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1. (5 points)

(a) (3 points) Let w =

[

w0

w1

]

, x =
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...
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, y =







y1

...
yN






, and 1 ∈ R

N with all elements equal to one.

The normal equations can be written as:
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ȳ
1

N
x

T
y

]

. (1)

From above, we can get
w0 = ȳ − w1x̄, (2)

and
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N
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(x2
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=

σxy

σxx
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(b) (2 points) Similarly, let w
′ =

[

w0

w

]

, where w =







w1

...
wd






, and X =







x
T
1

...
x

T
N






∈ R

N×d, where xi ∈ R
d.

The normal equations can be written as:
[
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=
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(4)

From above, we can get
w0 = ȳ − x̄

T
w, (5)

and w can be solved from
(XT X − N x̄x̄

T )w = (XT − x̄1T )y. (6)

2. (4 points) The proof is not correct since
∑

∞

i=1
βiAi might diverge.

Suppose A ∈ R
N×N , since A is symmetric (for undirected graph), the eigenvalue decomposition of A will be

A = UΛUT , where UT U = I and Λ is the diagonal matrix with the eigenvalues {λj}
N
j=1

of A on the diagonal.

Therefore,
∞

∑

i=1

βiAi = U(
∞

∑

i=1

βiΛi)UT . (7)
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Let λ′ denote the eigenvalue with the largest absolute value. In order to ensure
∑

∞

i=1
βiAi converge, |βλ′| < 1

must be satisfied, which implies β < 1/|λ′|.

3. (6 points)

(a) (3 points) The normal equations are X̂T X̂w = X̂T
y, where X̂ =

[

1 X
]

. So the coefficient vector

w can be solved in Matlab as: w = X̂T X̂\X̂T
y by using the Matlab “\” operator. The resulting

coefficient vector is

w_normal =

9.380296842426794e-01

-2.197506989029683e-01

-1.092679523646183e+00

2.722846226418876e-01.

The RMSE on the training/testing set:

TrainErr = 1.566269622399142e-01

TestErr = 1.725918643729227e-01.

By using SVD, we first compute the Singular Value Decomposition of matrix X̂:

[U,S,V] = svd(X_hat, 0);

where the singular values are

diag(S) =

8.056021983474565e+00

1.769863323706678e+00

1.199186168087752e+00

4.150522541340332e-01.

Therefore, the coefficient vector w = V S−1UT
y, which is

w_svd =

9.380296842426810e-01

-2.197506989029685e-01

-1.092679523646186e+00

2.722846226418890e-01.

The RMSE on the training/testing set:

TrainErr = 1.566269622399142e-01

TestErr = 1.725918643729227e-01.

(b) (3 points) Similarly, by solving the normal equations X̂T X̂w = X̂T
y, we get

w_normal =

8.543650856508991e-01

2.007685445231479e+06

-3.143921286530009e+06

2.007685865462310e+06

-4.015371281250000e+06

3.143920312500000e+06.

The RMSE on the training/testing set:
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TrainErr = 1.638103624995622e-01

TestErr = 1.962736211669317e-01.

In case of solving by SVD, the singular values are

diag(S) =

9.507897664011070e+00

1.883697351038450e+00

1.330370950897240e+00

5.158720698357471e-01

6.505639266509868e-08

5.081070284793642e-08.

Note that the last two singular values are quite small, which implies that the matrix X̂ is close to being
rank deficient. If we keep all singular values when solving the coefficient vector w, we will get some
values in w with very large magnitude.

w_svd =

9.098900750486882e-01

8.481804011589671e+05

-6.162979188546608e+05

8.481808681791546e+05

-1.696361215122565e+06

6.162968577463540e+05.

The RMSE on the training/testing set:

TrainErr = 1.545990226733030e-01

TestErr = 1.782932794388689e-01.

The correct way of using SVD is to drop the singular values which are close to zero. In this case, the
resulting coefficient vector does not have any large values:

w_svd =

9.380296974205432e-01

-2.285063480290051e-01

-5.463397867121318e-01

2.635289825394068e-01

1.751129730921534e-02

-5.463397608584619e-01.

The RMSE on the training/testing set:

TrainErr = 1.566269604102106e-01

TestErr = 1.725918644908762e-01

4. (6 points)

(a) (2 points) Suppose XA is measured by Alice and XB is measured by Bob. Let X̂A denote
[

1 XA

]

, X̂B

denote
[

1 XB

]

, and D̂ denote

[

1 0
0 D

]

, where D is a diagonal matrix with diagonal entries describing

the difference between measurements. The relationship between these two measures can be characterized
by X̂B = X̂AD̂,
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By the normal equations, the coefficient vector obtained by Alice is

wA = (X̂T
AX̂A)−1X̂T

Ay, (8)

and the coefficient vector obtained by Bob is

wB = (X̂T
BX̂B)−1X̂T

By = (D̂X̂T
AX̂AD̂)−1D̂X̂T

Ay = D̂−1(X̂T
AX̂A)−1X̂T

Ay, (9)

which implies wA = D̂wB.

(b) (2 points) Similarly, if Bob and Alice both solve the ridge regression problem, then by the normal
equations, the coefficient vector obtained by Alice is

wA = (X̂T
AX̂A + λI)−1X̂T

Ay, (10)

and the coefficient vector obtained by Bob is

wB = (X̂T
BX̂B + λI)−1X̂T

By = (D̂X̂T
AX̂AD̂ + λI)−1D̂X̂T

Ay = D̂−1(X̂T
AX̂A + λD̂−2)−1X̂T

Ay. (11)

Comparing (10) with (11), there is no explicit relationship between their coefficient vectors.

Note that if we do not include w0 in the regularizer, the ridge regression solution will be changed to

w =

(

X̂T X̂ + λ

[

0
I

])−1

X̂T
y. (12)

By following the same arguments above, we get

wA =

(

X̂T
AX̂A + λ

[

0
I

])−1

X̂T
Ay, and wB = D̂−1

(

X̂T
AX̂A + λ

[

0
D−2

])−1

X̂T
Ay. (13)

Again, there is no explicit relationship between their coefficient vectors.

(c) (2 points) Let w denote the coefficient vector obtained by using the original target variable y, w
′ denote

the coefficient vector obtained by using the new target variable y
′ = y + 1, and x̄ denote the mean

vector of the data 1

N
XT1.

In the least squares problem, from problem 1(b), we have already solved by the normal equations that

w0 =
1

N
1T

y − x̄
T
w, and (

1

N
XT X − x̄x̄

T )w =
1

N
(XT − x̄1T )y (14)

If we replace y with y
′ = y + 1, then

w′

0 = 1 +
1

N
1T

y − x̄
T
w

′, (15)

and

(
1

N
XT X − x̄x̄

T )w′ =
1

N
(XT − x̄1T )y +

1

N
(XT1 − x̄1T1) =

1

N
(XT − x̄1T )y. (16)

Therefore, in the least squares problem, w′

0
= w0 + 1 and w

′ = w.

Similarly, in the ridge regression problem, the normal equations are

[

N 1T X
XT1 XT X + λI

] [

w0

w

]

=

[

1T

XT

]

y, (17)
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where w0 is not included in the regularizer.

From above, we can get

w0 =
1

N
1T

y − x̄
T
w, and (

1

N
XT X +

λ

N
I − x̄x̄

T )w =
1

N
(XT − x̄1T )y. (18)

Following the same arguments above, if we replace y with y
′ = y + 1, we can get w′

0
= w0 + 1 and

w
′ = w.

Note that if w0 is included in the regularizer, we will get different solutions of w0 and w by simply
increasing the target variable y by one. This partially explains why we normally do not put w0 into
the regularizer.


