Keywords: Linear Algebra, Linear Regression

1. (5 points)
(a) (3 points) Let $\boldsymbol{w}=\left[\begin{array}{c}w_{0} \\ w_{1}\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{N}\end{array}\right], \boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]$, and $\mathbf{1} \in \mathbb{R}^{N}$ with all elements equal to one.

The normal equations can be written as:

$$
\left[\begin{array}{l}
\mathbf{1}^{T} \tag{1}\\
\boldsymbol{x}^{T}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{1} & \boldsymbol{x}
\end{array}\right] \boldsymbol{w}=\left[\begin{array}{c}
\mathbf{1}^{T} \\
\boldsymbol{x}^{T}
\end{array}\right] \boldsymbol{y} \Rightarrow\left[\begin{array}{cc}
1 & \bar{x} \\
\bar{x} & \frac{1}{N} \boldsymbol{x}^{T} \boldsymbol{x}
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right]=\left[\begin{array}{c}
\bar{y} \\
\frac{1}{N} \boldsymbol{x}^{T} \boldsymbol{y}
\end{array}\right] .
$$

From above, we can get

$$
\begin{equation*}
w_{0}=\bar{y}-w_{1} \bar{x} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
w_{1} & =\frac{\frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i}-\bar{x} \bar{y}}{\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\bar{x}^{2}}=\frac{\frac{1}{N} \sum_{i=1}^{N} x_{i} y_{i}-\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right) \bar{y}-\bar{x}\left(\frac{1}{N} \sum_{i=1}^{N} y_{i}\right)+\bar{x} \bar{y}}{\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}-\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right) \bar{x}-\bar{x}\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}\right)+\bar{x}^{2}} \\
& =\frac{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i} y_{i}-x_{i} \bar{y}-\bar{x} y_{i}+\bar{x} \bar{y}\right)}{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}^{2}-x_{i} \bar{x}-\bar{x} x_{i}+\bar{x}^{2}\right)}=\frac{\sigma_{x y}}{\sigma x x} \tag{3}
\end{align*}
$$

(b) (2 points) Similarly, let $\boldsymbol{w}^{\prime}=\left[\begin{array}{c}w_{0} \\ \boldsymbol{w}\end{array}\right]$, where $\boldsymbol{w}=\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{d}\end{array}\right]$, and $X=\left[\begin{array}{c}\boldsymbol{x}_{1}^{T} \\ \vdots \\ \boldsymbol{x}_{N}^{T}\end{array}\right] \in \mathbb{R}^{N \times d}$, where $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$.

The normal equations can be written as:

$$
\left[\begin{array}{l}
\mathbf{1}^{T} \tag{4}\\
X^{T}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{1} & X
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{1}^{T} \\
X^{T}
\end{array}\right] \boldsymbol{y} \Rightarrow\left[\begin{array}{cc}
1 & \overline{\boldsymbol{x}}^{T} \\
\overline{\boldsymbol{x}} & \frac{1}{N} X^{T} X
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{c}
\bar{y} \\
\frac{1}{N} X^{T} \boldsymbol{y} .
\end{array}\right]
$$

From above, we can get

$$
\begin{equation*}
w_{0}=\bar{y}-\overline{\boldsymbol{x}}^{T} \boldsymbol{w}, \tag{5}
\end{equation*}
$$

and \boldsymbol{w} can be solved from

$$
\begin{equation*}
\left(X^{T} X-N \overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}\right) \boldsymbol{w}=\left(X^{T}-\overline{\boldsymbol{x}} \mathbf{1}^{T}\right) \boldsymbol{y} \tag{6}
\end{equation*}
$$

2. (4 points) The proof is not correct since $\sum_{i=1}^{\infty} \beta^{i} A^{i}$ might diverge.

Suppose $A \in \mathbb{R}^{N \times N}$, since A is symmetric (for undirected graph), the eigenvalue decomposition of A will be $A=U \Lambda U^{T}$, where $U^{T} U=I$ and Λ is the diagonal matrix with the eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{N}$ of A on the diagonal. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{\infty} \beta^{i} A^{i}=U\left(\sum_{i=1}^{\infty} \beta^{i} \Lambda^{i}\right) U^{T} \tag{7}
\end{equation*}
$$

Let λ^{\prime} denote the eigenvalue with the largest absolute value. In order to ensure $\sum_{i=1}^{\infty} \beta^{i} A^{i}$ converge, $\left|\beta \lambda^{\prime}\right|<1$ must be satisfied, which implies $\beta<1 /\left|\lambda^{\prime}\right|$.
3. (6 points)
(a) (3 points) The normal equations are $\hat{X}^{T} \hat{X} \boldsymbol{w}=\hat{X}^{T} \boldsymbol{y}$, where $\hat{X}=\left[\begin{array}{ll}1 & X\end{array}\right]$. So the coefficient vector \boldsymbol{w} can be solved in Matlab as: $\boldsymbol{w}=\hat{X}^{T} \hat{X} \backslash \hat{X}^{T} \boldsymbol{y}$ by using the Matlab "" operator. The resulting coefficient vector is
w_normal =

$$
\begin{array}{r}
9.380296842426794 e-01 \\
-2.197506989029683 e-01 \\
-1.092679523646183 e+00 \\
2.722846226418876 e-01
\end{array}
$$

The RMSE on the training/testing set:
TrainErr $=1.566269622399142 \mathrm{e}-01$
TestErr $=1.725918643729227 \mathrm{e}-01$.
By using SVD, we first compute the Singular Value Decomposition of matrix \hat{X} :
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=$ svd (X_hat, 0$)$;
where the singular values are
$\operatorname{diag}(S)=$
$8.056021983474565 \mathrm{e}+00$
$1.769863323706678 \mathrm{e}+00$
1.199186168087752e+00
4.150522541340332e-01.

Therefore, the coefficient vector $\boldsymbol{w}=V S^{-1} U^{T} \boldsymbol{y}$, which is

```
w_svd =
        9.380296842426810e-01
        -2.197506989029685e-01
        -1.092679523646186e+00
        2.722846226418890e-01.
```

The RMSE on the training/testing set:
TrainErr $=1.566269622399142 \mathrm{e}-01$
TestErr $=1.725918643729227 \mathrm{e}-01$.
(b) (3 points) Similarly, by solving the normal equations $\hat{X}^{T} \hat{X} \boldsymbol{w}=\hat{X}^{T} \boldsymbol{y}$, we get w_normal =
8.543650856508991e-01
$2.007685445231479 \mathrm{e}+06$
-3.143921286530009e+06
$2.007685865462310 \mathrm{e}+06$
-4.015371281250000e+06
$3.143920312500000 \mathrm{e}+06$.
The RMSE on the training/testing set:

```
TrainErr = 1.638103624995622e-01
TestErr = 1.962736211669317e-01.
```

In case of solving by SVD, the singular values are

```
diag(S) =
    9.507897664011070e+00
    1.883697351038450e+00
    1.330370950897240e+00
    5.158720698357471e-01
    6.505639266509868e-08
    5.081070284793642e-08.
```

Note that the last two singular values are quite small, which implies that the matrix \hat{X} is close to being rank deficient. If we keep all singular values when solving the coefficient vector \boldsymbol{w}, we will get some values in \boldsymbol{w} with very large magnitude.

```
w_svd =
        9.098900750486882e-01
        8.481804011589671e+05
    -6.162979188546608e+05
        8.481808681791546e+05
    -1.696361215122565e+06
    6.162968577463540e+05 .
```

The RMSE on the training/testing set:

```
TrainErr = 1.545990226733030e-01
TestErr = 1.782932794388689e-01.
```

The correct way of using SVD is to drop the singular values which are close to zero. In this case, the resulting coefficient vector does not have any large values:

```
w_Svd =
    9.380296974205432e-01
    -2.285063480290051e-01
    -5.463397867121318e-01
        2.635289825394068e-01
        1.751129730921534e-02
    -5.463397608584619e-01.
```

The RMSE on the training/testing set:
TrainErr $=1.566269604102106 \mathrm{e}-01$
TestErr = $1.725918644908762 \mathrm{e}-01$
4. (6 points)
(a) (2 points) Suppose X_{A} is measured by Alice and X_{B} is measured by Bob. Let \hat{X}_{A} denote $\left[\begin{array}{ll}1 & X_{A}\end{array}\right], \hat{X}_{B}$ denote $\left[\begin{array}{ll}\mathbf{1} & X_{B}\end{array}\right]$, and \hat{D} denote $\left[\begin{array}{ll}1 & 0 \\ 0 & D\end{array}\right]$, where D is a diagonal matrix with diagonal entries describing the difference between measurements. The relationship between these two measures can be characterized by $\hat{X}_{B}=\hat{X}_{A} \hat{D}$,

By the normal equations, the coefficient vector obtained by Alice is

$$
\begin{equation*}
\boldsymbol{w}_{A}=\left(\hat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \hat{X}_{A}^{T} \boldsymbol{y} \tag{8}
\end{equation*}
$$

and the coefficient vector obtained by Bob is

$$
\begin{equation*}
\boldsymbol{w}_{B}=\left(\hat{X}_{B}^{T} \hat{X}_{B}\right)^{-1} \hat{X}_{B}^{T} \boldsymbol{y}=\left(\hat{D} \hat{X}_{A}^{T} \hat{X}_{A} \hat{D}\right)^{-1} \hat{D} \hat{X}_{A}^{T} \boldsymbol{y}=\hat{D}^{-1}\left(\hat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \hat{X}_{A}^{T} \boldsymbol{y} \tag{9}
\end{equation*}
$$

which implies $\boldsymbol{w}_{A}=\hat{D} \boldsymbol{w}_{B}$.
(b) (2 points) Similarly, if Bob and Alice both solve the ridge regression problem, then by the normal equations, the coefficient vector obtained by Alice is

$$
\begin{equation*}
\boldsymbol{w}_{A}=\left(\hat{X}_{A}^{T} \hat{X}_{A}+\lambda I\right)^{-1} \hat{X}_{A}^{T} \boldsymbol{y} \tag{10}
\end{equation*}
$$

and the coefficient vector obtained by Bob is

$$
\begin{equation*}
\boldsymbol{w}_{B}=\left(\hat{X}_{B}^{T} \hat{X}_{B}+\lambda I\right)^{-1} \hat{X}_{B}^{T} \boldsymbol{y}=\left(\hat{D} \hat{X}_{A}^{T} \hat{X}_{A} \hat{D}+\lambda I\right)^{-1} \hat{D} \hat{X}_{A}^{T} \boldsymbol{y}=\hat{D}^{-1}\left(\hat{X}_{A}^{T} \hat{X}_{A}+\lambda \hat{D}^{-2}\right)^{-1} \hat{X}_{A}^{T} \boldsymbol{y} \tag{11}
\end{equation*}
$$

Comparing (10) with (11), there is no explicit relationship between their coefficient vectors.
Note that if we do not include w_{0} in the regularizer, the ridge regression solution will be changed to

$$
\boldsymbol{w}=\left(\hat{X}^{T} \hat{X}+\lambda\left[\begin{array}{ll}
0 & \tag{12}\\
& I
\end{array}\right]\right)^{-1} \hat{X}^{T} \boldsymbol{y}
$$

By following the same arguments above, we get

$$
\boldsymbol{w}_{A}=\left(\hat{X}_{A}^{T} \hat{X}_{A}+\lambda\left[\begin{array}{rr}
0 & \tag{13}\\
& I
\end{array}\right]\right)^{-1} \hat{X}_{A}^{T} \boldsymbol{y}, \quad \text { and } \quad \boldsymbol{w}_{B}=\hat{D}^{-1}\left(\hat{X}_{A}^{T} \hat{X}_{A}+\lambda\left[\begin{array}{ll}
0 & \\
& D^{-2}
\end{array}\right]\right)^{-1} \hat{X}_{A}^{T} \boldsymbol{y}
$$

Again, there is no explicit relationship between their coefficient vectors.
(c) (2 points) Let \boldsymbol{w} denote the coefficient vector obtained by using the original target variable $\boldsymbol{y}, \boldsymbol{w}^{\prime}$ denote the coefficient vector obtained by using the new target variable $\boldsymbol{y}^{\prime}=\boldsymbol{y}+\mathbf{1}$, and $\overline{\boldsymbol{x}}$ denote the mean vector of the data $\frac{1}{N} X^{T} \mathbf{1}$.
In the least squares problem, from problem 1(b), we have already solved by the normal equations that

$$
\begin{equation*}
w_{0}=\frac{1}{N} \mathbf{1}^{T} \boldsymbol{y}-\overline{\boldsymbol{x}}^{T} \boldsymbol{w}, \quad \text { and } \quad\left(\frac{1}{N} X^{T} X-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}\right) \boldsymbol{w}=\frac{1}{N}\left(X^{T}-\overline{\boldsymbol{x}} \mathbf{1}^{T}\right) \boldsymbol{y} \tag{14}
\end{equation*}
$$

If we replace \boldsymbol{y} with $\boldsymbol{y}^{\prime}=\boldsymbol{y}+\mathbf{1}$, then

$$
\begin{equation*}
w_{0}^{\prime}=1+\frac{1}{N} \mathbf{1}^{T} \boldsymbol{y}-\overline{\boldsymbol{x}}^{T} \boldsymbol{w}^{\prime} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{N} X^{T} X-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}\right) \boldsymbol{w}^{\prime}=\frac{1}{N}\left(X^{T}-\overline{\boldsymbol{x}} \mathbf{1}^{T}\right) \boldsymbol{y}+\frac{1}{N}\left(X^{T} \mathbf{1}-\overline{\boldsymbol{x}} \mathbf{1}^{T} \mathbf{1}\right)=\frac{1}{N}\left(X^{T}-\overline{\boldsymbol{x}} \mathbf{1}^{T}\right) \boldsymbol{y} \tag{16}
\end{equation*}
$$

Therefore, in the least squares problem, $w_{0}^{\prime}=w_{0}+1$ and $\boldsymbol{w}^{\prime}=\boldsymbol{w}$.
Similarly, in the ridge regression problem, the normal equations are

$$
\left[\begin{array}{cc}
N & \mathbf{1}^{T} X \tag{17}\\
X^{T} \mathbf{1} & X^{T} X+\lambda I
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
\boldsymbol{w}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{1}^{T} \\
X^{T}
\end{array}\right] \boldsymbol{y}
$$

where w_{0} is not included in the regularizer.
From above, we can get

$$
\begin{equation*}
w_{0}=\frac{1}{N} \mathbf{1}^{T} \boldsymbol{y}-\overline{\boldsymbol{x}}^{T} \boldsymbol{w}, \quad \text { and } \quad\left(\frac{1}{N} X^{T} X+\frac{\lambda}{N} I-\overline{\boldsymbol{x}} \overline{\boldsymbol{x}}^{T}\right) \boldsymbol{w}=\frac{1}{N}\left(X^{T}-\overline{\boldsymbol{x}} \mathbf{1}^{T}\right) \boldsymbol{y} \tag{18}
\end{equation*}
$$

Following the same arguments above, if we replace \boldsymbol{y} with $\boldsymbol{y}^{\prime}=\boldsymbol{y}+\mathbf{1}$, we can get $w_{0}^{\prime}=w_{0}+1$ and $\boldsymbol{w}^{\prime}=\boldsymbol{w}$.
Note that if w_{0} is included in the regularizer, we will get different solutions of w_{0} and \boldsymbol{w} by simply increasing the target variable \boldsymbol{y} by one. This partially explains why we normally do not put w_{0} into the regularizer.

