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Nearness Problems

Given an input matrix, find the “nearest” matrix that satisfies user
constraints

How should nearness be measured?

Typical choices are the Frobenius norm or the spectral 2-norm

However, these may not be appropriate for the application at hand

Outline of talk
Bregman vector divergences
Bregman matrix divergences — offer alternate spectral measures
Nearness problems with von Neumann & Burg matrix divergences



Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × relint(S)→ R is defined as

Dϕ(x, y) = ϕ(x)− ϕ(y)− (x − y)T∇ϕ(y)
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Bregman Divergences

Let ϕ : S → R be a differentiable, strictly convex function of “Legendre
type” (S ⊆ R

d)

The Bregman Divergence Dϕ : S × relint(S)→ R is defined as

Dϕ(x, y) = ϕ(x)− ϕ(y)− (x − y)T∇ϕ(y)

y x

Dϕ(x,y)= x
y
−log x

y
−1h(z)

ϕ(z)=− log z

Itakura-Saito Distance (used in signal processing) is another Bregman
divergence



Properties of Bregman Divergences

Dϕ(x, y) ≥ 0, and equals 0 iff x = y

Not a metric (symmetry, triangle inequality do not hold)

Strictly convex in the first argument, but not convex (in general) in the
second argument

Three-point property generalizes the “Law of cosines”:

Dϕ(x, y) = Dϕ(x, z) + Dϕ(z, y)− (x − z)T (∇ϕ(y)−∇ϕ(z))
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a convex set Ω,
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Bregman Projections

Nearness in Bregman divergence: the “Bregman” projection of y onto
a convex set Ω,

PΩ(y) = argmin
ω∈Ω

Dϕ(ω, y)

y

x

PΩ(y)

Ω

Generalized Pythagoras Theorem:

Dϕ(x, y) ≥ Dϕ(x, PΩ(y)) + Dϕ(PΩ(y), y)

When Ω is an affine set, the above holds with equality



Bregman Matrix Divergences

Generalizes the notion of divergence to matrices

Let ϕ be a real-valued convex function over matrices

Leads to Bregman matrix divergences:

Dϕ(X , Y ) = ϕ(X)− ϕ(Y )− tr((∇ϕ(Y ))T (X − Y ))

For example, ϕ(X) = ‖X‖2F leads to

Dϕ(X , Y ) = ‖X − Y ‖2F

Squared Euclidean Distance ←→ Squared Frobenius Distance
Relative Entropy ←→ von Neumann Divergence

(Quantum Relative Entropy)
Itakura-Saito Divergence ←→ Burg Divergence

(LogDet Divergence)



Von Neumann Matrix Divergence

Let X = V ΛV T be a positive definite matrix

Consider negative entropy of the eigenvalues (von Neumann entropy):

ϕ(X) =
i

(λi log λi − λi) = tr(X log X −X)

Yields the von Neumann matrix divergence (quantum relative entropy):

DvN (X , Y ) = tr(X log X −X log Y −X + Y )

In terms of the spectrum of X and Y (X = V ΛV T , Y = UΘUT ):

DvN (X , Y ) =
i

λi log λi −
i j

(vT
i uj)

2λi log θj −
i

(λi − θi)

Definition can be extended to semi-definite matrices

Divergence is finite iff range(X) ⊆ range(Y )



Burg Matrix Divergence

Let X = V ΛV T be an N ×N positive definite matrix

Consider Burg entropy of the eigenvalues:

ϕ(X) = −
i

log λi = − log det X

Yields the Burg (or LogDet) matrix divergence:

DBurg(X , Y ) = tr(XY
−1)− log det(XY

−1)−N

In terms of the spectrum of X and Y (X = V ΛV T , Y = UΘUT ):

DBurg(X , Y ) =
i j

λi

θj
(vT

i uj)
2 −

i

log
λi

θi
−N

Definition can be extended to semi-definite matrices

Divergence is finite iff range(X) = range(Y )



Nearness Problem with Matrix Divergences

Nearness with respect to linear constraints

min
X∈S

d(X , X0)

subject to tr(XAi) ≤ bi
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Nearness Problem with Matrix Divergences

Nearness with respect to linear constraints

min
X

Dϕ(X , X0)

subject to tr(XAi) ≤ bi

X � 0

Arises in various applications:
Nearest correlation matrix (Higham, 2002)
Kernel learning (Tsuda et al, 2004; Kulis et al 2006)
. . .



Rank-Constrained Nearness Problem

Nearness with respect to linear and rank constraints
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X
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rank(X) ≤ r
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Rank-Constrained Nearness Problem

Nearness with respect to linear and rank constraints

min
X

Dϕ(X , X0)

subject to tr(XAi) ≤ bi

X � 0

rank(X) ≤ r

In general, the above problem is non-convex

Turns out to be convex if:
rank(X0) ≤ r, and
Dϕ is the von Neumann or Burg divergence

Thus, in this case, the last two constraints can be “dropped”:

min
X

Dϕ(X , X0)

subject to tr(XAi) ≤ bi



Method of cyclic projections

Consider the convex optimization problem:

min
x

ϕ(x)

subject to a
T
i x = bi, i = 0, . . . , m− 1

Bregman’s cyclic projection method:

1. Start with x0 that satisfies ∇ϕ(x0) = −AT π. Set t = 0.

2. Let j = t mod m. Compute xt+1 to be the Bregman projection of
xt onto the j-th hyperplane, i.e., xt+1 is the solution of

min
x

Dϕ(x, xt)

subject to a
T
j x = bj

3. Set t = t + 1 and repeat.

Converges to globally optimal solution (Bregman, 1967)

Can be extended to halfspace and convex constraints — each
projection needs to be followed by a correction



Cyclic Projection Step

At step t of the cyclic projection algorithm, we need to solve:

min
X

Dϕ(X , Xt)

subject to tr(XAi) = bi

Lagrange dual:

L(X , α) = min
X

Dϕ(X , Xt) + α(tr(XAi)− bi)

Need to solve for Xt+1 and α:

∇ϕ(Xt+1) = ∇ϕ(Xt) + αAi

tr(Xt+1Ai) = bi



Burg Update

Burg Divergence

DBurg(X , Xt) = tr(XX
−1
t )− log det(XX

−1
t )−N

Gradient is
∇DBurg(X , Xt) = −X

−1 + X
−1
t

The Burg projection update becomes:

∇ϕ(Xt+1) = ∇ϕ(Xt) + αAi

=⇒ Xt+1 = (X−1
t − αAi)

−1

The update is often rank-one, Ai = ziz
T
i

Correlation matrix
Distance constraints in kernel learning



Projection Parameter—Burg Divergence

Burg update:

Xt+1 = (X−1
t − αzz

T )−1

z
T

Xt+1z = b

A closed form solution exists!

Sherman-Morrison-Woodbury formula leads to:

p = z
T

Xtz

α =
1

p
−

1

b

β = α/(1− αp)

Xt+1 = Xt + βXtzz
T

Xt

Allows extension to the rank-deficient case



Burg Update—Efficiency

Burg update:

Xt+1 = Xt + βXtzz
T

Xt

Using Xt = GtG
T
t , the Cholesky factor Gt needs to be updated:

I + β(GT
t z)(GT

t z)T = LL
T

Gt+1 = GtL

Note that I + β(GT
t z)(GT

t z)T is an r × r matrix

Multiplication with L appears to be the most expensive operation

Special structure of L allows an O(r2) algorithm



Burg Update using Eigendecomposition

Burg update:

Xt+1 = (X−1
t − αzz

T )−1

Maintain alternate factored form: Xt = VtΛtV
T

t

Xt+1 = (VtΛ
−1
t V

T
t − αzz

T )−1

= Vt(Λ
−1
t − αV

T
t zz

T
Vt)

−1
V

T
t

Eigenvalue problem for a diagonal plus rank-one matrix:

Λ
−1
t − α(V T

t z)(V T
t z)T = UΘU

T

Update the factored form:

Vt+1 = VtU , Λt+1 = Θ
−1



Von Neumann Update

Von Neumann divergence:

DvN (X , Xt) = tr(X log X −X log Xt −X + Xt)

Gradient is:
∇DvN (X , Xt) = log X − log Xt

The von Neumann projection update becomes:

∇ϕ(Xt+1) = ∇ϕ(Xt) + αAi

=⇒ Xt+1 = exp(log(Xt) + αAi)

For rank-one updates: Ai = ziz
T
i



Von Neumann Update

Von Neumann Update:

Xt+1 = exp(log(Xt) + αzz
T )

z
T

Xt+1z = b

Maintain factored form for efficiency: Xt = VtΛtV
T

t

Xt+1 = exp(Vt log(Λt)V
T

t + αzz
T )

= Vt exp(log(Λt) + αV
T

t zz
T

Vt)V
T

t

Eigenvalue problem for a diagonal plus rank-one matrix:

log(Λt) + α(V T
t z)(V T

t z)T = UΘU
T

Update in factored form:

Vt+1 = VtU , Λt+1 = exp(Θ)



Von Neumann Update—Efficiency

Von Neumann update in factored form:

log(Λt) + α(V T
t z)(V T

t z)T = UΘU
T

Vt+1 = VtU , Λt+1 = exp(Θ)

Note that log(Λt) + α(V T
t z)(V T

t z)T is an r × r matrix

The most expensive operation appears to be the VtU multiplication

The Fast Multipole Method can exploit the structure of U

(Greengard & Rokhlin, 1987)

The multiplication can be performed in O(r2) time



Projection Parameter—Von Neumann Update

Von Neumann Update:

Xt+1 = exp(log(Xt) + αzz
T )

z
T

Xt+1z = b

Set w = V T
t z. We need to solve the following for α:

w
T exp(log(Λt) + αww

T )w = b

The left hand side is a monotone function of α

Ordinary bisection converges linearly (>50 iterations)

Custom non-linear solver rarely needs more than 6 evaluations



Projection Parameter—Von Neumann Divergence

We exploit the fact that

g(α) = w
T exp(log(Λt) + αww

T )w − b

is similar to an exponential function

Like Newton’s method, but fit exponentials instead of straight lines

Set α0 = 0, α1 = 1. At the i-th step let g1(α) = exp(pα + q)− b such
that:

g1(αi−1) = g(αi−1), g1(αi) = g(αi)

Set αi+1 to be the solution of g1(α) = 0.

Each iteration involves the solution of a secular equation



Experiments

Digits data: 317 digits, 3
classes

Given a rank-16 kernel
for 317 digits
Randomly create
constraints:

d(i1, i2) ≤ (1− ε)bi

d(i1, i2) ≥ (1 + ε)bi

Attempt to learn a
“better” rank-16 kernel 0 20 40 60 80 100 120 140
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Clustering: use kernel k-means with random initialization, compute
accuracy using normalized mutual information



Experiments

GyrB protein data: 52
proteins, 3 classes

Given only constraints
Want to learn a kernel
based on constraints
Constraints generated
from target kernel matrix
Attempt to learn a
full-rank kernel
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Classification: use k-nearest neighbor, k = 5, 50/50 training/test split,
2-fold cross validation averaged over 20 runs



Conclusions & Future Work

Bregman matrix divergences lead to intriguing nearness problems

Nearness problems with von Neumann & Burg matrix divergences
Very useful if rank & null space need to be preserved

Future Work:
Characterize usefulness of preserving null space
Detailed investigations into:

Nearest correlation matrix problem
Kernel learning problem

Improvement over cyclic projection methods
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