS methods.

Positive-Unlabeled Learning

Modern Prediction Problems in Machine Learning

Predicting causal disease genes

Bilinear Prediction: PU Learning

In many applications, only "positive" labels are observed

PU Learning

Learning Task	"Positives"	"Negatives" "Unlabeled"	
Supervised			
Semi-supervised			
Positive- Unlabeled (PU)	\vee		
Unsupervised			\checkmark

- No observations of the "negative" class available

PU Inductive Matrix Completion

- Guarantees so far assume observations are sampled uniformly
- What can we say about the case when observations are all 1's ("positives")?
- Typically, 99\% entries are missing ("unlabeled")

PU Inductive Matrix Completion

- Inductive Matrix Completion:

$$
\min _{X:\|X\|_{*} \leq t} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

- Commonly used PU strategy: Biased Matrix Completion

$$
\min _{X:\|X\|_{*} \leq t} \alpha \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-T_{i j}\right)^{2}+(1-\alpha) \sum_{(i, j) \notin \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-0\right)^{2}
$$

Typically, $\alpha>1-\alpha(\alpha \approx 0.9)$.

PU Inductive Matrix Completion

- Inductive Matrix Completion:

$$
\min _{X:\|X\|_{*} \leq t} \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-T_{i j}\right)^{2}
$$

- Commonly used PU strategy: Biased Matrix Completion

$$
\min _{X:\|X\|_{*} \leq t} \alpha \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-T_{i j}\right)^{2}+(1-\alpha) \sum_{(i, j) \notin \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-0\right)^{2}
$$

Typically, $\alpha>1-\alpha(\alpha \approx 0.9)$.

- We can show guarantees for the biased formulation
V. Sindhwani, S. S. Bucak, J. Hu, A. Mojsilovic. One-class matrix completion with low-density factorizations. ICDM, pp. 1055-1060. 2010.

PU Learning: Random Noise Model

- Can be formulated as learning with "class-conditional" noise

$$
\begin{gathered}
P(\tilde{Y}=-1 \mid Y=+1)=\rho_{+1} \\
P(\tilde{Y}=+1 \mid Y=-1)=\rho_{-1}
\end{gathered}
$$

Noisy training data

PU Inductive Matrix Completion

A deterministic PU learning model
M

0.2	0.1	0	0.8
0	0.6	0.1	0.9
0	0	0.8	0.1
0.9	0	0.2	0.1
0	0.6	0	1

$$
T_{i j}= \begin{cases}1 & \text { if } M_{i j}>0.5 \\ 0 & \text { if } M_{i j} \leq 0.5\end{cases}
$$

PU Inductive Matrix Completion

A deterministic PU learning model

- $P\left(\tilde{T}_{i j}=0 \mid T_{i j}=1\right)=\rho$ and $P\left(\tilde{T}_{i j}=0 \mid T_{i j}=0\right)=1$.
- We are given only \tilde{T} but not T or M
- Goal: Recover T given \tilde{T} (recovering M is not possible!)

Algorithm 1: Biased Inductive Matrix Completion

$$
\widehat{X}=\min _{X:\|X\|_{*} \leq t} \alpha \sum_{(i, j) \in \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-1\right)^{2}+(1-\alpha) \sum_{(i, j) \notin \Omega}\left(\mathbf{a}_{i}^{T} X \mathbf{b}_{j}-0\right)^{2}
$$

- Rationale:
(a) Fix $\alpha=(1+\rho) / 2$ and define $\hat{T}_{i j}=I\left[\left(A \widehat{X} B^{T}\right)_{i j}>0.5\right]$
(b) The above problem is equivalent to:

$$
\widehat{X}=\min _{X:\|X\|_{*} \leq t} \sum_{i, j} \ell_{\alpha}\left(\left(A X B^{T}\right)_{i j}, \tilde{T}_{i j}\right)
$$

where

$$
\ell_{\alpha}\left(x, \tilde{T}_{i j}\right)=\alpha \tilde{T}_{i j}(x-1)^{2}+(1-\alpha)\left(1-\tilde{T}_{i j}\right) x^{2}
$$

(c) Minimizing ℓ_{α} loss is equivalent to minimizing the true error, i.e.

$$
\frac{1}{m n} \sum_{i j} \ell_{\alpha}\left(\left(A X B^{T}\right)_{i j}, \tilde{T}_{i j}\right)=C_{1} \frac{1}{m n}\|\widehat{T}-T\|_{F}^{2}+C_{2}
$$

Algorithm 1: Biased Inductive Matrix Completion

Theorem (Error Bound for Biased IMC)

Assume ground-truth X satisfies $\|X\|_{*} \leq t$ (where $M=A X B^{T}$). Define $\widehat{T}_{i j}=I\left[\left(A \widehat{X} B^{T}\right)_{i j}>0.5\right], \mathcal{A}=\max _{i}\left\|\mathbf{a}_{i}\right\|$ and $\mathcal{B}=\max _{i}\left\|\mathbf{b}_{i}\right\|$. If $\alpha=\frac{1+\rho}{2}$, then with probability at least $1-\delta$,

$$
\frac{1}{n^{2}}\|T-\widehat{T}\|_{F}^{2}=O\left(\frac{\eta \sqrt{\log (2 / \delta)}}{n(1-\rho)}+\frac{\eta t \mathcal{A B} \sqrt{\log 2 d}}{(1-\rho) n^{3 / 2}}\right)
$$

where $\eta=4(1+2 \rho)$.

C-J. Hsieh, N. Natarajan, and I. S. Dhillon. PU Learning for Matrix Completion. In Proceedings of The 32nd International
Conference on Machine Learning, pp. 2445-2453 (2015).

Experimental Results

Multi-target Prediction: Image Tag Recommendation

NUS-Wide Image Dataset

- 161,780 training images
- 107,879 test images
- 1,134 features
- 1,000 tags

Multi-target Prediction: Image Tag Recommendation

H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale Multi-label Learning with Missing Labels. In Proceedings of The 31st International Conference on Machine Learning, pp. 593-601 (2014).

Multi-target Prediction: Image Tag Recommendation

- Low-rank Model with $k=50$:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	$\mathbf{5 7 4}$	$\mathbf{2 0 . 7 1}$	$\mathbf{1 5 . 9 6}$	$\mathbf{0 . 7 7 4 1}$
WSABIE	4,705	14.58	11.37	0.7658

- Low-rank Model with $k=100$:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	$\mathbf{1 , 0 9 7}$	$\mathbf{2 0 . 7 6}$	$\mathbf{1 6 . 0 0}$	$\mathbf{0 . 7 7 1 8}$
WSABIE	6,880	12.46	10.21	0.7597

Multi-target Prediction: Wikipedia Tag Recommendation

Wikipedia Dataset

- 881,805 training wiki pages
- 10,000 test wiki pages
- 366,932 features
- 213,707 tags

Multi-target Prediction: Wikipedia Tag Recommendation

- Low-rank Model with $k=250$:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	$\mathbf{9 , 9 3 2}$	$\mathbf{1 9 . 5 6}$	14.43	$\mathbf{0 . 9 0 8 6}$
WSABIE	79,086	18.91	$\mathbf{1 4 . 6 5}$	0.9020

- Low-rank Model with $k=500$:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	$\mathbf{1 8 , 0 7 2}$	$\mathbf{2 2 . 8 3}$	$\mathbf{1 7 . 3 0}$	$\mathbf{0 . 9 3 7 4}$
WSABIE	139,290	19.20	15.66	0.9058

PU Inductive Matrix Completion: Gene-Disease Prediction

N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).

PU Inductive Matrix Completion: Gene-Disease Prediction

Predicting gene-disease associations in the OMIM data set

 (www.omim.org).N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).

PU Inductive Matrix Completion: Gene-Disease Prediction

Predicting genes for diseases with no training associations.

N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).

Conclusions and Future Work

- Inductive Matrix Completion:
- Scales to millions of targets
- Captures correlations among targets
- Overcomes missing values
- Extension to PU learning
- Much work to do:
- Other structures: low-rank+sparse, low-rank+column-sparse (outliers)?
- Different loss functions?
- Handling "time" as one of the dimensions - incorporating smoothness through graph regularization?
- Incorporating non-linearities?
- Efficient (parallel) implementations?
- Improved recovery guarantees?

References

[1] P. Jain, and I. S. Dhillon. Provable inductive matrix completion. arXiv preprint arXiv:1306.0626 (2013).
[2] K. Zhong, P. Jain, I. S. Dhillon. Efficient Matrix Sensing Using Rank-1 Gaussian Measurements. In Proceedings of The 26th Conference on Algorithmic Learning Theory (2015).
[3] N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).
[4] H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale Multi-label Learning with Missing Labels. In Proceedings of The 31st International Conference on Machine Learning, pp. 593-601 (2014).
[5] C-J. Hsieh, N. Natarajan, and I. S. Dhillon. PU Learning for Matrix Completion. In Proceedings of The 32nd International Conference on Machine Learning, pp. 2445-2453 (2015).

