(a) (4 points)

Write a MATLAB function $[L, U]=\operatorname{MyLU}(A)$ which computes the $L U$ factorization of the input matrix A. Write it as 3 nested loops.
(b) (2 points)

Write the function $\mathrm{y}=\operatorname{UTriSol}(\mathrm{U}, \mathrm{x})$ which solves for y such that $U y=x$ (given U and x); write the function $\mathrm{x}=\operatorname{LTriSol}(\mathrm{L}, \mathrm{b})$ which solves for x such that $L x=b$ (given L and b).
(c) (5 points)

Write a function $\mathrm{x}=$ LUSolve(A, b). You should use MyLU, UTriSol and LTriSol.
(d) (6 points)

Use the above to solve for x when
(i)

$$
A=\left[\begin{array}{ccccc}
-2 & 4 & -1 & -1 & 3 \tag{1}\\
4 & -9 & 0 & 5 & 3 \\
-4 & 5 & -5 & 5 & 3 \\
-8 & 8 & -23 & 20 & 3 \\
-1 & 1 & 2 & 3 & 3
\end{array}\right] \quad b=\left[\begin{array}{c}
12 \\
-32 \\
3 \\
-13 \\
-8
\end{array}\right]
$$

(ii)

$$
A=\left[\begin{array}{cc}
10^{-16} & 1 \tag{2}\\
1 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

(iii)

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \tag{3}\\
1 & 1 & 2 \\
2 & 2 & 6
\end{array}\right] \quad b=\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right]
$$

(e) (2 points)

Comment on the accuracy of x in (1), (2) and (3).
(f) (5 points)

Incorporate partial pivoting in MyLU, i.e., write the function $[P, L, U]=\operatorname{MyPLU}(A)$. Note that $P A$ must be equal to $L U$.
(g) (6 points)

Use MyPLU to solve $A x=b$ when A and b are as in (1), (2) and (3). Comment on the accuracy of the solution.

