Bilinear Prediction Using Low-Rank Models

Inderjit S. Dhillon Dept of Computer Science UT Austin

26th International Conference on Algorithmic Learning Theory Banff, Canada Oct 6, 2015

Joint work with C-J. Hsieh, P. Jain, N. Natarajan, H. Yu and K. Zhong

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

Outline

- Multi-Target Prediction
- Features on Targets: Bilinear Prediction
- Inductive Matrix Completion
 - Algorithms
 - Positive-Unlabeled Matrix Completion
 - 8 Recovery Guarantees
- Experimental Results

Sample Prediction Problems

Predicting stock prices

Predicting risk factors in healthcare

 -

Regression

- Real-valued responses (target) t
- Predict response for given input data (features) a

Linear Regression

• Estimate target by a linear function of given data **a**, i.e. $\mathbf{t} \approx \hat{\mathbf{t}} = \mathbf{a}^T \mathbf{x}$.

Linear Regression: Least Squares

• Choose **x** that minimizes

$$J_{\mathbf{x}} = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{a}_{i}^{T} \mathbf{x} - t_{i})^{2}$$

• Closed-form solution: $\mathbf{x}^* = (A^T A)^{-1} A^T \mathbf{t}$.

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

Spam detection

Gmail -

COMPOSE	
Inbox (8,439)	
Starred	
Important	
Sent Mail	
Drafts	
Notes	
Less 🔺	
Chats	
All Mail	
Spam (298)	
Trash	

Character Recognition

э

A B M A B M

Binary Classification

- Categorical responses (target) t
- Predict response for given input data (features) a
- Linear methods decision boundary is a linear surface or hyperplane

Linear Methods for Prediction Problems

Regression:

• Ridge Regression: $J_{\mathbf{x}} = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{a}_{i}^{T} \mathbf{x} - t_{i})^{2} + \lambda \|\mathbf{x}\|_{2}^{2}$.

• Lasso:
$$J_{\mathbf{x}} = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{a}_{i}^{T} \mathbf{x} - t_{i})^{2} + \lambda \|\mathbf{x}\|_{1}.$$

Classification:

• Linear Support Vector Machines

$$J_{\mathbf{x}} = \frac{1}{2} \sum_{i=1}^{n} \max(0, 1 - t_i \mathbf{a}_i^T \mathbf{x}) + \lambda \|\mathbf{x}\|_2^2.$$

Logistic Regression

$$J_{\mathbf{x}} = \frac{1}{2} \sum_{i=1}^{n} \log(1 + \exp(-t_i \mathbf{a}_i^T \mathbf{x})) + \lambda \|\mathbf{x}\|_2^2$$

Linear Prediction

Second Edition

🖄 Springer

3 Linear Methods for Regression

3.1	Introduction
3.2	Linear Regression Models and Least Squares
	3.2.1 Example: Prostate Cancer
	3.2.2 The Gauss–Markov Theorem
	3.2.3 Multiple Regression
	from Simple Univariate Regression
	3.2.4 Multiple Outputs
3.3	Subset Selection
	3.3.1 Best-Subset Selection

4 Linear Methods for Classification

4.1	Introduction
4.2	Linear Regression of an Indicator Matrix
4.3	Linear Discriminant Analysis
	4.3.1 Regularized Discriminant Analysis
	4.3.2 Computations for LDA
	4.3.3 Reduced-Rank Linear Discriminant Analysis
4.4	Logistic Regression
	4.4.1 Fitting Logistic Regression Models

э

3 Linear Models for Regression

3.1	Linea	r Basis Function Models
	3.1.1	Maximum likelihood and least squares
	3.1.2	Geometry of least squares
	3.1.3	Sequential learning
	3.1.4	Regularized least squares
	3.1.5	Multiple outputs
3.2	The B	ias-Variance Decomposition

4 Linear Models for Classification

.1	Discr	iminant Functions
	4.1.1	Two classes
	4.1.2	Multiple classes
	4.1.3	Least squares for classification
	4.1.4	Fisher's linear discriminant
	4.1.5	Relation to least squares
	4.1.6	Fisher's discriminant for multiple classes .
	4.1.7	The perceptron algorithm
.2	Proba	bilistic Generative Models

< ∃ >

Multi-Target Prediction

< ≣ > <

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

Ad-word Recommendation

(日)

э

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

Ad-word Recommendation

- geico auto insurance
- geico car insurance
- car insurance
- geico insurance
- need cheap auto insurance
- geico com
- car insurance coupon code

Wikipedia Tag Recommendation

- Learning in computer vision
- Machine learning
- Learning
- Cybernetics

(日) (同) (三) (三)

Inderjit S. Dhillon Dept of Computer Science UT Austin

misss g is an academic database of open-source machine learning software.
Categories: Learning in computer vision | Machine learning | Learning | Cybernetics

Predicting causal disease genes

Prediction with Multiple Targets

- In many domains, goal is to *simultaneously* predict multiple target variables
- Multi-target regression: targets are real-valued
- Multi-label classification:targets are *binary*

Prediction with Multiple Targets

Applications

- Bid word recommendation
- Tag recommendation
- Disease-gene linkage prediction
- Medical diagnoses
- Ecological modeling
- . . .

Prediction with Multiple Targets

• Input data \mathbf{a}_i is associated with m targets, $\mathbf{t}_i = (t_i^{(1)}, t_i^{(2)}, \dots, t_i^{(m)})$

* E > * E >

- Basic model: Treat targets independently
- Estimate regression coefficients **x**_j for each target j

- Assume targets $\mathbf{t}^{(j)}$ are independent
- Linear predictive model: $\mathbf{t}_i \approx \mathbf{a}_i^T X$

- Assume targets **t**^(j) are independent
- Linear predictive model: $\mathbf{t}_i \approx \mathbf{a}_i^T X$
- Multi-target regression problem has a closed-form solution:

$$V_A \Sigma_A^{-1} U_A^\top T = rgmin_X \|T - AX\|_F^2$$

where $A = U_A \Sigma_A V_A^T$ is the thin SVD of A

- Assume targets $\mathbf{t}^{(j)}$ are independent
- Linear predictive model: $\mathbf{t}_i \approx \mathbf{a}_i^T X$
- Multi-target regression problem has a closed-form solution:

$$V_A \Sigma_A^{-1} U_A^\top T = \arg\min_X \|T - AX\|_F^2$$

where
$$A = U_A \Sigma_A V_A^T$$
 is the thin SVD of A

In multi-label classification: Binary Relevance (independent binary classifier for each label)

Multi-target Linear Prediction: Low-rank Model

- Exploit correlations between targets T, where $T \approx AX$
- Reduced-Rank Regression [A.J. Izenman, 1974] model the coefficient matrix X as *low-rank*

A. J. Izenman. Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis 5.2 (1975): 248-264.

Multi-target Linear Prediction: Low-rank Model

- X is rank-k
- Linear predictive model: $\mathbf{t}_i \approx \mathbf{a}_i^T X$

< ∃ > <

Multi-target Linear Prediction: Low-rank Model

- X is rank-k
- Linear predictive model: $\mathbf{t}_i \approx \mathbf{a}_i^T X$
- Low-rank multi-target regression problem has a closed-form solution:

$$\begin{split} X^* &= \min_{\substack{X: rank(X) \leq k}} \|T - AX\|_F^2 \\ &= \begin{cases} V_A \Sigma_A^{-1} U_A^\top T_k & \text{if } A \text{ is full row rank,} \\ V_A \Sigma_A^{-1} M_k & \text{otherwise,} \end{cases} \end{split}$$

where $A = U_A \Sigma_A V_A^T$ is the thin SVD of A, $M = U_A^\top T$, and T_k , M_k are the best rank-k approximations of T and M respectively.

Modern Challenges

< ∃⇒

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

Multi-target Prediction with Missing Values

- In many applications, several observations (targets) may be missing
- E.g. Recommending tags for images and wikipedia articles

Ad-word Recommendation

- geico auto insurance
- geico car insurance
- car insurance
- geico insurance
- need cheap auto insurance
- geico com
- car insurance coupon code

Multi-target Prediction with Missing Values

э

A 10

Multi-target Prediction with Missing Values

• Low-rank model: $\mathbf{t}_i = \mathbf{a}_i^T X$ where X is low-rank

Canonical Correlation Analysis

< ∃⇒

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

- Augment multi-target prediction with *features* on targets as well
- Motivated by modern applications of machine learning bioinformatics, auto-tagging articles
- Need to model dyadic or pairwise interactions
- Move from linear models to *bilinear* models linear in input features *as well as* target features

- 4 回 2 - 4 □ 2 - 4 □

æ

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

- 4 同 2 4 日 2 4 日 2

э
Bilinear Prediction

• Bilinear predictive model: $T_{ij} \approx \mathbf{a}_i^T X \mathbf{b}_j$

A B M A B M

э

Bilinear Prediction

- Bilinear predictive model: $T_{ij} \approx \mathbf{a}_i^T X \mathbf{b}_j$
- Corresponding regression problem has a closed-form solution:

$$V_A \Sigma_A^{-1} U_A^\top T U_B \Sigma_B^{-1} V_B^T = \arg\min_X \|T - A X B^\top\|_F^2$$

where $A = U_A \Sigma_A V_A^{ op}$, $B = U_B \Sigma_B V_B^{ op}$ are the thin SVDs of A and B

Bilinear Prediction: Low-rank Model

- X is rank-k
- Bilinear predictive model: $T_{ij} \approx \mathbf{a}_i^T X \mathbf{b}_j$

◆注入 ◆注入

Bilinear Prediction: Low-rank Model

- X is rank-k
- Bilinear predictive model: $T_{ij} \approx \mathbf{a}_i^T X \mathbf{b}_j$
- Corresponding regression problem has a closed-form solution:

$$\begin{split} X^* &= \min_{\substack{X: rank(X) \leq k}} \|T - AXB^\top\|_F^2 \\ &= \begin{cases} V_A \Sigma_A^{-1} U_A^\top T_k U_B \Sigma_B^{-1} V_B^\top & \text{if } A, B \text{ are full row rank,} \\ V_A \Sigma_A^{-1} M_k \Sigma_B^{-1} V_B^\top & \text{otherwise,} \end{cases} \end{split}$$

where $A = U_A \Sigma_A V_A^{\top}$, $B = U_B \Sigma_B V_B^{\top}$ are the thin SVDs of A and B, $M = U_A^{\top} T U_B$, and T_k , M_k are the best rank-k approximations of T and M

Modern Challenges in Multi-Target Prediction

- Millions of targets
- Correlations among targets
- Missing values

Modern Challenges in Multi-Target Prediction

- Millions of targets (Scalable)
- Correlations among targets (Low-rank)
- Missing values (Inductive Matrix Completion)

Bilinear Prediction with Missing Values

э

A 10

• = • • = •

Matrix Completion

- Missing Value Estimation Problem
 - Matrix Completion: Recover a low-rank matrix from observed entries
- Matrix Completion: exact recovery requires $O(kn \log^2(n))$ samples, under the assumptions of:
 - Uniform sampling
 - Incoherence

- Inductive Matrix Completion: Bilinear low-rank prediction with missing values
- Degrees of freedom in X are O(kd)
- Can we get better sample complexity (than O(kn))?

Algorithm 1: Convex Relaxation

Nuclear-norm Minimization:

min
$$||X||_*$$

s.t. $\mathbf{a}_i^T X \mathbf{b}_j = T_{ij}, (i, j) \in \Omega$

- Computationally expensive
- Sample complexity for exact recovery: $O(kd \log d \log n)$
- Conditions for exact recovery:
 - C1. Incoherence on A, B.
 - C2. Incoherence on AU_{*} and BV_{*}, where X_{*} = U_{*}Σ_{*}V_{*}^T is the SVD of the ground truth X_{*}
- C1 and C2 are satisfied with high probability when A, B are Gaussian

Theorem (Recovery Guarantees for Nuclear-norm Minimization)

Let $X_* = U_* \Sigma_* V_*^T \in \mathbb{R}^{d \times d}$ be the SVD of X_* with rank k. Assume A, B are orthonormal matrices w.l.o.g., satisfying the incoherence conditions. Then if Ω is uniformly observed with

 $|\Omega| \geq O(kd \log d \log n),$

the solution of nuclear-norm minimization problem is unique and equal to X_* with high probability.

The incoherence conditions are

C1.
$$\max_{i \in [n]} \|\mathbf{a}_i\|_2^2 \le \frac{\mu d}{n}, \ \max_{j \in [n]} \|\mathbf{b}_j\|_2^2 \le \frac{\mu d}{n}$$

C2.
$$\max_{i \in [n]} \|U_*^T \mathbf{a}_i\|_2^2 \le \frac{\mu_0 k}{n}, \ \max_{j \in [n]} \|V_*^T \mathbf{b}_j\|_2^2 \le \frac{\mu_0 k}{n}$$

• Alternating Least Squares (ALS):

$$\min_{Y \in \mathbb{R}^{d_1 \times k} Z \in \mathbb{R}^{d_2 \times k}} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^T Y Z^T \mathbf{b}_j - T_{ij})^2$$

- Non-convex optimization
- Alternately minimize w.r.t. Y and Z

- Computational complexity of ALS.
 - At *h*-th iteration, fixing Y_h , solve the least squares problem for Z_{h+1} :

$$\sum_{(i,j)\in\Omega} (\tilde{\mathbf{a}}_i^{\mathsf{T}} Z_{h+1}^{\mathsf{T}} \mathbf{b}_j) \mathbf{b}_j \tilde{\mathbf{a}}_i^{\mathsf{T}} = \sum_{(i,j)\in\Omega} T_{ij} \mathbf{b}_j \tilde{\mathbf{a}}_i^{\mathsf{T}}$$

where $\tilde{\mathbf{a}}_i = Y_h^T \mathbf{a}_i$. Similarly solve for Y_h when fixing Z_h .

- Closed form: $O(|\Omega|k^2d \times (nnz(A) + nnz(B))/n + k^3d^3)$.
- 2 Vanilla conjugate gradient: $O(|\Omega|k \times (nnz(A) + nnz(B))/n)$ per iteration.
 - Exploit the structure for conjugate gradient:

$$\sum_{(i,j)\in\Omega} (\tilde{\mathbf{a}}_i^T Z^T \mathbf{b}_j) \mathbf{b}_j \tilde{\mathbf{a}}_i^T = B^T D \tilde{A}$$

where *D* is a sparse matrix with $D_{ji} = \tilde{\mathbf{a}}_i^T Z^T \mathbf{b}_j$, $(i, j) \in \Omega$, and $\tilde{A} = AY_h$. Only $O((nnz(A) + nnz(B) + |\Omega|) \times k)$ per iteration.

高 と く ヨ と く ヨ と

Theorem (Convergence Guarantees for ALS)

Let X_* be a rank-k matrix with condition number β , and $T = AX_*B^T$. Assume A, B are orthogonal w.l.o.g. and satisfy the incoherence conditions. Then if Ω is uniformly sampled with

 $|\Omega| \geq O(k^4 \beta^2 d \log d),$

then after H iterations of ALS, $\|Y_H Z_{H+1}^T - X_*\|_2 \le \epsilon$, where $H = O(\log(\|X_*\|_F/\epsilon)).$

The incoherence conditions are:

C1.
$$\max_{i \in [n]} \|\mathbf{a}_i\|_2^2 \le \frac{\mu d}{n}, \ \max_{j \in [n]} \|b_j\|_2^2 \le \frac{\mu d}{n}$$

C2'.
$$\max_{i \in [n]} \|Y_h^T \mathbf{a}_i\|_2^2 \le \frac{\mu_0 k}{n}, \ \max_{j \in [n]} \|Z_h^T b_j\|_2^2 \le \frac{\mu_0 k}{n},$$

(日) (日) (日)

for all the Y_h 's and Z_h 's generated from ALS.

- Proof sketch for ALS
 - Consider the case when the rank k = 1:

$$\min_{\boldsymbol{y} \in \mathbb{R}^{d_1}, \boldsymbol{z} \in \mathbb{R}^{d_2}} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^{\mathsf{T}} \boldsymbol{y} \boldsymbol{z}^{\mathsf{T}} \mathbf{b}_j - T_{ij})^2$$

.⊒ . ►

• Proof sketch for rank-1 ALS

$$\min_{y \in \mathbb{R}^{d_1}, z \in \mathbb{R}^{d_2}} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^{\mathsf{T}} y z^{\mathsf{T}} \mathbf{b}_j - T_{ij})^2$$

(a) Let $X_* = \sigma_* y_* z_*^T$ be the thin SVD of X_* and assume A and B are orthogonal w.l.o.g.

(b) In the absence of missing values, ALS = Power method.

$$\frac{\partial \|Ay_h z^T B^T - T\|_F^2}{\partial z} = 2B^T (Bzy_h^T A^T - T^T) Ay_h = 2(z\|y_h\|^2 - B^T T^T Ay_h)$$

$$z_{h+1} \leftarrow (A^T TB)^T y_h$$
; normalize z_{h+1}
 $y_{h+1} \leftarrow (A^T TB) z_{h+1}$; normalize y_{h+1}

Note that $A^T TB = A^T AX_*B^TB = X_*$ and the power method converges to the optimal.

• Proof sketch for rank-1 ALS

$$\min_{y \in \mathbb{R}^{d_1}, z \in \mathbb{R}^{d_2}} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^{\mathsf{T}} y z^{\mathsf{T}} \mathbf{b}_j - \mathsf{T}_{ij})^2$$

(c) With missing values, ALS is a variant of power method with noise in each iteration

$$z_{h+1} \leftarrow QR(\underbrace{X_*^T y_h}_{\text{power method}} - \underbrace{\sigma_* N^{-1}((y_*^T y_h)N - \tilde{N})z_*}_{\text{noise term } \mathbf{g}})$$

where $N = \sum_{(i,j)\in\Omega} \mathbf{b}_j \mathbf{a}_i^T y_h y_h^T \mathbf{a}_i \mathbf{b}_j^T$, $\tilde{N} = \sum_{(i,j)\in\Omega} \mathbf{b}_j \mathbf{a}_i^T y_h y_*^T \mathbf{a}_i \mathbf{b}_j^T$.
(d) Given **C1** and **C2'**, the noise term $\mathbf{g} = \sigma_* N^{-1}((y_*^T y_h)N - \tilde{N})z_*$
becomes smaller as the iterate gets close to the optimal:

$$\|\mathbf{g}\|_2 \le \frac{1}{99}\sqrt{1-(y_h^T y_*)^2}$$

• Proof sketch for rank-1 ALS

$$\min_{y \in \mathbb{R}^{d_1}, z \in \mathbb{R}^{d_2}} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^{\mathsf{T}} y z^{\mathsf{T}} \mathbf{b}_j - T_{ij})^2$$

- (e) Given **C1** and **C2'**, the first iterate y_0 is well initialized, i.e. $y_0^T y_* \ge 0.9$, which guarantees the initial noise is small enough
- (f) The iterates can then be shown to linearly converge to the optimal:

$$egin{aligned} &1-(z_{h+1}^{ au}z_{*})^{2}\leqrac{1}{2}(1-(y_{h}^{ au}z_{*})^{2})\ &1-(y_{h+1}^{ au}y_{*})^{2}\leqrac{1}{2}(1-(z_{h+1}^{ au}y_{*})^{2}) \end{aligned}$$

• Proof sketch for rank-1 ALS

$$\min_{y \in \mathbb{R}^{d_1}, z \in \mathbb{R}^{d_2}} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^{\mathsf{T}} y z^{\mathsf{T}} \mathbf{b}_j - T_{ij})^2$$

- (e) Given **C1** and **C2'**, the first iterate y_0 is well initialized, i.e. $y_0^T y_* \ge 0.9$, which guarantees the initial noise is small enough
- (f) The iterates can then be shown to linearly converge to the optimal:

$$\begin{split} &1 - (z_{h+1}^{T} z_{*})^{2} \leq \frac{1}{2} (1 - (y_{h}^{T} z_{*})^{2}) \\ &1 - (y_{h+1}^{T} y_{*})^{2} \leq \frac{1}{2} (1 - (z_{h+1}^{T} y_{*})^{2}) \end{split}$$

• Similarly, the rank-k case can be proved.

Inductive Matrix Completion: Sample Complexity

• Sample complexity of Inductive Matrix Completion (IMC) and Matrix Completion (MC).

methods	IMC	MC
Nuclear-norm	$O(kd \log n \log d)$	kn log ² n (Recht, 2011)
ALS	$O(k^4\beta^2 d \log d)$	$k^3\beta^2 n \log n$ (Hardt, 2014)

where β is the condition number of X

- In most cases, $n \gg d$
- Incoherence conditions on A, B are required
 - Satisfied e.g. when A, B are Gaussian (no assumption on X needed)

B. Recht. A simpler approach to matrix completion. The Journal of Machine Learning Research 12 : 3413-3430 (2011).

M. Hardt. Understanding alternating minimization for matrix completion. Foundations of Computer Science (FOCS), IEEE 55th Annual Symposium, pp. 651-660 (2014).

Inductive Matrix Completion: Sample Complexity Results

- All matrices are sampled from Gaussian random distribution.
- Left two figures: fix k = 5, n = 1000 and change d.
- Right two figures: fix k = 5, d = 50 and change n.
- Darkness of the shading is proportional to the number of failures (repeated 10 times).

• Sample complexity is proportional to *d* while almost independent of *n* for both Nuclear-norm and ALS methods.

Positive-Unlabeled Learning

< ∃ > <

Modern Prediction Problems in Machine Learning

Predicting causal disease genes

Bilinear Prediction: PU Learning

In many applications, only "positive" labels are observed

< ∃ >

3.5

Learning Task	"Positives"	"Negatives"	"Unlabeled"
Supervised	\checkmark	\checkmark	
Semi-supervised	\checkmark	\checkmark	\checkmark
Positive- Unlabeled (PU)	\checkmark		\checkmark
Unsupervised			\checkmark

• No observations of the "negative" class available

- Guarantees so far assume observations are sampled uniformly
- What can we say about the case when observations are all 1's ("positives")?
- Typically, 99% entries are missing ("unlabeled")

• Inductive Matrix Completion:

$$\min_{X:\|X\|_* \leq t} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^\mathsf{T} X \mathbf{b}_j - T_{ij})^2$$

• Commonly used PU strategy: Biased Matrix Completion

$$\min_{X:||X||_* \le t} \alpha \sum_{(i,j) \in \Omega} (\mathbf{a}_i^T X \mathbf{b}_j - \mathcal{T}_{ij})^2 + (1-\alpha) \sum_{(i,j) \notin \Omega} (\mathbf{a}_i^T X \mathbf{b}_j - 0)^2$$

Typically, $\alpha > 1 - \alpha$ ($\alpha \approx 0.9$).

V. Sindhwani, S. S. Bucak, J. Hu, A. Mojsilovic. One-class matrix completion with low-density factorizations. ICDM, pp.

1055-1060. 2010.

• Inductive Matrix Completion:

$$\min_{X:\|X\|_* \leq t} \sum_{(i,j) \in \Omega} (\mathbf{a}_i^\mathsf{T} X \mathbf{b}_j - T_{ij})^2$$

• Commonly used PU strategy: Biased Matrix Completion

$$\min_{X:\|X\|_* \leq t} \alpha \sum_{(i,j)\in\Omega} (\mathbf{a}_i^T X \mathbf{b}_j - T_{ij})^2 + (1-\alpha) \sum_{(i,j)\notin\Omega} (\mathbf{a}_i^T X \mathbf{b}_j - 0)^2$$

Typically, $\alpha > 1 - \alpha$ ($\alpha \approx 0.9$).

• We can show guarantees for the biased formulation

V. Sindhwani, S. S. Bucak, J. Hu, A. Mojsilovic. *One-class matrix completion with low-density factorizations*. ICDM, pp. 1055-1060. 2010.

PU Learning: Random Noise Model

• Can be formulated as learning with "class-conditional" noise

$$\begin{split} P(\tilde{Y} = -1|Y = +1) &= \rho_{+1} \\ P(\tilde{Y} = +1|Y = -1) &= \rho_{-1} \end{split} \qquad \begin{array}{c} \text{Becomes PU learning} \\ \text{when } \rho_{-1} &= 0 \end{split}$$

N. Natarajan, I. S. Dhillon, P. Ravikumar, and A.Tewari. *Learning with Noisy Labels*. In Advances in Neural Information Processing Systems, pp. 1196-1204. 2013.

М

A deterministic PU learning model

0.1 0 0.2 0.8 0 0 0 1 0.6 0.1 0.9 0 0 1 0 1 0 0 0.8 0.1 0 0 1 0 0.2 0.9 0 0.1 1 0 0 0 0 0.6 0 1 0 0 1 1

Т

э

$$\mathcal{T}_{ij} = \begin{cases} 1 & \text{if } M_{ij} > 0.5, \\ 0 & \text{if } M_{ij} \le 0.5 \end{cases}$$

A deterministic PU learning model

- $P(\tilde{T}_{ij} = 0 | T_{ij} = 1) = \rho$ and $P(\tilde{T}_{ij} = 0 | T_{ij} = 0) = 1$.
- We are given only \tilde{T} but not T or M
- Goal: Recover T given \tilde{T} (recovering M is not possible!)

Algorithm 1: Biased Inductive Matrix Completion

$$\widehat{X} = \min_{X: \|X\|_* \le t} \alpha \sum_{(i,j) \in \Omega} (\mathbf{a}_i^T X \mathbf{b}_j - 1)^2 + (1 - \alpha) \sum_{(i,j) \notin \Omega} (\mathbf{a}_i^T X \mathbf{b}_j - 0)^2$$

- Rationale:
 - (a) Fix $\alpha = (1 + \rho)/2$ and define $\widehat{T}_{ij} = I[(A\widehat{X}B^T)_{ij} > 0.5]$ (b) The above problem is equivalent to:

$$\widehat{X} = \min_{X: \|X\|_* \leq t} \quad \sum_{i,j} \ell_{\alpha}((AXB^{T})_{ij}, \widetilde{T}_{ij})$$

where $\ell_{\alpha}(x, \tilde{T}_{ij}) = \alpha \tilde{T}_{ij}(x-1)^2 + (1-\alpha)(1-\tilde{T}_{ij})x^2$ (c) Minimizing ℓ_{α} loss is equivalent to minimizing the true error, i.e.

$$\frac{1}{mn}\sum_{ij}\ell_{\alpha}((AXB^{T})_{ij},\widetilde{T}_{ij})=C_{1}\frac{1}{mn}\|\widehat{T}-T\|_{F}^{2}+C_{2}$$

Algorithm 1: Biased Inductive Matrix Completion

Theorem (Error Bound for Biased IMC)

Assume ground-truth X satisfies $||X||_* \leq t$ (where $M = AXB^T$). Define $\widehat{T}_{ij} = I[(A\widehat{X}B^T)_{ij} > 0.5], \ \mathcal{A} = \max_i \|\mathbf{a}_i\| \text{ and } \mathcal{B} = \max_i \|\mathbf{b}_i\|.$ If $\alpha = \frac{1+\rho}{2}$, then with probability at least $1 - \delta$,

$$\frac{1}{n^2} \|T - \widehat{T}\|_F^2 = O\left(\frac{\eta\sqrt{\log(2/\delta)}}{n(1-\rho)} + \frac{\eta \ t\mathcal{AB}\sqrt{\log 2d}}{(1-\rho)n^{3/2}}\right)$$

where $\eta = 4(1 + 2\rho)$.

C-J. Hsieh, N. Natarajan, and I. S. Dhillon, PU Learning for Matrix Completion, In Proceedings of The 32nd International

Conference on Machine Learning, pp. 2445-2453 (2015).	◆□〉 ◆郡〉 ◆臣〉 ◆臣〉 三臣	୬୯୯
Inderijt S. Dhillon Dept of Computer Science UT Austin	Low-Rank Bilinear Prediction	

Experimental Results

< ≣ > <

Multi-target Prediction: Image Tag Recommendation

NUS-Wide Image Dataset

- 161,780 training images
- 107,879 test images
- 1,134 features
- 1,000 tags

Multi-target Prediction: Image Tag Recommendation

H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale Multi-label Learning with Missing Labels. In Proceedings of The 31st International Conference on Machine Learning, pp. 593-601 (2014).

4 3 b
Multi-target Prediction: Image Tag Recommendation

• Low-rank Model with k = 50:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	574	20.71	15.96	0.7741
WSABIE	4,705	14.58	11.37	0.7658

• Low-rank Model with k = 100:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	1,097	20.76	16.00	0.7718
WSABIE	6,880	12.46	10.21	0.7597

H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. *Large-scale Multi-label Learning with Missing Labels*. In Proceedings of The 31st International Conference on Machine Learning, pp. 593-601 (2014).

Multi-target Prediction: Wikipedia Tag Recommendation

Wikipedia Dataset

< 日 > < 同 > < 三 > < 三 >

- 881,805 training wiki pages
- 10,000 test wiki pages
- 366,932 features
- 213,707 tags

Multi-target Prediction: Wikipedia Tag Recommendation

• Low-rank Model with k = 250:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	9,932	19.56	14.43	0.9086
WSABIE	79,086	18.91	14.65	0.9020

• Low-rank Model with k = 500:

	time(s)	prec@1	prec@3	AUC
LEML(ALS)	18,072	22.83	17.30	0.9374
WSABIE	139,290	19.20	15.66	0.9058

H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. Large-scale Multi-label Learning with Missing Labels. In Proceedings of The 31st International Conference on Machine Learning, pp. 593-601 (2014).

PU Inductive Matrix Completion: Gene-Disease Prediction

N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

PU Inductive Matrix Completion: Gene-Disease Prediction

Predicting gene-disease associations in the OMIM data set (www.omim.org).

N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

PU Inductive Matrix Completion: Gene-Disease Prediction

Predicting genes for diseases with *no* training associations.

N. Natarajan, and I. S. Dhillon. Inductive matrix completion for predicting gene disease associations. Bioinformatics, 30(12), i60-i68 (2014).

Inderjit S. Dhillon Dept of Computer Science UT Austin Low-Rank Bilinear Prediction

Conclusions and Future Work

- Inductive Matrix Completion:
 - Scales to millions of targets
 - Captures correlations among targets
 - Overcomes missing values
 - Extension to PU learning
- Much work to do:
 - Other structures: low-rank+sparse, low-rank+column-sparse (outliers)?
 - Different loss functions?
 - Handling "time" as one of the dimensions incorporating smoothness through graph regularization?
 - Incorporating non-linearities?
 - Efficient (parallel) implementations?
 - Improved recovery guarantees?

References

[1] P. Jain, and I. S. Dhillon. *Provable inductive matrix completion*. arXiv preprint arXiv:1306.0626 (2013).

[2] K. Zhong, P. Jain, I. S. Dhillon. *Efficient Matrix Sensing Using Rank-1 Gaussian Measurements*. In Proceedings of The 26th Conference on Algorithmic Learning Theory (2015).

[3] N. Natarajan, and I. S. Dhillon. *Inductive matrix completion for predicting gene disease associations*. Bioinformatics, 30(12), i60-i68 (2014).

[4] H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. *Large-scale Multi-label Learning with Missing Labels*. In Proceedings of The 31st International Conference on Machine Learning, pp. 593-601 (2014).

[5] C-J. Hsieh, N. Natarajan, and I. S. Dhillon. *PU Learning for Matrix Completion*. In Proceedings of The 32nd International Conference on Machine Learning, pp. 2445-2453 (2015).