Notes are taken from Tibshirani's lecture notes: https://www.stat.cmu.edu/~ryantibs/convexoptF13/scribes/

Convex Function

Definition 4.28 A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and if for all $x, y \in \operatorname{dom} f$, and θ with $0 \leq \theta \leq 1$, we have

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) .
$$

Definition 4.29 A function f is strictly convex if whenever $x \neq y$, and $0<\theta<1$, strict inequality holds, that is, we have

$$
f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y) .
$$

$$
f(y)>=f(x)+\backslash \operatorname{grad} f(x)^{\wedge} T(y-x)
$$

Strong Convexity

Definition 4.32 A differentiable function f is called m-strongly convex if $m>0$ and

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq m\|x-y\|_{2}^{2}, \forall x, y \in \operatorname{dom} f
$$

An equivalent condition is

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}, \forall x, y \in \operatorname{dom} f
$$

It is not necessary for a function to be differentiable. We could have the definition without gradient.

Definition 4.33 A function f is called m-strongly convex if $m>0$ and for $0 \leq t \leq 1$

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)-\frac{1}{2} m t(1-t)\|x-y\|_{2}^{2}, \forall x, y \in \operatorname{dom} f
$$

If the function is twice continuously differentiable, we could have the definition with Hessian matrix.

Definition $4.34 f$ is called m-stronly convex if $m>0$ and

$$
\nabla^{2} f(x) \geq m I, \forall x, y \in \operatorname{dom} f
$$

A strongly convex function is also strictly convex, but not vice-versa.

Extended-Value Extension

Definition $4.37 \tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{R} \bigcup\{\infty\}$ is extended-value extension of f :
$\tilde{f}(x)=\left\{\begin{array}{cc}f(x) & x \in \operatorname{dom} f \\ \infty & x \notin \operatorname{dom} f\end{array}\right.$
The extension \tilde{f} is defined on all \mathbb{R}^{n}, and takes values in $\mathbb{R} \bigcup\{\infty\}$. This does not change its convexity
Theorem $4.38 f$ is convex
$\Leftrightarrow \tilde{f}$ is convex
$\Leftrightarrow \tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y), 0 \leq \theta \leq 1$

Properties of Convex Functions

Let f be a differentiable function, $\operatorname{dom} f$ is open and convex, then we have
f is convex $\Leftrightarrow f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$
The inequality states that for a convex function, the first-order Taylor
approximation is a global underestimator of the function. Conversely, if the first-order Taylor approximation
of a function is always a global underestimator of the function, then the function is convex.

Let f be twice differentiable, $\operatorname{dom} f$ is open, then we have
f is convex $\Leftrightarrow \nabla^{2} f(x) \geq 0, \forall x \in \operatorname{dom} f$
If $\nabla^{2} f(x)>0, \forall x \in \operatorname{dom} f, f$ is strictly convex. The converse is not true.
For example, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{4}$ is strictly convex but has zero second derivative at $x=0$

Gradient Descent

Recall that we have $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, convex and differentiable. We want to solve

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

i.e, to find x^{\star} such that $f\left(x^{\star}\right)=\min f(x)$.

Gradient descent: choose initial $x^{(0)} \in \mathbb{R}^{n}$, repeat :

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \nabla f\left(x^{(k-1)}\right), k=1,2,3, \ldots
$$

Stop at some point(When to stop is quite dependent on what problems you are looking at).

Coordinate Descent

Similar but coordinate-by-coordinate by picking the coordinate with maximum gradient

Step Size

Fixed

Backtracking Line Search

```
Starting with a maximum candidate step size value 的>0, using search control parameters }\tau\in(0,1)\mathrm{ and c}\in(0,1)\mathrm{ , the backtracking line search algorithm can be expressed as follows
    1. Set }t=-cm\mathrm{ and iteration counter }j=0
    2. Until the condition is satisfied that f(\mathbf{x})-f(\mathbf{x}+\mp@subsup{\alpha}{j}{}\mathbf{p})\geq\mp@subsup{\alpha}{j}{}t\mathrm{ , repeatedly increment j and set }\mp@subsup{\alpha}{j}{}=\tau\mp@subsup{\alpha}{j-1}{}
    3. Return }\mp@subsup{\alpha}{j}{}\mathrm{ as the solution.
In other words, reduce }\mp@subsup{\alpha}{0}{}\mathrm{ by a factor of }\tau\mathrm{ in each iteration until the Armijo-Goldstein condition is fulfilled.
```

Define the local slope of the function of α along the search direction \mathbf{p} as $m=\nabla f(\mathbf{x})^{\mathrm{T}} \mathbf{p}$. It is assumed that \mathbf{p} is a unit vector in a direction in which some local decrease is possible, i.e., it is assumed that $m<0$.
 objective function. The condition is fulfilled if $f(\mathbf{x}+\alpha \mathbf{p}) \leq f(\mathbf{x})+\alpha c m$.

Exact Line Search

At each iteration, do the best we can along the direction of the gradient,

$$
t=\underset{s \geq 0}{\operatorname{argmin}} f(x-s \nabla f(x)) .
$$

Usually, it is not possible to do this minimization exactly.
Approximations to exact line search are often not much more efficient than backtracking, and it's not worth it.

Proof (first inequality is Lagrange form of Taylor's theorem)

Theorem 6.1 Suppose the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and differentiable, and that its gradient is Lipschitz continuous with constant $L>0$, i.e. we have that $\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}$ for any x, y. Then if we run gradient descent for k iterations with a fixed step size $t \leq 1 / L$, it will yield a solution $f(k)$ which satisfies

$$
\begin{equation*}
f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k}, \tag{6.1}
\end{equation*}
$$

where $f\left(x^{*}\right)$ is the optimal value. Intuitively, this means that gradient descent is guaranteed to converge and that it converges with rate $O(1 / k)$.

Proof: Our assumption that ∇f is Lipschitz continuous with constant L implies that $\nabla^{2} f(x) \preceq L I$, or equivalently that $\nabla^{2} f(x)-L I$ is a negative semidefinite matrix. Using this fact, we can perform a quadratic expansion of f around $f(x)$ and obtain the following inequality:

$$
\begin{aligned}
f(y) & \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2} \nabla^{2} f(x)\|y-x\|_{2}^{2} \\
& \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2} L\|y-x\|_{2}^{2}
\end{aligned}
$$

Now let's plug in the gradient descent update by letting $y=x^{+}=x-t \nabla f(x)$. We then get:

$$
\begin{align*}
f\left(x^{+}\right) & \leq f(x)+\nabla f(x)^{T}\left(x^{+}-x\right)+\frac{1}{2} L\left\|x^{+}-x\right\|_{2}^{2} \\
& =f(x)+\nabla f(x)^{T}(x-t \nabla f(x)-x)+\frac{1}{2} L\|x-t \nabla f(x)-x\|_{2}^{2} \\
& =f(x)-\nabla f(x)^{T} t \nabla f(x)+\frac{1}{2} L\|t \nabla f(x)\|_{2}^{2} \\
& =f(x)-t\|\nabla f(x)\|_{2}^{2}+\frac{1}{2} L t^{2}\|\nabla f(x)\|_{2}^{2} \\
& =f(x)-\left(1-\frac{1}{2} L t\right) t\|\nabla f(x)\|_{2}^{2} \tag{6.2}
\end{align*}
$$

Using $t \leq 1 / L$, we know that $-\left(1-\frac{1}{2} L t\right)=\frac{1}{2} L t-1 \leq \frac{1}{2} L(1 / L)-1=\frac{1}{2}-1=-\frac{1}{2}$. Plugging this in to ??6. 2
we can conclude the following:

$$
\begin{equation*}
f\left(x^{+}\right) \leq f(x)-\frac{1}{2} t\|\nabla f(x)\|_{2}^{2} \tag{6.3}
\end{equation*}
$$

Since $\frac{1}{2} t\|\nabla f(x)\|_{2}^{2}$ will always be positive unless $\nabla f(x)=0$, this inequality implies that the objective function value strictly decreases with each iteration of gradient descent until it reaches the optimal value $f(x)=f\left(x^{*}\right)$. Note that this convergence result only holds when we choose t to be small enough, i.e. $t \leq 1 / L$. This explains why we observe in practice that gradient descent diverges when the step size is too large.
Next, we can bound $f\left(x^{+}\right)$, the objective value at the next iteration, in terms of $f\left(x^{*}\right)$, the optimal objective value. Since f is convex, we can write

$$
\begin{aligned}
& f\left(x^{*}\right) \geq f(x)+\nabla f(x)^{T}\left(x^{*}-x\right) \\
& f(x) \leq f\left(x^{*}\right)+\nabla f(x)^{T}\left(x-x^{*}\right)
\end{aligned}
$$

where the first inequality yields the second through simple rearrangement of terms. Plugging this in to we obtain

$$
\begin{align*}
& f\left(x^{+}\right) \leq f\left(x^{*}\right)+\nabla f(x)^{T}\left(x-x^{*}\right)-\frac{t}{2}\|\nabla f(x)\|_{2}^{2} \\
& f\left(x^{+}\right)-f\left(x^{*}\right) \leq \frac{1}{2 t}\left(2 t \nabla f(x)^{T}\left(x-x^{*}\right)-t^{2}\|\nabla f(x)\|_{2}^{2}\right) \\
& f\left(x^{+}\right)-f\left(x^{*}\right) \leq \frac{1}{2 t}\left(2 t \nabla f(x)^{T}\left(x-x^{*}\right)-t^{2}\|\nabla f(x)\|_{2}^{2}-\left\|x-x^{*}\right\|_{2}^{2}+\left\|x-x^{*}\right\|_{2}^{2}\right) \\
& f\left(x^{+}\right)-f\left(x^{*}\right) \leq \frac{1}{2 t}\left(\left\|x-x^{*}\right\|_{2}^{2}-\left\|x-t \nabla f(x)-x^{*}\right\|_{2}^{2}\right) \tag{6.4}
\end{align*}
$$

where the final inequality is obtained by observing that expanding the square of $\left\|x-t \nabla f(x)-x^{*}\right\|_{2}^{2}$ yields $\left\|x-x^{*}\right\|_{2}^{2}-2 t \nabla f(x)^{T}\left(x-x^{*}\right)+t^{2}\|\nabla f(x)\|_{2}^{2}$. Notice that by definition we have $x^{+}=x-t \nabla f(x)$. Plugging this in to (?? 6.4) yiflds:

$$
\begin{equation*}
f\left(x^{+}\right)-f\left(x^{*}\right) \leq \frac{1}{2 t}\left(\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{+}-x^{*}\right\|_{2}^{2}\right) \tag{6.5}
\end{equation*}
$$

This inequality holds for x^{+}on every iteration of gradient descent. Summing over iterations, we get:

$$
\begin{align*}
\sum_{i=1}^{k} f\left(x^{(i)}-f\left(x^{*}\right)\right. & \leq \sum_{i=1}^{k} \frac{1}{2 t}\left(\left\|x^{(i-1)}-x^{*}\right\|_{2}^{2}-\left\|x^{(i)}-x^{*}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x^{(0)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k)}-x^{*}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t}\left(\left\|x^{(0)}-x^{*}\right\|_{2}^{2}\right) \tag{6.6}
\end{align*}
$$

where the summation on the right-hand side disappears because it is a telescoping sum. Finally, using the fact that f decreasing on every iteration, we can conclude that

$$
\begin{align*}
f\left(x^{(k)}\right)-f\left(x^{*}\right) & \leq \frac{1}{k} \sum_{i=1}^{k} f\left(x^{(i)}\right)-f\left(x^{*}\right) \\
& \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t k} \tag{6.7}
\end{align*}
$$

where in the final step, we plug in (??) to get the inequality from (??) that we were trying to prove.

Theorem 6.2 Suppose the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and differentiable, and that its gradient is Lipschitz continuous with constant $L>0$, i.e. we have that $\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}$ for any x, y. Then if we run gradient descent for k iterations with step size t_{i} chosen using backtracking line search on each iteration i, it will yield a solution $f^{(k)}$ which satisfies

$$
\begin{equation*}
f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \frac{\left\|x^{(0)}-x^{*}\right\|_{2}^{2}}{2 t_{\min } k} \tag{6.8}
\end{equation*}
$$

where $t_{\min }=\min \{1, \beta / L\}$

Convex f. From Theorem? ${ }^{6.1}$? we know that the convergence rate of gradient descent with convex f is $O(1 / k)$, where k is the number of iterations. This implies that in order to achieve a bound of $f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq$ ϵ, we must run $O(1 / \epsilon)$ iterations of gradient descent. This rate is referred to as "sub-linear convergence."
Strongly convex \boldsymbol{f}. In contrast, if we assume that f is strongly convex, we can show that gradient descent converges with rate $O\left(c^{k}\right)$ for $0<c<1$. This means that a bound of $f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \epsilon$ can be achieved using only $O(\log (1 / \epsilon))$ iterations. This rate is typically called "linear convergence."

6.1.4 Pros and cons of gradient descent

The principal advantages and disadvantages of gradient descent are:

- Simple algorithm that is easy to implement and each iteration is cheap; just need to compute a gradient
- Can be very fast for smooth objective functions, i.e. well-conditioned and strongly convex
- However, it's often slow because many interesting problems are not strongly convex
- Cannot handle non-differentiable functions (biggest downside)

Subgradients

Definition 6.3 A subgradient of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at some point x is any vector $g \in \mathbb{R}^{n}$ that achieves the same lower bound as the tangent line to f at x, i.e. we have

$$
f(y) \geq f(x)+g^{T}(y-x) \quad \forall x, y
$$

The subgradient g always exists for convex functions on the relative interior of their domain. Furthermore, if f is differentiable at x, then there is a unique subgradient $g=\nabla f(x)$. Note that subgradients need not exist for nonconvex functions (for example, cubic functions do not have subgradients at their inflection points).

6.2.1 Examples of subgradients

absolute value. $f(x)=|x|$. Where f is differentiable, the subgradient is identical to the gradient, sign (x). At the point $x=0$, the subgradient is any point in the range $[-1,1]$ because any line passing through $x=0$ with a slope in this range will lower bound the function.
$\ell_{\mathbf{2}}$ norm. $f(x)=\|x\|_{2}$. For $x \neq 0, f$ is differentiable and the unique subgradient is given by $g=x /\|x\|_{2}$. For $x=0$, the subgradient is any vector whose ℓ_{2} norm is at most 1 . This holds because, by definition, in order for g to be a subgradient of f we must have that

$$
f(y)=\|y\|_{2} \geq f(x)+g^{T}(y-x)=g^{T} y \quad \forall y
$$

In order for $\|y\|_{2} \geq g^{T} y$ to hold, g must have $\|g\|_{2} \leq 1$.
$\boldsymbol{\ell}_{1}$ norm. $f(x)=\|x\|_{1}$. Since $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$, we can consider each element g_{i} of the subgradient separately. The result is very analogous to the subgradient of the absolute value function. For $x_{i} \neq 0$, $g_{i}=\operatorname{sign}\left(g_{i}\right)$. For $x_{i}=0, g_{i}$ isanypointin $[-1,1]$.
maximum of two functions. $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$, where f_{1} and f_{2} are convex and differentiable. Here we must consider three cases. First, if $f_{1}(x)>f_{2}(x)$, then $f(x)=f_{1}(x)$ and therefore there is a unique subgradient $g=\nabla f_{1}(x)$. Likewise, if $f_{2}(x)>f_{1}(x)$, then $f(x)=f_{2}(x)$ and $g=\nabla f_{2}(x)$. Finally, if $f_{1}(x)=f_{2}(x)$, then f may not be differentiable at x and the subgradient will be any point on the line segment that joints $\nabla f_{1}(x)$ and $\nabla f_{2}(x)$.

6.2.2 Subdifferential

Definition 6.4 The subdifferential of a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at some point x is the set of all subgradients of f at x, i.e. we say

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n}: g \text { is a subgradient of } f \text { at } x\right\}
$$

An important property of the subdifferential $\partial f(x)$ is that it is a closed and convex set, which holds even for nonconvex f. To verify this, suppose we have two subgradients $g_{1}, g_{2} \in \partial f(x)$. We need to show that $g_{0}=\alpha g_{1}+(1-\alpha) g_{2}$ is also in $\partial f(x)$ for arbitrary α. If we write the following inequalities,

$$
\begin{gathered}
\alpha\left(f(y) \geq f(x)+g_{1}^{T}(y-x)\right) \alpha \\
(1-\alpha)\left(f(y) \geq f(x)+g_{2}^{T}(y-x)\right)(1-\alpha)
\end{gathered}
$$

which follow from the definition of subgradient applied to g_{1} and g_{2}, we can add them together to yield $f(y) \geq f(x)+\alpha g_{1}^{T}(y-x)+(1-\alpha) g_{2}^{T}(y-x)=g_{0}^{T}(y-x)$.

7.2.1 Subgradient method

For convex f, not necessarily differentiable, subgradient method finds the lowest value of the criterion by:

$$
x^{(k)}=x^{(k-1)}-t_{k} g^{(k-1)}, \quad, k=1,2,3, \cdots
$$

where $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$. Note that it is not a decent method, that the next iterative doesn't always find the lower criterion. So we need to keep the best lowest criterion value at every iteration, i.e., $f\left(x_{\text {best }}^{(k)}\right)=\min _{i} f\left(x^{(i)}\right)$.

7.2.2 Choosing the step size

i) Fixed step size: $t_{k}=t \forall k$.

However, for subgradient method, we do not typically chose fixed step size.
ii) Diminishing step size (Standard): choose t_{k} that is square summable but not summable.

$$
\sum_{k=1}^{\infty} t_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty}=\infty
$$

Note that step sizes are all pre-defined, not adaptively computed during the optimization iteration.

7.2.3 Convergence analysis

i) Fixed step size: Suboptimal Convergence.

For convex, not differentiable function f, if the function itself is Lipschitz with constant G such as,

$$
|f(x)-f(y)| \leq G\|x-y\|_{2} \quad \forall x, y
$$

subgradient method using fixed step size t would give a point that is suboptimal such as,

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leq f\left(x^{*}\right)+G^{2} \frac{t}{2}
$$

In other words, the smaller the step size, the smaller the difference would be between the optimal and suboptimal convergence.
ii) Diminishing step size that is square summable: Optimal Convergence.

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f\left(x^{*}\right) .
$$

Note that subgradient method is applicable to functions that may not look like Lipschitz, since the over the bounded set the function can be Lipschitz.

Projection Method

Projected subgradient method can be used to minimize a convex function over a convex set C:

$$
\min _{x \in C} f(x)
$$

It is same as usual subgradient update except we project the solution back on to C every time so that at every iteration we move in the direction of the subgradient but still lies in the set C.

$$
x^{(k)}=P_{C}\left(x^{(k-1)}-t_{k} g^{(k-1)}\right), \quad k=1,2,3, \cdots
$$

Alternative method:

$$
\min _{x \in C} f(x)=\min _{x \in \mathbb{R}^{n}} f(x)+I_{C}(x)
$$

Examples for projection onto solution set C:

i) $C=\left\{y: y_{i} \geq \forall i\right\} \Rightarrow\left[P_{C}(x)\right]_{i}=\max \left\{x_{i}, 0\right\}$.

7.2.7 Basic Pursuit Problem

We can use projected subgradient method to solve the basic pursuit problem:

$$
\min _{\beta \in \mathbb{R}^{p}}\|\beta\|_{1} \text { s.t. } X \beta=y \text {. }
$$

In this case, the solution set is $C=\{\beta: X \beta=y\}$.
The projection on to solution set C is $P_{C}(\beta)=\beta+X^{T}\left(X X^{T}\right)^{-1}(y-X \beta)$ as shown in example 2 above. Projected subgradient method performs step

$$
\begin{aligned}
\beta^{(k)} & =P_{C}\left(\beta^{(k-1)}-t_{k} g^{(k-1)}\right) \\
& \left.=\beta^{(k-1)}-t_{k} g^{(k-1)}+X^{(} X X^{T}\right)^{-1}\left(y-X \beta^{(k-1)}+X t_{k} g^{(k-1)}\right) \\
& =\beta^{(k-1)}-\left(I-X^{T}\left(X X^{T}\right)^{-1} X\right) t_{k} g^{(k-1)}
\end{aligned}
$$

Where, $g^{(k-1)} \in \partial\left\|\beta^{(k-1)}\right\|_{1}$.

