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Abstract— Tight frames, also known as general Welch-Bound- on our work in [2], [3]. The algorithm alternately finds the
Equality sequences, generalize orthonormal systems. Numer- nearest tight frame to a given ensemble of structured vectors;
ous applications—including communications, coding and sparse hap it finds the ensemble of structured vectors nearest to
approximation—require finite-dimensional tight frames that pos- . . - P .
sess additional structural properties. This paper proposes an the “th fr?me’ and it repeats the procmisw.mmltum This
alternating projection method that is versatile enough to solve t€chnigue is analogous to the method of projection on convex
a huge class of inverse eigenvalue problems, which includes thesets (POCS) [4], [5], except that the class of tight frames is
frame design problem. To apply this method, one only needs to non-convex, which complicates the analysis significantly. Nev-
solve a matrix nearness problem that arises naturally from the ertheless, our alternating projection algorithm affords simple

design specifications. Therefore, it is fast and easy to develop. . . . . o
versions of the algorithm that target new design problems. implementations, and it provides a quick route to solve difficult

Alternating projection will often succeed even if algebraic con- frame design problems. We argue that similar techniques apply
structions are unavailable. to a huge class of inverse eigenvalue problems.

To demonstrate that alternating projection is an effective tool  Thjs article demonstrates the elegance and effectiveness of
for frame design, the article studies some important structural 4,4 alternating projection approach with several examples that

properties in detail. First, it addresses the most basic de- tivated b licati First dd th t basi
sign problem—constructing tight frames with prescribed vector are motivated Dy applications. FIrst, we address the most basic

norms. Then, it discusses equiangular tight frames, which are frame design problem—building tight frames with prescribed
natural dictionaries for sparse approximation. Last, it examines vector norms. This problem arises when constructing signa-

tight frames whose individual vectors have low peak-to-average- tyre signatures for direct-spread, synchronous code division
power rafio (PAR), which is a valuable property for CDMA 1tiaccess (DS-CDMA) systems [6]-[8]. Second, we discuss

applications. Numerical experiments show that the proposed . - )
algorithm succeeds in each of these three cases. The appendicegqu"'jmgular tight frames, which have the property that each

investigate the convergence properties of the algorithm. pair of distinct vectors meets at the same (acute) angle.
. : These frames have many applications in coding and com-
Index Terms— Frames, sequences, algorithms, eigenvalues and L . .
eigenfunctions, inverse problems, geometry, extremal problems, Munications [9]-[12], and they also form natural dictionaries
code division multiaccess for sparse approximation [13]-[15]. Third, we examine tight
frames whose individual vectors have low peak-to-average-
|. INTRODUCTION power ratio (PAR), which is another valuable property for DS-

CDMA signatures [3]. Our experiments show that alternating

IGHT FRAMES provide a natural generalization of or-=—."" . . -
thonormal systems, and they arise in numerous practi(? Pjectlon outperforms some algorithms that were specifically
' signed to solve these problems.

and theoretical contexts [1]. There is no shortage of tig £

frames, and applications will generally require that the vector?Th?[r?ppeATt?]'Cesr']nVﬁSt'giFe the cpn\i_ergebnti\?vpropertkljes of the
comprising the frame have some kind of additional structur@ J0Mthm- ough afternating projection between subspaces

'gd convex sets has been studied in detail, very few results

For example, it might be necessary for the vectors to ha@r vailable for an alternating broiection between two non
specific Euclidean norms, or perhaps they should have snfgff dvarable for an alternating projection betwee © non-
nvex sets. This paper provides a rigorous treatment of the

mutual inner products. Thus arises a design problem: How 8? thm's behavior in thi | setting b £ th
you build a structured tight frame? algorithm’s behavior in this general setting by means of the

theory of point-to-set maps. In particular, we establish a weak
G global convergence result, and we show that, under additional
A. Contributions . L
_ ) _ _ hypotheses, the algorithm exhibits stronger local convergence
To address the design question, this article proposes,@perties.
numerical method based on alternating projection that buildsygte that there is a major conceptual difference between the
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B. Previous Work frames whose individual vectors have low peak-to-average-
At root, finite-dimensional frame design is an algebraifOWer ratio. Each of these sections contains numerical exper-

problem. It boils down to producing a structured matri{Ments. The body of the paper concludes with Section VI,
with certainspectral properties, which may require elaborat&vhich discusses the method, its limitations and |t§ extenS|oqs.
discrete and combinatorial mathematics. In the past, mostl Ne back matter contains the bulk of the analysis. Appendix
design methods have employed these techniques. To appredia@éers a tutorial on point-to-set maps, and Appendix I
the breadth of this literature, one might peruse Sarwate’s rec@RPlies this theory to obtain a rigorous characterization of
survey paper about tight frames with unit-norm vectors [16'}*.‘9 algorithm’s convergence behavior. The first appendix also
The last few years have also seen some essentially a|geb|:é]@tains a brief survey of the alternating projection literature.
algorithms that can construct tight frames with non-constant
vector norms [7], [17], [18]. Il. TIGHT FRAMES

When algebraic methods work, they work brilliantly. A . . . ) )
numerical approach like alternating projection can hardly hope T his section offers a terse introduction to the properties of
to compete with the most profound insights of engineers afight frames that are essential for our method. For more details,
mathematicians. On the other hand, algebraic and combiS&€ [1], for example.
toric tools are not always effective. For example, we might
require a structured tight frame for a vector space Whog\g
dimension is not a prime-power. Even in these situations,
alternating projection will usually succeed. Moreover, it can Let a and § be positive constants. Ainite frame for
help researchers develop the insight necessary for completii§ complek Hilbert spaceC? is a sequence ol vectors
an algebraic construction. The power of alternating projectidf}n—1 drawn fromC¢ that satisfies a generalized Parseval
comes from replacing the difficult algebra with a simple an&ondition:
lytic question: How does one find an ensemble of structured N
vectors nearest to a given tight frame? This minimization a |[v]5 <> [(v,z,)[* < 3 [lv|[; forallveC. (1)
problem can usually be dispatched with standard tools, such n=1

as%gﬁ;g:ﬁhf:gﬂg: %Lf%r#::]ﬁ::n_(;ﬁzl:e:utj:fgrr%él aWe denote the Euclidean inner product with), and we write
y -\_\2 for the associated norm. The numberand 3 are called

proaches to frame design. It appears that most current Ie lower andupper frame boundsThe number of vectors in

gorithms can be traced to the d|scovery. by RUpf_MaS.Sﬁ)(e frame may be no smaller than the dimension of the space
[6] and Viswanath—Anantharam [7] that tight frames wit ie. N > d)

prescribed column rorms are 'the optimal sequences fpr éh‘ it is possible to takev = 3, then we have sight frameor
CDMA systems. This application prompted a long series of = .. .
i . Lo . an a-tight frame When the frame vectors all have unit norm,
papers, including [19]-[23], that describe iterative methods for _ . . .
Le. ||xn|l, = 1, the system is called anit-norm frame Unit-

constructing tight frames with prescribed column norms. Theac]ca{rm tight frames are also known &gelch-Bound-Equality

techniques are founded on an oblique characterization of ti%equence$12] [24]. Tight frames with non-constant vector

frames as the minimizers of a quantity caltetal squared cor- norms have also been callagneral Welch-Bound-Equality
relation (TSC). It is not clear how one could generalize thesseequence{ﬂ]
methods to solve different types of frame design problems: '
Moreover, the alternating projection approach that we propose
significantly outperforms at least one of the TSC-minimizatioB. Associated Matrices
algorithms. Two of the algebraic methods that we mentioned
above, [7] and [18], were also designed with the DS-CDMA
application in mind, while the third algebraic method [17]
comes from thesoi-disantframe community. We are not aware
of any other numerical methods for frame design. This matrix is referred to as tifeame synthesis operatobut
we shall usually identify the synthesis operator with the frame
C. Outline itself. _ _ _ _ _
. . , , . . Two other matrices arise naturally in connection with the
Section I co'ntlnues. with a short introduction to t'gmframe. We define th&ram matrixas G 2 X*X. (The symbol
fra”?es- Then, in Sect|on_ lll, we state two fo_rmal frame indicates conjugate transposition of matrices and vectors.)
_de5|gn pr_oblems. Connections among frame design problenfﬁe diagonal entries of the Gram matrix equal the squared
inverse eigenvalue problems and matrix nearness problemsr;?tgfams of the frame vectors, and the off-diagonal entries of the

estgbhghed. Th.'s provides a natural segue to the alter_nategam matrix equal the inner products between distinct frame
projection algorithm. Afterward, we apply the basic algor'thr(}ectors. The Gram matrix is always Hermitian and positive

to design three different types of structured frames, in ordgémi-definite and it has rank
of increasing implementation difficulty. Section IV discusses ’
tight frames with prescribed column norms; Section V coversiye work with complex vectors for complete generality. The adaptations

equiangular tight frames; and Section VI constructs tigldr real vectors are transparent.

Frames

Form ad x N matrix with the frame vectors as its columns:

X:[ml Ty XT3 ... acN].



The positive-definite matrixX™* is usually called thérame [1l. DESIGN VIA ALTERNATING PROJECTIONS

operator. Since This section begins with formal statements of two frame

N ) design problems. Next we establish a connection with inverse
v (XX )v = Z|<v,wn>| eigenvalue problems. It becomes clear that an alternating
n=1 projection algorithm offers a simple and natural approach to
we can rewrite (1) as general inverse eigenvalue problems, including both frame
. R design problems. We then solve the matrix nearness prob-

v*(XX*)v : : . ;
a< L2 <4, (2) lems that arise when implementing the proposed algorithm.

v*v -

The section concludes with a discussion of the algorithm’s

That is, any Rayleigh quotient afX* must lie betwee and  convergence properties.

S. It follows from the Courant—Fischer Theorem [25] that each

eigenvalue of the frame operator lies in the interival3].
When the frame is-tight, the condition (2) is equivalent to

the statement thaXX* = «l,;. Three other characterizations Define the collection ofl x N «-tight frames:

of an a-tight frame follow immediately.

A. Structured Tight Frames

def *
Proposition 1: A d x N frame X is a-tight if and only if Zo ZAX €TV XX = alg}. ©)
it satisfies one (hence all) of the following conditions. We fix the tightness parameter for simplicity. It is easy to
1) All d non-zero singular values of equal/a. extend our methods to situations where the tightness is not
2) All d non-zero eigenvalues of the Gram matiX X predetermined, and one can apply similar ideas to construct
equala. frames with prescribed upper and lower frame bounds, viz.
3) The rows ofa~1/2 X form an orthonormal family. the parameters and 5 in (1). It is worth noting that%,, is

These properties undergird our method for constructing tigbgsentially the Stiefel manifold, which consists of all sets of
frames. It is now clear that the being a tight frame &pactral ¢ orthonormal vectors irC" [28].

requirement on the matrix. Let . denote a closédcollection of d x N matrices
that possess some structural property. In the sequel, we shall
C. Norms of Frame Vectors explore several different structural constraints that have arisen

in electrical engineering contexts. Section IV considers tight
"M&mes with specified column norms, and Section VI shows
how to construct tight frames whose individual vectors have
e, Hwan- a low peak-to-average-power ratio. Many other structural

. o ) , ) properties are possible.
There is an intimate relationship between the tightness paramgach constraint set” raises a basic question.

eter of ana-tight frame and the norms of its columns. The
computation is straightforward: Problem 1: Find a matrix in. that is minimally distant
from 2, with respect to a given norm.

of the frame vectors as

N N
ad=TrXX* =Tr X*X = Z ||$nH§ = ch (3) If the two sets intersect, any solution to this problem is
n=1 n=1 a structured tight frame. Otherwise, the problem requests a
The notatioriTr (-) represents the matrix trace operator, whichtructured matrix that is “most nearly tight” A symmetric
sums the diagonal entries of its argument. problem is to find a tight frame that is “most nearly structured.”
A related point is that one cannot construct a tight frame
with an arbitrary set of column norms. According to the Schulg  giructured Gram Matrices

Horn Theorem, a Hermitian matrix can exist if and only if its ] ] )
diagonal entries majoridts eigenvalues [25], [26]. )X is If the structural constraints restrict the inner products be-

ad x N tight frame, thed non-zero eigenvalues of its GramtWeen frame vectors, it may be more natural to work with
matrix all equaly>, ¢, /d. Meanwhile, the diagonal entries OfGram matrices. Deflne.a collect|oln that contains the Gram
the Gram matrix are, . .., cx. In this case, the majorization matrices of alld x N a-tight frames:

condition is equivalent to the system of inequalities .
a y a G, (G e CNN . G = G* and
N
1 .
0< ey < . ch for eachk = 1.....N. 4) G has eigenvaluegy, ..., a,0,...,0)}. (6)
n=1 d

It follows that a tight frame with squared column normJhe set¥, is essentially the Grassmannian manifold that

c1,...,cy exists if and only if (4) holds. For an arbitraryconsists ofi-dimensional subspaces©f' [29]. One may also
set of column norms, the frames that are “closest” to beirgdentify the matrices ir4, as rankd orthogonal projectors,
tight have been characterized in [7], [27]. scaled bya. (An orthogonal projector can be defined as an

2The literature equivocates about the direction of the majorization relation.3We equipC¢*~N andCN >N with the topology induced by the Frobenius
We adopt the sense used by Horn and Johnson [25]. norm, which is identical with every other norm topology [25].



idempotent, Hermitian matrix. The rank of a projector equals Here is the basic idea behind alternating projection. We
the dimension of its range.) seek a point of intersection between the set of matrices that
Let 2 be a closed collection oV x N Hermitian ma- satisfy a structural constraint and the set of matrices that
trices that possess some structural property. In Section d4tisfy a spectral constraint. An alternating projection begins
for example, we shall consider equiangular tight frames. Tla a matrix in the first set, from which it computes a matrix
Gram matrices of these frames have off-diagonal entries with minimal distance in the second set. Then the algorithm
identical moduli, and it is an important challenge to constructéverses the roles of the two sets and repeats the pradess
them. infinitum Alternating projection is easy to apply, and it is
Once again, a fundamental question arises. usually globally convergent in a weak sense, as we show later.

Problem 2: Find a matrix in%,, that is minimally distant

from 2 with respect to a given norm. D. Alternating Projections

Let us continue with a formal presentation of the generic
If the two sets intersect, any solution to this problem will ligyternating projection method for solving inverse eigenvalue
in the intersection. Otherwise, the problem requests a tighfoblems. Suppose that we have two collectiof#s, and
frame whose Gram matrix is “most nearly structured.” We dg, of matrices with identical dimensions. Of course, we
not mention the problem of producing a matrix.## that is are imagining that one collection of matrices incorporates a
nearest ta%, because it is not generally possible to factor gpectral constraint while the other collection incorporates a

matrix in .72 to obtain a frame with dimensionéx . structural constraint. To ensure that the algorithm is well-
posed, assume that one collection is closed and the other is
C. Inverse Eigenvalue Problems compact.

We view Problems 1 and 2 agverse eigenvalue probIemsIN'SLch_mthm 1 (Alternating Projection):

(IEPs). As Chu explains in [30], an IEP is an inquiry about ) L ) ) _ )
structured matrices with prescribed spectral properties. Thes@ AN (arbitrary) initial matrix Yo with appropriate dimen-
spectral properties may include restrictions on eigenvalues, sions , i
eigenvectors, singular values or singular vectors. According® '€ number of iterations/
to Proposition 1, the defining characteristic of a tight frame QUTPUT: - -
its spectrum, so frame design is an IEP. e Amatrix Y in ¢ and a matrixZ in &
In the study of IEPs, the two fundamental questions aRROCEDURE
solvability and computability The former problem is to find 1) nitialize j = 0.
necessary or sufficient conditions under which a given IEP2) Find a matrixZ; in 2 such that
has a solution. The latter problem is how to produce a matrix .
that has given spectral properties and simultaneously satisfies Zj € arg mi [|Z = Yj[p.
a structural constraint. The solvability and computability of
some classical IEPs have been studied extensively by the3
matrix analysis community, although many open problems still )
remain. The articles [30], [31] survey this literature. Yj+1 € argmin [|Y — Z;| .
Although specific IEPs may require carefully tailored nu- rEes
merical methods, there are a few general tools available. Onet) Incrementj by one.
scheme is the coordinate-free Newton method, which has bee®) Repeat Steps 2—4 unfil=J.
explored in [32]-[34]. Newton-type algorithms do not apply 6) LetY =Y, andZ =2;_;.
to most problems, and they only converge locally. Another A solution to the optimization problem in Step 2 is called a
general method is the projected gradient approach develogediectionof Y; onto 2 in analogy with the case whet# is a
by Chu and Driessel in [35]. This technique involves numerichear subspace. Step 3 computes the projectiafi;ainto %'.
integration of a matrix differential equation, which relies omn a Hilbert space, it can be shown geometrically that a given
advanced software that may not be readily available. Anothgwsint has a unique projection onto each closed, convex set.
problem with Newton methods and projected gradient methoBsojections onto general sets may not be uniquely determined,
is that they may not handle repeated singular values well. Thigich fiercely complicates the analysis of Algorithm 1.
shortcoming makes them a poor candidate for constructingvon Neumann, in 1933, was the first to consider alternating
tight frames, which have only two distinct singular values. projection methods. He showed that%f and & are closed,
This article concentrates on alternating projection, whidimear subspaces of a Hilbert space, then alternating projection
has occasionally been used to solve inverse eigenvalue probrverges to the point i N 2 nearest toYy [39]. In
lems (in [36] and [37], for example). But alternating projectiod959, Cheney and Goldstein demonstrated that alternating
has not been recognized as a potential method for solvipmpjection between two compact, convex subsets of a Hilbert
any type of inverse eigenvalue problem. The most generspace always yields a point in one set at minimal distance from
treatment of alternating projection in the IEP literature ithe opposite set [4]. These two results inspired the application
probably [38], but the authors do not offer a serious analysi$ Algorithm 1 to the inverse eigenvalue problems, Problems
of their algorithm’s behavior. 1 and 2. Of course, the constraint sets that we consider are

We use||-|| to indicate the Frobenius norm.
Find a matrixY;,; in ¢ such that



generallynot convex. For a more extensive discussion of the Assume in addition thaZ has full row-rank. Thenx UV*
literature on alternating projection, turn to Appendix I-G. is the uniquea-tight frame closest t&. Moreover, one may

To implement the alternating projection algorithm, one musbmputeUV* using the formula Zz*)~1/2 Z.
first solve the minimization problems in Steps 2 and 3. For Proof: The proof of this well-known result is similar to
obvious reasons, these optimizations are called rifarix that of Theorem 3, which appears below. See also pp. 431-432
nearness problemassociated with?” and 2. Already there of [25]. Classical references on related problems include [45],
is an extensive literature on matrix nearness problems. SEH]. The formula for the polar factor may be verified with a
for example, the articles [40]-[42], the survey [43] and mangirect calculation. ]
sections of the book [25]. Section IlI-F exhibits solutions to It is also straightforward to compute a matrix4f, nearest
the nearness problems associated with the spectral constraimtan arbitrary Hermitian matrix. This theorem appears to be
Z, and¥,. Even when it is necessary to solve a new nearnessvel, so we provide a short demonstration.
problem, this task often reduces to an exercise in differentialTheorem 3:Suppose thaZ is anN x N Hermitian matrix
calculus. This is one of the great advantages of Algorithm with a unitary factorizationrUAU*, where the entries ofl are
In this article, we shall always measure the distance betwesmanged in algebraically non-increasing order. Ligtbe the
matrices using the Frobenius nolifr|. because it facilitates N x d matrix formed from the firsd columns of U. Then
the solution of matrix nearness problems. Of course, one could/;U;" is a matrix in%, that is closest t&Z with respect to
develop a formally identical algorithm using other normgshe Frobenius norm. This closest matrix is unique if and only
metrics or divergences. if Ag strictly exceeds\ ;.

Since the constraint sets are generally non-convex, alternat- Proof: We must minimize||Z — « G|| over all rank-
ing projection may not converge as well as one might wish. orthogonal projectors;. Square and expand this objective
This explains why we have chosen to halt the algorithm aftésnction:
a fixed number of steps instead of waiting foY; — Y1 2 2 2 .
to decline past a certain threshold. Indeed(,pit‘7 is th7e+or|<|§[ically 1Z = aGllp = 2]l +o* [ Gllp — 20 ReTr 67Z.
possible that the sequence of iterates will not converge jhe squared Frobenius norm of an orthogonal projector equals
norm. In practice, it appears that norm convergence always rank, so we only need to maximize the (negation of) the
occurs. Section IlI-G provides a skeletal discussion of thgst term.
theoretical convergence of alternating projection. We do notEvery rankd orthogonal projectorG can be written as
flesh out the analysis until Appendices | and Il because @ = VVv*, where theN x d matrix V satisfiesV*V = |,.
proper treatment requires some uncommon mathematics. Meanwhile, we may factaZ into its eigenvalue decomposition
UAU*, where U is unitary andA is a diagonal matrix with
non-increasing, real entries. Using the properties of the trace

operator, we calculate that
To solve Problem 1, we propose an alternating projection

E. Application to Problems 1 and 2

between the structural constraint s¢f and the spectral ReTr G*Z = ReTr (VV*)(UAU")
constraint setZ,,. Two matrix nearness problems arise. In the =ReTr (UVW*U) A
next subsection, we demonstrate how to find a tight frame in N

Z. nearest to an arbitrary matrix. Sections IV and VI contain = Re Z(U* VW*U) i A
detailed treatments of two different structural constraints. n—1

To solve Problem 2, we alternate between the spectralopserve thatU* VV*U is a positive semi-definite matrix
constraint%, and the structural constrain?”. In the next \hose eigenvalues do not exceed one. Therefore, the diagonal
subsection, we show how to produce a matrix4n that is  gntries of U*VV*U are real numbers that lie between zero

nearest to an arbitrary matrix. In Section V, we analyze g, one inclusive. Moreover, these diagonal entries must sum
specific structural constraing”’. After performing the alter- {4 7 pecause

nating projection, it may still be necessary to extract a frame ) )
X from the output Gram matrix. This is easily accomplished Tr U WU = |[U V| = [V = d.
with a rank-revealing QR factorization or with an eigenvaIuE
o . follows that
decomposition. Refer to [44] for details.

d
max ReTrG*Z < Z)\n.
F. Nearest Tight Frames ¢ n=1

Standard tools of numerical linear algebra can be usedtbe bound is met whenever the diagonalbfv/V* U contains
calculate an-tight frame that is closest to an arbitrary matrix! ones followed by(N — d) zeroes. This sufficient condition
in Erobenius norm. for attainment can be written

Theorem 2:Let N > d, and suppose that thex N matrix AN
Z has singular value decompositid® V/*. With respect to UWIU = la © On-a.
the Frobenius norm, a nearesttight frame toZ is given Furthermore, ifA; > A4y1, this condition is also necessary.
by o UV*. Note that UV* is the unitary part of a polar Form a matrixU; by extracting the first/ columns of U.
factorization ofZ. Then the sufficient condition holds whenever= VV* =



UgUg*. That is, G is the orthogonal projector onto an§ are some finite algorithms available that yield a small number
dimensional subspace spanned by eigenvectors correspondihgolutions to the problem [7], [18]. These methods exploit
to thed algebraically largest eigenvalues 8f If A\; > A\4+1, the connection between frames and the Schur—Horn Theorem.
this subspace is uniquely determined. The orthogonal projecidrey work by applying plane rotations to an initial tight frame
onto a fixed subspace is always unique, and the uniquentssadjust its column norms while maintaining its tightness.
claim follows. B Casazza and Leon have also developed a finite method that
It may be valuable to know that there are specialized algseems different in spirit [17].
rithms for performing the calculations required by Theorems To construct larger collections of frames, some authors
2 and 3. For example, Higham has developed stable numericale proposed iterative algorithms [19]-[23]. These techniques
methods for computing the polar factor of a matrix [47]attempt to minimize théotal squared correlatiofTSC) of an
[48] that are more efficient than computing a singular valuaitial matrix subject to constraints on its column norms. The
decomposition or applying the formule@z*)~1/2 Z. TSC of a matrix is defined as

TSC(S) = [[S*S|7 = [(Sm, sn)[*.

G. Basic Convergence Results

It should be clear that alternating projection never increasgSye fix the squared column norms & to becy,. .., cn, a

the distance between successive iterates. This does not Mgl aigebraic manipulation shows that minimizing the TSC
that it will locate a point of minimal distance between the, equivalent to solving

constraint sets. It can be shown, however, that Algorithm 1 is
globally convergent in a weak sense. msin |SS* — algl|p

Define the distance between a poMtand a set” via o )
where o = )" ¢,/d. In words, minimizing the TSC is

dist(M, %) = Jof, Y =M|g. equivalent to finding a frame with prescribed column norms
i that is closest in Frobenius norm to a tight frame [53].
Theorem 4 (Global Convergence _Of Algorlthm et & In comparison, alternating projection affords an elegant way
and 2 be closed sets, one of which is bounded. SUPPORE . ,qyce many tight frames with specified column norms. It
that alternating projection generates a sequence Of iteraigs seq on the essential property of a tight frame—its singular
{(Y;,Z;)}. This sequence has at least one accumulation poigky es_to solve the problem. In this special case, we provide

« Every accumulation point lies i’ x 2. a complete accounting of the behavior of the alternating
« Every accumulation pointY’, Z) satisfies projection. Moreover, experiments show that it outperforms
vV _ . some of the other iterative algorithms that were developed
1Y = 2|y = tim (1) = Z|p- a . g P
j—o0 specifically for this problem.

« Every accumulation pointY’, Z) satisfies

I — — A. Constraint Sets and Nearness Problems
HY — ZHF =dist(Y, 2) = dist(Z,%).

The algorithm will alternate between the set of matrices
For a proof of Theorem 4, turn to Appendix II-A. In somewith fixed column norms and the set of tight frames with an
special cases, it is possible to develop stronger convergea@@ropriate tightness parameter.
results and characterizations of the fixed points. We shallLet the positive numberg;,...,cy denote the squared
mention these results where they are relevant. The convergeasiimn norms that are desired. We do not require that these
of Algorithm 1 is geometric at best [49]-[52]. This is the majonumbers satisfy the majorization inequalities given in (4),
shortfall of alternating projection methods. although one cannot hope to find a tight frame if these
Note that the sequence of iterates may have many acimequalities fail. In that case, we would seek a matrix with the
mulation points. Moreover, the last condition does not implgrescribed column norms that is closest to being a tight frame.
that the accumulation pointY, Z) is a fixed point of the In the DS-CDMA application, the column norms depend on
alternating projection. So what are the potential accumulatitine users’ power constraints [6], [7].
points of a sequence of iterates? Since the algorithm nevein light of (3), the relation between the tightness parameter
increases the distance between successive iterates, the sehdfthe column norms, it is clear thatmust equal_ c,/d.
accumulation points includes every pair of matriceirk 2 The spectral constraint set becomes
that lie at minimal distance from each other. Therefore, we say PR (X e CIN . xx* = (5 en/d)la}.

that the algorithm tries to solve Problems 1 and 2.
Given an arbitaryl x N matrix, one may compute the closest
IV. PRESCRIBEDCOLUMN NORMS tight frame in 2, using Theorem 2.

As a first illustration of alternating projection, let us con- The structural constraint set contains matrices with the
sider the most basic frame design problem: How does o@@rrect column norms.
build a tight frame with prescribed column norms? S LS € CON . an|2 = e}

This question has arisen in the context of constructing Chemiz e
optimal signature sequences for direct-spread synchronduss straightforward to solve the matrix nearness problem
code-division multiple-access (DS-CDMA) channels. Themssociated with this collection.



Proposition 5: Let Z be an arbitrary matrix with columns of structure. Each fixed point can be written as a union of tight
{z,}. A matrix in.# is closest taZ in Frobenius norm if and frames for mutually orthogonal subspacesGs, and the set

only if it has the columns of fixed points is identical with the set of critical points of the
cn 2zn] 120 2, 40 and TSC functional subject to the column norm constraint [23],
M —{ nons iz " [53]. The Ulukus-Yates algorithm, another iterative method
Cn U, z, =0, .. . . oo
for designing tight frames with specified column norms, has

wherew,, represents an arbitrary unit vector. If the columns aflentical fixed points [20].
Z are all non-zero, then the solution to the nearness problem
is unique.

Proof: We must minimize||S — Z|| over all matrices
S from .. Square and rewrite this objective function:

C. Numerical Examples

We offer a few simple examples to illustrate that the
N algorithm succeeds, and we provide some comparisons with
IS — ZHQ _ Z [P ||2- the UIukus—Y_ates algonthm.. . .
F w2 Suppose first that we wish to construct a unit-norm tight
. =t ) ) frame forR3 consisting of five vectors. Initialized with2x 5
We can minimize each summand separately. Fix an index matix whose columns are chosen uniformly at random from

and expand thei-th term using||s. ||, = c.. the surface of the unit sphere, the algorithm returns
2 2 Sn
Isn = zallz = en + llznll; =2 Ven Re < e z">' B 0.1519  0.4258 —0.7778 0.0160 —0.9258
S= 0.9840 —0.6775  0.1882 0.3355 —0.3024 | .
If z, # 0, the uniqgue maximizer oRe (u, z,,) over all unit —0.0926  0.5998  0.5997 0.9419 —0.2269
vectors isu = z,/ ||zx]5. If 2, = 0, then every unit vector
w maximizes the inner product. B Each column norm of the displayed matrix equals one to

machine precision, and the singular values are identical in their
first eight digits. In all the numerical examples, the algorithm
, , . L . __was terminated on the condition th@$; 1 — S, < 1075.
In this setting, alternating projection converges in a falrlﬁnplemented in Matlab, the computation took 65 iterations,
strong sense. which lasted 0.0293 seconds on a 1.6 GHz machine.
Theorem 6:Let Sy have full rank and non-zero columns, Now let us construct a tight frame fdR3 whose five
and suppose that the alternating projection generates a v&ttors have norms 0.75, 0.75, 1, 1.25 and 1.25. With random
quence of iterate$(S;, X;)}. This sequence possesses at leastii~ii-ation we obtain
one accumulation point, s&b, X). ’

B. Convergence Results

- Both S and X have full rank and non-zero columns. — r_ 19903 (1753 _0.7261 00128 —1.0848
» The pair(S5, X) is a fixed point of the alternating projec- § — 0.7045 —0.6786  0.6373 0.0972 —0.6145 |
tion. In other words, if we applied the algorithm foor —0.2263  0.2670  0.2581 1.2461 —0.0894
to X every pair of iterates would equés, X).
« The accumulation point satisfies The column norms are correct to machine precision, and the
R — . singular values are identical to seven digits. The computation
15 =Xllp = jll,rﬁ.lo 155 = Xille - took 100 iterations, which lasted 0.0487 seconds.

« The component sequences are asymptotically regular, i.e'.\leXt we examine a case where the column norms do not

satisfy the majorization condition. Suppose that we seek a
1Si+1 = Sillp — 0 and ||Xj41 — Xj||p — 0. “nearly tight” frame with column norms 0.5, 0.5, 1, 1 and

. ) 2. Random initialization yields
« Either the component sequences both converge in norm,

|S; =S|l =0 and |X;—X]|,—0, _[-01430 01353 —0.4351 —0.0941 —1.8005
S= 0.4293 —0.4213 0.7970 —0.2453 —0.7857 |.
or the set of accumulation points forms a continuum. —0.2127  0.2329  0.4189  0.9649 —0.3754
Proof: See Appendix II-C. ]
In the present case, it is also possible to characterizbe column norms are all correct, but, as predicted, the frame
completely the fixed points of the algorithm that lie §A. is not tight. Nevertheless, the last vector is orthogonal to the

Proposition 7: A full-rank matrix S from . is a fixed point first four vectors, which form a tight frame for their span.
of the alternating projection betweert and .2, if and only if This is an optimal solution to the frame design problem. The
its columns are all eigenvectors §6*. That is,S5*S = S/A, calculation required 34 iterations over 0.0162 seconds.
whereA € CV*¥ is diagonal and positive with no more than Of course, alternating projection can produce complex-
d distinct entries. valued tight frames, as well as larger frames in higher-
Proof: Refer to Appendix II-D. B dimensional spaces. Such ensembles are too large to display
Many of the fixed points in do not lie at minimal in these columns. To give a taste of the algorithm’s general
distance from%,, so they are not solutions to Problem 1performance, we have compared it with our implementation
Nevertheless, the fixed points still have a tremendous amouwifitthe Ulukus-Yates algorithm [20]. To construct unit-norm



Comparative Execution Times in Real Dimension d =64 the fl’ame
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—©— Alternating Projections
—<— Ulukus-Yates algorithm

V. EQUIANGULAR TIGHT FRAMES

In this section, we shall consider a frame design problem
that leads to a simple structural constraint on the Gram matrix.
The goal of the alternating projection will be to design a
suitable Gram matrix, from which the frame may be extracted
afterward.

A tight frame is a generalization of an orthonormal basis
1  because they share the Parseval property. But orthonormal
bases have other characteristics that one may wish to extend.
In particular, every orthonormal basis éxuiangular That
1 is, each pair of distinct vectors has the same inner product,
namely zero. This observation suggests that one seek out
equiangular tight frames. The underlying intuition is that these

20

Execution Time (sec)
=
(4
T

=
o
T

o .
% % 100 120 140 160 160 20 frames will contain vectors maximally separated in space.
Number ofvectors (1) Define anequiangular tight frameo be a unit-norm tight
Fig. 1. Comparison of alternating projection with the Ulukus-Yates algorithrﬁame in which each pair of columns has the sahsolutein-
in 64 real dimensions. ner product. Since we are considering unit-norm tight frames,
the absolute inner product between two frame vectors equals
7 Comparative Execution Times in Complex Dimensiond =64 the cosine of the acute angle between the one-dimensional

subspaces spanned by the two vectors. For this reason are
—— gorithm

the frames called equiangular. One can show that each inner
product in an equiangular tight frame has modulus

60 ¥ i
\

50

1 def N —d
F=\amw =1 ()
40F
It is a remarkable fact thaveryensemble ofV unit vectors

in d dimensions contains a pair whose absolute inner product
strictly exceeds:, unlessthe vectors form an equiangular tight
frame. Unfortunately, equiangular tight frames only exist for
rare combinations of and N. In particular, a real, equiangular
tight frame can exist only ifN < %d(d + 1), while a
complex, equiangular tight frame requires that< 42 [12].

30

Execution Time (sec)

- > The paper [56] contains detailed necessary conditions on real,
% m 100 20 %0 60 180 0 €quiangular tight frames and on equiangular tight frames over
Number of Vectors (N) f|n|te alphabetS.

Fig. 2. Comparison of alternating projection with the Ulukus-Yates algorithm One can Vle_W eqUIangu!ar tlght frames s spemalltype
in 64 complex dimensions. of Grassmannian frameln finite dimensions, Grassmannian

frames are unit-norm frames whose largest absolute inner

product is minimal for a givenrd and N [12]. Their name
tight frames of various lengths, we initialized each algorithis motivated by the fact that they correspond with sphere
with the same random matrix. Then we plotted the comparackings in the Grassmannian manifold of all one-dimensional
ative execution times. Figure 1 shows the results for 64 realbspaces of a vector space [29]. Grassmannian frames have
dimensions, and Figure 2 shows the results for 64 complagplications in coding theory and communications engineering
dimensions. Note the different scales on the time axes.  [9]-[12]. They also provide a natural set of vectors to use for

Both algorithms perform slowly wheV is small because sparse approximation [13]-[15].

tight frames are relatively scarce, which makes them difficult In general, it is torturous to design Grassmannian frames.
to find. Indeed, it is known that (modulo rotations) there existsot only is the optimization difficult, but there is no general
a unique tight frame ofd + 1) vectors ind-dimensional space procedure for deciding when a frame solves the optimization
[54]. Another reason that the alternating projection algorithproblem unless it meets a known lower bound. Most of the
performs better as the problem grows is that a collectiaurrent research has approached the design problem with
of N uniformly random unit-vectors converges almost surelglgebraic tools. A notable triumph of this type is the con-
to a tight frame asV tends to infinity [55]. It is therefore struction of Kerdock codes ovét, andZ, due to Calderbank
perplexing that the Ulukus-Yates algorithm performs more amd al. [57]. Other explicit constructions are discussed in the
more slowly. One might attribute this behavior to the fact thairticles [10], [12]. In the numerical realm, Sloane has used
the algorithm does not act to equalize the singular values lué Gosset software to produce and study sphere packings in



real Grassmannian spaces [58]. Sloane’s algorithms have bgén — H, || < N/(dv/2). The sequence of iterates possesses
extended to complex Grassmannian spaces in [59]. We are abteast one accumulation point, s&y, H).

aware of any other numerical methods. « The accumulation point lies iff, x .7,
In this article, we shall construct equiangular tight frames , The pair (G, H) is a fixed point of the alternating pro-

for real and complex vector spaces using alternating projec- jection. In other words, if we applied the algorithm @
tion. The method can easily be extended to compute other o to 7, every iterate would equdlG, H).

finite Grassmannian frames and packings in higher Grassman; The accumulation point satisfies
nian manifolds, but that is another paper for another day [60].

16—l = lim 16, = .
A. Constraint Sets and Nearness Problems

The signal of an equiangular tight frame is that each inner
product between distinct vectors has the same modulus. Since |Gj41 — Gjllzp — 0 and [[Hj41 — Hj|lp — 0.
the Gram matrix of a tight frame displays all of the inner
products, it is more natural to construct the Gram matrix of ane Either the component sequences both converge in norm,
equiangular tight frame than to construct the frame synthesis
matrix directly. Therefore, the algorithm will alternate between
the collection of Hermitian matrices that have the correct
spectrum and the collection of Hermitian matrices that have
sufficiently small off-diagonal entries.

Since we are working with unit-norm tight frames, the
tightness parametett must equalN/d. This leads to the C. Numerical Examples
spectral constraint set

The component sequences are asymptotically regular, i.e.

16; = Gl — 0 and [|H; — A}, —o0,

or the set of accumulation points forms a continuum.
Proof: See Appendix II-B. ]

First, let us illustrate just how significant a difference there
4, < (G eCVN . G =G* and is between vanilla tight frames and equiangular tight frames.

G has eigenvaluegN/d, ..., N/d,0, ..., 0)}. Eﬁﬁ;é the Gram matrix of a six-vector, unit-norm tight frame
N———— .
d

Theorem 3 shows how to find a matrix #, nearest to an 1.0000  0.2414 —0.6303  0.5402 —0.3564 —0.3543
arbitrary Hermitian matrix 0.2414  1.0000 —0.5575 —0.4578  0.5807 —0.2902

: . : —0.6303 —0.5575  1.0000  0.2947  0.3521 —0.2847
In an equiangular tight frame, each vector has unit norm but 5402 _04578  0.2947  1.0000 —0.2392 —0.5954

no two vectors have inner product larger thanTherefore, | —0.3564  0.5807  0.3521 —0.2392  1.0000 —0.5955
we define the structural constraint set —0.3543  —0.2902 —0.2847 —0.5954 —0.5955  1.0000

A, def {He CN*N . H = H*, Notice that the inner-products between vectors are quite dis-
parate, ranging in magnitude between 0.2392 and 0.6303.
These inner products correspond to acute anglé$af and

It may seem more natural to require that the off-diagonaf-9°- In fact, this tight frame is pretty tame; the largest inner
entries have modulus exactly equal o but our experience products in a unlt—norm.tlght frame can be afbltrarlly c]ose
indicates that the present formulation works better, perhai9s©ON€- Thg Gram matrix of a six-vector, equiangular tight
because’, is convex. The following proposition shows how/"@me forR” looks quite different:

to produce the nearest matrix i#/,.

Proposition 8: Let Z be an arbitrary matrix. With respect|[ 10000 04472 —0.4472  0.4472 —0.4472 —0.4472
0.4472  1.0000 —0.4472 —0.4472  0.4472 —0.4472

diag H =1 and max |h,,| < pu}.
m#n

to Frpbgmus norm, the unique matrix i, closegt toZ has | _gaa7a  _04472  1.0000 04472 04472 —0.4472
a unit diagonal and off-diagonal entries that satisfy 0.4472 —0.4472  0.4472  1.0000 —0.4472 —0.4472
) —0.4472  0.4472  0.4472 —0.4472  1.0000 —0.4472
Zmn if |Zmn| < p and —0.4472  —0.4472 —0.4472 —0.4472 —0.4472  1.0000
hmn = iarg z ;
et dr8Emn otherwise.

Every pair of vectors meets at an acute anglédfi°. The
vectors in this frame can be interpreted as the diagonals of an
icosahedron [29].

We have used alternating projection to compute equiangu-
B. Convergence Results lar tight frames, both real and complex, in dimensions two

The general convergence result, Theorem 4, applies to theough six. The algorithm performed poorly when initialized
alternating projection betwee#i, and.’Z,. We also obtain a with random vectors, which led us to adopt a more sophis-
local convergence result. ticated approach. We begin with many random vectors and

Theorem 9:Assume that the alternating projection betweewinnow this collection down by repeatedly removing whatever
9, and J¢, generates a sequence of iteratg<;, H;)}, vector has the largest inner product against another vector. It
and suppose that there is an iteratioh during which is fast and easy to design starting points in this manner, yet

We usei to denote the imaginary unit.
Proof: The argument is straightforward.
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N2 3 ‘fl 5 6l N2 3 ff 5 6 we attempted to fine-tune the method.
3[R R . . .|[20
e - V1. PEAK-TO-AVERAGE-POWER RATIO
6 R . R R 23|. . . . . . o . :
7 c ¢ . wrIloal. . . . Finally, let us present a situation in which the matrix
8 . C 2. . .oC . nearness problem is much more difficult.
190 ‘? o (_C ;g o As we have mentioned, tight frames with prescribed vector
11 c clla2sl . . . . . norms coincide with signature sequences that maximize sum
2. . . . Cc29. . oL capacity in the uplink of direct-spread, synchronous code
ﬁ oo (C_ - 22 ot division multiple access (DS-CDMA) systems [6]-[8]. Un-
s . Ma2l L fortunately, general tight frames can have properties that are
6. . C . RI|33]. . . . . undesirable in practice. In particular, the individual frame
g o 3‘5‘ o vectors may have largeeak-to-average-power ratiPAR).
9. . . . lNs3l. . . . cC The PAR of an analog signal measures how the largest value
of the signal compares with its average power. Signals with
TABLE | large PAR require higher dynamic range on the analog-to-
EQUIANGULAR TIGHT FRAMES digital converters and the digital-to-analog converters. They

may also require more linear (and thus higher cost) power

The notationsR and C respectively indicate that alternating projection wa: . _ .
able to compute a real, or complex, equiangular tight frame. Note that evégnp“ﬂers‘ In DS-CDMA systems, the PAR is normally of

real, equiangular tight frame is automatically a complex, equiangular tighoncern only in the downlink (see e.g. [61]), where linear
frame. One period (.) means that no real, equiangular tight frame exists, aiisimbinations of signatures can conspire to have tremendous
two periods (..) mean that no equiangular tight frame exists at all. peak power. On the uplink, the PAR problem is fundamentally
different because it only involves individual signatures. Con-
.vgationally, the uplink PAR has not received attention because

the results are impressive. These calculations are summariz ) . .
in Table | most systems use binary spreading sequences, which always

Alternating projection can locate every real, equiangulhave unit PAR. If general sum-capacity-optimal sequences are

. P . - . % be used in real systems, then PAR side constraints should be
tight frame in dimensions two through six; algebraic con- . . .
; . o .- Included in the design problem. Therefore, we shall consider
siderations eliminate all the remaining values &f [12],

how to construct tight frames whose columns have prescribed

[56]. Moreover, the method computes these ensembles very .
S . . norms and low peak-to-average-power ratios.

efficiently. For example, the algorithm produced a six-vector, As discussed in Section IV. manv alaorithms have alread
equiangular tight frame folR? after a single trial. In this b ef\ dls :Ii)s od Ifor conlstr ctfn i %}t f?a|”rl1es S'thvrescr'be)é
case, 70 iterations lasting 0.4573 seconds were sufficient te%ctor n(\)/rmsp such as [7] [Lig]l [%0'19[22] Unfor\tAl/JInatF()aI th:ase
determine the first eight decimal places of the inner produch. ' T ' L Y.
methods cannot accept additional constraints on the vectors,

In the complex case, the algorithm was able to compué%d thus they are not suitable for finding tight frames whose

every equiangular tight frame that we know of. Un1‘ortunatel\/lectors have low PAR. We show that alternating projection

no one has yet de_veloped necessary condl_tlons on the eX'Steé]r%%ides a way to produce these ensembles. The PAR problem
of complex, equiangular tight frames aside from the uppéer

akes an interesting test case because it induces a matrix
bound, N < d2, and so we have been unable to rule ourp 9

the existence of other ensembles. Some of the computati HR&mess problem that is considerably more challenging than

progressed quite smoothly. After 1000 iterations and 18. se we have examined in previous sections.
seconds, alternating projection delivered a collection of 25

vectors in five dimensions whose inner products were identicgl constraint Sets and Matrix Nearness Problems
in the first eight decimal places. On the other hand, it took

5000 iterations and 85.75 seconds to produce 21 vectors in € PAR in a digital communication system is funda-

five dimensions whose inner products reached the same legntally related to the analog waveforms that are generated.
of accuracy. Even worse, we were unable to locate the 4rom the perspective of sequence design, it usually suffices to

vector equiangular tight frame i@° until we had performed consider the PAR defined directly from the discrete sequence.
two dozen random trials that lasted several minutes each.' ft€ discrete PAR of a vector is the quantity
is some consolation that the authors of [59] indicate their ; Maxy, |z |2
. . de m m
algorithm could not compute this ensemble at all. PAR(z) = —————5—.
It seems clear that some equiangular tight frames are much 2o l2ml/d

easier to find than others. We have encountered less SUCGgSE thatl < PAR(z) < d. The lower extreme corresponds to
at constructing equiangular tight frames in higher dimensiongyector whose entries have identical modulus, while the upper
But we have neither performed extensive experiments nor hay§,nd is attained only by (scaled) canonical basis vectors.

4 . . . ) ) Suppose that we require the columns of the frame to have
To see this, consider a tight frame that contains two copies of an

orthonormal basis, where one copy is rotated away from the other by gguared norms, ..., cy. In the DS-CDMA applicgtion, these
arbitrarily small angle. numbers depend on the users’ power constraints [6], [7]. It
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follows from (3) thatae = )", ¢, /d. The spectral constraint Let us begin with some major simplifications. First, rewrite
set becomes the PAR constraint by enforcing the norm requirement and

rearranging to obtain the equivalent condition
Vi X € TN XX = (S en/d) 1), ang d

max |s,;,| < v/cp/d.
Theorem 2 delivers the solution to the associated matrix m
nearness problem. In the rest of the argument, the symbolill abbreviate the
Let p denote the upper bound on the PAR of the framguantity /cp/d. The PAR constraint becomes,,| < ¢ for
elements. Then the structural constraint set will be eachm=1,...,d.

ot . ) Now expand the objective function and enforce the norm
S ={S € C™7 : PAR(sn) < p and |[s,[[; = cn}. constraint again to obtain

Given an arbitrary matrixZ, we must compute the nearest min {C_ 2Re (s, 2) + qug} )
element of.”. Since the structural constraint on each column s

is independent and the Frobenius norm is separable, e&dpserve that it is necessary and sufficient to minimize the
column yields an independent optimization problem. For easkcond term. It follows that the optimizer does not depend on
column z,, of the input matrix, we claim that the following the scale of the input vectar. So take||z||, = 1 without loss
algorithm returnss,,, the corresponding column of a nearestf generality.

matrix S from 7. Next observe that the PAR constraint and the norm con-
Algorithm 2 (Nearest Vector with Low PAR): straint do not depend on the phases of the components in
INPUT: s. Therefore, the components of an optinsaimust have the
« An input vectorz from C¢ same phases as the components of the input vectdn
« A positive numbere, the squared norm of the solutioncOnNsequence, we may assume that betand = are non-
vector negative real vectors.
« A number p from [1,d], which equals the maximum We have reached a much more straightforward optimization
permissible PAR problem. Given a non-negative vecterwith unit norm, we
OUTPUT must solve
« A vector s from C¢ that solves max (s, z) subjectto (s,s)=cand0 <s, <5,

min|[s — z|, subj.to PAR(s) < p and ||s||§ = c. Qbserve that' every point of the feasible set is a r.egular point,
s i.e. the gradients of the constraints are linearly independent.

PROCEDURE Therefore, Karush-Kuhn-Tucker (KKT) theory will furnish
1) Scalez to have unit norm; definéd = /cp/d; and necessary conditions on an optimizer [62].
initialize k& = 0. We form the Lagrangian function

2) Let.# index (d — k) components ok with least mag- B 1
nitude. If this set is not uniquely determined, increment L(s, A pv) = —(s,2) + 5 A((s,8) — )
k and repeat Step 2. —(s,u)+{s—3d1,v).

3) If 2, = 0 for eachm in .#, a solution vector is The Lagrange multiplierge and » are non-negative because

. { PR for m € .4, and they correspond to the lower and upper boundssoiMean-

ii;gkz, while, the multiplier\ is unrestricted because it is associated
gt e sm form ¢ .. with the equality constraint.
4) Otherwise, let The first-or_der KKT necessary condition on a regular local
maximums* is that

S N el L 0 = (Vs L)(s*, ", u*,v*)
Y omen |Zm|2 =—z4+\Ns —ut * ®
m = pt+ v,

5) If vz, > ¢ foranym in .#, incrementk and return to where %, > 0 only if s*, = 0 and ¥, > 0 only if

Step 2. s = 0. Notice that one ofu%, or v/, must be zero because
6) The unique solution vector is they correspond to mutually exclusive constraints. The second-
. { o o for m € .4, and order KKT necessary condition on a regular local maximum

§el argzm form ¢ A. is that
T 2 * \ % * *
When p = 1, the output of the algorithm is a unimodular 0<y" (Vs L)(s™, A" ", 0"y
vector whose entries have the same phase as the corresponding =Nyly

entries ofz. On the other hand, whem; d, th.e output vector ¢, every vectory in the subspace of first-order feasible
equalsz. We now prove that the algorithm is correct. variations. This subspace is non-trivial, 36 > 0.
Proof: We must solve the optimization problem Solve Equation (8) to obtain -

min||s — z|2 subjectto PAR(s) < p and |s|5 = c. N8 =2+t —
S
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Wheneverpy, > 0, both s}, = 0 and v}, = 0. This C. Numerical Examples

combination is impossible becausg, > 0. Therefore, we | et ys demonstrate that alternating projection can indeed
may eliminatep* to reach produce tight frames whose columns have specified PAR
and specified norm. We shall produce complex tight frames
because, in the real case, PAR constraints can lead to a discrete
The cases\* = 0 and \* > 0 require separate considerationoptimization problem. The experiments all begin with the

If A* =0, it is clear thatv* = z. Sincev}, > 0 only if initial 3 x 6 matrix
sy, = 0, we must havesy, = § wheneverz,, > 0. Suppose
that £ components ofs* equal 6. The remaining(d — k) 0748 + 36091 .0392 + 45581  .5648 1 .3635i
components are not uniquely determined by the optimization | .5861 — .0570i —.2029 + .8024i —.5240 4 .4759i
problem. From the many solutions, we choose one such that | —7112+.1076i  —.2622 —.1921i ~ —.1662 + .1416i

—.2567 + .4463i  .7064 +.6193i  .1586 + .6825i

ANs* =2z -

. [c— ko2 —.1806 — 10151 —.1946 — .1889i  .5080 + .0226i
Sm =\ Ik for m where z,, = 0. 0202 + .8316i  .0393 — .2060i  .2819 + .4135i
This formula ensures that* has the correct norm and thatrhg respective PAR values of its columns are 1.5521, 2.0551,
none of its entries exceeds 1.5034, 2.0760, 2.6475 and 1.4730.
When A* > 0, the solution has the form Unit-PAR tight frames are probably the most interesting
st =[y2ls, example. In each column of a unit-PAR tight frame, the entries

share an identical modulus, which depends on the norm of the
where v is positive and the operatof]; truncates tod column. Let us apply our algorithm to calculate a unit-PAR,
components of its argument that exceiedt is clear that the ynit-norm tight frame:

largest components of are all truncated at the same time.

We only need to determin@hich components t.hese are. 1345+ 56151 16724 55261  .4439 4 .3692i

To that end, observe thay — ||[yz];][, is a strictly 5410 — .2017i  —.0303 + .57661 —.5115 + .2679i
increasing function on0, §/zmin], Where zn,;, is the least —.5768 4-.02521  —.2777 —.5062i —.2303 + .5294i
positive component of. For at most one value of, therefore, —.3358 +.46961  .4737 +.3300i .0944 + .5696i

—.5432 — 19561 —.3689 — .4442i .5747 4 .0554i

does the vectofy z]; have norm\/c. If this norm value were 958 + 5635 —.0088 — 5773 4132 1 40331

not attained, ther\* would equal zero. Let be the number
of entries ofs* that equald, and suppose tha# indexes the |ngeed, each of the columns has unit PAR and unit norm. The

remaining(d — k) components. Then singular values of the matrix are identical to eight decimal
2 2 laces. The calculation required 78 iterations lasting 0.1902
e=ls 3=k 47 Y lenl® Socond ! ’
= seconds.

) - o ] ) Alternating projection can also compute tight frames whose
Recall thaty is positive. Therefore, is impossible thaé” > ¢. columns have unit PAR but different norms. For example, if

Whenk6® = ¢, it follows that z,, = 0 for eachm in .#. e request the column norms 0.75, 0.75, 1, 1, 1.25 and 1.25,
Otherwise,z,, must be non-zero for some in .#. Then the the algorithm yields

value ofy must be

c— ko2 3054 4.3070i 1445 4 .4082i  .3583 + .4527i
Y= == 4295 — 05491 1235+ 41501 —.5597 + .1418i
Y omen 12ml —.4228 — 09361 —.0484 — 43031  .0200 + .5770i

u —.4264 + .3893i .4252 + .5831i .3622 + .6242i
—.5393 —.2060i —.4425 — .5701i 7165 — .08631i
.2585 4 .51621 —.2894 — .6611i 1291 + .7101i

8. Convergence o) heck that the col PAR and singul
: N One can check that the column norms, and singular
For the alternating projection between the PAR constraiph e all satisfy the design requirements to eight or more

set and the set af-tight frames, we have not Proven a Morye cimal places. The computation took 84 iterations over

elaborate convergence theorem than the basic result, Theo 73 seconds

éAgecautsg LIS not easy E)CI) guarantc_ee tha\svthi solu'gon tot fess stringent constraints on the PAR pose even less trouble.
matfix nearness problem IS unique. We have been aplgr example, we might like to construct a tight frame whose

to provide a sufficient condition on the fixed points of th(;JAR is bounded by two and whose columns have norms 0.75
iteration that lie in the PAR constraint set. Note that similar 0.75. 1, 1, 1.25 and 1.25. It is

fixed points arose in Section IV.

Theorem 10:A sufficient condition for a full-rank matrix
0617 +.1320i  .0184 4 .2764i  .4299 + .3593i

S from . to be qflxed point of the alternating prOjectlon be- 4256 — 10311 —.0558 4+ 59381 —.5920 + 4974i
tween. and.Z,, is that the columns aof are all eigenvectors —.5912 4 .00251 —.1304 — .33631 —.0807 + .2857i
of SS*. That is, 55*S = SA, whereA € CV*¥ is diagonal —13824.25111 6847+ .74361 2933+ .6930i
and positive, with no more thadh distinct entries. —.4306 — .2650i —.2095 — .30721  .7317 + .0928i

Proof: Refer to Appendix II-E u .0852 4 .80931 —.3504 — .5289i .2918 + .6048i
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A theoretical irritation is the lack of a proof that alternating

The computer worked for 0.0886 seconds, during which projection converges in norm. No general proof is possible,
performed 49 iterations. As usual, the singular values matchas the counterexample in [67] makes clear. Nevertheless, it
eight decimal places. It is interesting to observe that the fram@uld be comforting to develop sufficient conditions that
exceeds the design specifications. The respective PAR valgaarantee the convergence of alternating projections between
of its columns are 1.8640, 1.8971, 1.7939, 1.9867, 1.9618 amuh-convex sets. The results of [67] are the best that we know
1.0897. of. We would also like to develop conditions that can ensure

convergence to a pair of points at minimal distance. Here, the

VIl. DISCUSSION most general results are probably due to Gaisnd Tusady

As advertised, we have developed an alternating projectitiif]- o _ . _ o
method for So|ving frame design prob|ems1 and we haveAnOther major inconvenience 1Is that altematlng pTOJeCtlon
provided ample evidence that it succeeds. In this sectidiphverges at a geometric rate (or worse) [49]-[52]. For large
we discuss some implementation issues and some of fHeblems, it can be painful to wait on the solution. A valuable
limitations of the algorithm. We conclude with a collectioffopic for future research would be a method of acceleration.
of related problems that one can also solve with alternating” more specific disappointment was the inability of alter-

projection. nating projection to construct tight frames over small finite
alphabets. It is straightforward to solve the matrix nearness
A. The Starting Point problem associated with a finite alphabet, and it can be shown

. L o ) that the algorithm always converges in norm to a fixed point.
For alternating projection to succeed, itis essential to choQs the algorithm never once yielded a tight frame. This failure

a good starting point. Here are a few general strategies thaf, o q1y surprising; discrete constraints are some of the most
may be useful. difficult to deal with in optimization. It may be possible to use

T:e S|fmples;[] methfod IS ]EO hseleﬁ_f ve?]tors l%nlfogn’lfly at annealing to improve the performance of the algorithm. This
random from the surface of the unit sphereGfi and form would be a valuable topic for future research.

them into an initial matrix. Although this technique sometimes
works, it is highly probable that there will be pairs of strongly
correlated vectors, and it is usually preferable for the franfe Related Problems
to contain dissimilar vectors. Nevertheless, a collection of We have permitted a great deal of freedom in the selection
random vectors converges almost surely to a tight frame afsthe structural constraint set, but we only considered the
more vectors are added [55]. spectral constraints that arise naturally in connection with

A more practical idea is to select many vectors, 8ayV, tight frames. Nevertheless, alternating projection offers a
and then use a clustering algorithm—such as Lloyd-Max [63traightforward method for addressing other inverse eigenvalue
sphericalk-means [64] or diametrical clustering [65]—to sepproblems. For example, one might try to construct general
arate these vectors inf¥ clusters. The cluster representativefames with prescribed lower and upper frame bounds,
will usually be much more diverse than vectors chosen and 5. Instead of forcing the Gram matrix to be a radk-
random. A related approach would select many random vectorshogonal projector, one might impose only a rank constraint
and then greedily remove vectors that are highly correlated a constraint on its condition number. To implement the
with the remaining vectors. This method seems to furnigtigorithm, it would only be necessary to solve the matrix
excellent starting points for constructing equiangular tigimearness problem associated with these spectral constraints.
frames. One might also build up a collection of random vectors One can also use alternating projection to construct positive
by allowing a new vector to join only if it is weakly correlatedsemi-definite (PSD) matrices that have certain structural prop-
with the current members. erties. Higham, for example, has used a corrected alternating

Another technique is to start with a tight frame that hasrojection to produce the correlation matrix nearest to an input
been developed for another application. By rotating the framaatrix [37]. (A correlation matrixis a PSD matrix with a
at random, it is possible to obtain many different startingnit diagonal.) Since the PSD matrices form a closed, convex
points that retain some of the qualities of the original frame. ket, it is possible to prove much more about the behavior of
particular, equiangular tight frames make excellent initializeralternating algorithms.

It is also possible to choose a collection Mfvectors from  We have also had good success using alternating projection
a larger frame forC?. Similarly, one might truncate someto compute sphere packings in real and complex projective
coordinates from a frame in a higher-dimensional space. dpaces. These methods can be extended to produce sphere
particular, one might truncate an orthonormal basis@drto packings in real and complex Grassmannian manifolds [60]. It
retain onlyd coordinates. See [66], for example, which useseems clear that alternating projection has a promising future
the Fourier transform matrix in this manner. for a new generation of problems.
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to emphasize the distinction, we may refer to a regular fixed

APPENDIX | . S .
point as astrongor classicalfixed point.

POINT-TO-SET MAPS

To understand the convergence of the algorithms, we rely |nfimal Maps
on some basic results from the theory of point-to-set maps.

Zangwill's book [69] is a good basic reference with appllcar-nap_ Suppose that: % x % — R, is a real-valued function

tions to mathematical programming. More advanced SUIVEYS, o variables. and lef be a point-to-set map fror to
include [70], [71]. de Leeuw presents statistical application% Associated \;vithf and( is aninfimal mapdefined by
in [51]. We have drawn from all these sources here. '

Minimizing functions leads to a special type of point-to-set

M*(y) < arg min_f(y, 2).
2€Q(y)

A. Point-to-Set Maps If f(y,-) attains no minimal value ofd(y), then M= (y) = 0,

Let % and % be arbitrary sets. Thpower setof % is the the empty set. Under mild conditions, infimal maps are closed.
collection of all subsets of¥, and it is denoted bp?. A Theorem 11 (Dantzig-Folkman-Shapiro [72]}f € is con-
point-to-set magfrom % to % is a functionQ : % — 2%, tinuous aty and f(y,-) is continuous ort}(y), then M~ is
In words,Q maps each point o/ to a subset of%. closed ay.

There are several different ways of combining point-to-set N Particular, the constant ma@ : y — 2° is continuous
maps. Take two map8,. : % — 2% andQ.,, : % — 2" wheneverZ is closed. So minimizing a continuous function
. ye o .

The composition of these maps carries a pairtb a subset over a fixed, closed set always yields a closed infimal map.
of # via the rule
E. Iterative Algorithms

(Qew 0 Qy2)(y) = U Qzw(2). Zangwill was apparently the first to recognize that many
2€8y:(y) procedures in mathematical programming find their most

This definition can be extended in the obvious way to a longBftural expression in the language of point-to-set maps [69].
composition of maps. Now, SUpposE,, maps7 to 2”. The An algorithmic mapor algorithm is simply a function(2 :

: ’ Do @ — 2. Given an initial pointy, of %, an algorithmic ma
Cartesian product d®,,, and(2, . is the point-to-set map from ) n 0 ’ g P

U x W10V x ¥ given by generates a sequence of iterates according to the rule
Yi+1 € Q(y;).

Suppose thatf : #° — R, is a continuous, non-negative
function. We say that the algorithrf2 is monotonic with
B. Topological Properties respect tof when

Suppose that the underlying sets are endowed with topolo- z€Qy)  implies  f(2) < f(y).
gies so that we may speak of convergence. A fRap? — _ ) o )
97 is closedat the pointj in  whenever the statementsAN _algonth_m strictly m_onotonlc,wnh respect tof is a mono-
y; — 7§, 2 € Q(y;) andz; — 7 together imply that € Q(y). tonic algorithm for which
E)pe m?y interpret this _definition as saying that the(y@t) is 2 € Qy) and f(2) = f(y) imply z=y.
bigger” than the sets in the sequenf®@(y;)}. On the other
hand, the mag is openat 7 in % whenever the statementsZangwill showed that a closed, monotonic algorithm converges
y;, — y and z € Q(y) together imply the existence of ain a weak sense to a generalized fixed point. We present a
number.J and a sequence of poinfs;} such that:; — z and streamlined version of his result.
z; € Q(y;) for all j > J. More or less, this statement means Theorem 12 (Zangwill [69]):Let (2 be a closed algorithmic
that the set(y) is “smaller” than the sets in the sequenc&ap on a compact sé, and assume thét is monotonic with
{Q(y;)}. A map which is both open and closed is said respect to a continuous, non-negative functforsuppose that
to be continuousat ;7. We call2 anopen mapclosed mapr the algorithm generates a sequence of itergtes.
continuous mapvhenever it has the corresponding property « The sequence has at least one accumulation poif.in
for every point in%'. « Each accumulation poirg satisfiesf () = lim; f(y;).

Finite Cartesian products and finite compositions of opene Each accumulation point is a generalized fixed point of
maps are open. Finite Cartesian products of closed maps are the algorithm.
closed. IfQ,, : # — 2% andQ.,, : Z — 2”7 are closed and R. R. Meyer subsequently extended Zangwil’'s Theorem
Z is compact, then the compositigf.., o 2,.) is closed. to provide a more satisfactory convergence result for strictly
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monotonic algorithms. One version of his result follows. Corollary 15: Let #° and 2 be compact subsets of a

For reference, a sequendg,} in a normed space is callednormed space, and assume that the infimal m&fs and

asymptotically regulawhen |ly; 41 — y;|| — 0. M?# are single-valued. Suppose that the alternating projection
Theorem 13 (Meyer [67])Let % be a compact subset ofbetween? and 2 generates a sequence of iterafég;, z;) }.

a normed space, and assume tfais a closed algorithm on In addition to the conclusions of Corollary 14, we have the

2 that it is strictly monotonic with respect to the continuoudpllowing.

non-negative functiorf. Suppose thaf generates a sequence . Each accumulation point is a classical fixed point of the

of iterates{y;}. In addition to the conclusions of Zangwill's alternating projection.

Theorem, the following statements hold. « The sequence of iterates is asymptotically regular.
« Each accumulation point of the sequence is a (strong)e The sequence of iterates either converges in norm or it
fixed point of the algorithm. has a continuum of accumulation points.

« The sequence of iterates is asymptotically regular. In Proof: We just need to show that the algorithm is
consequence, it has a continuum of accumulation poingstictly monotonic with respect tg. Suppose thaf (y, z) =
or it converges in norm [73]. f(Q(y, 2)). Since the infimal maps never increase the value
« In case that the fixed points d? on each isocontour of f, we have the equalities
of f form a discrete set, then the sequence of iterates

converges in norm. fly.2) = fly, M*(y))
= F((My 0 M*)(y), M*(y)) = f((y, 2))-
F. Alternating Projection Since M~# yields the unique minimizer of f with its first

An alternating projection can be interpreted as a kind gfgument fixed, the first equality implies that*(y) = {z}.
monotonic algorithm. Suppose thét: # x 2 — R, is a Likewise, the second equality yields\Z, o M*)(y) = {y}.

continuous function. Theyfi induces two natural infimal maps, That is, Q(y,z) = {(y,2)}. An application of Meyer's
ot Theorem completes the argument. ]
My(z) = argmin f(y, z) and This result is a special case of a theorem of Fiorot and
yeW .
L et ) Huard [74]. In Appendix II, we shall translate the language of
M?(y) = arg min f(y, ). these corollaries into more familiar terms.

If 2 and.Z are closed, then Theorem 11 shows that the mags Literature on Alternating Projection
M, and M* are both closed. . - _ _ o .
We interpret alternating projection as an algorithm on the Like most good ideas, alternating projection has a long biog-
product space? x 2 equipped with the usual product topolfaphy and several aliases, includisgccessive approximatipn
ogy. Given an initial iteratgy, from #, alternating projection Successive projectiomlternating minimizatiorand projection

generates a sequence of iterafeg;, z;)} via the rules on convex setsThis section offers aésung of the research
on alternating projection, but it makes no pretension to be
z . . .
zj € M*(y;) and y;41 € My(z) comprehensive. Deutsch has written more detailed surveys,

including [52], [75], [76].
According to Deutsch [75], alternating projection first ap-
peared in a set of mimeographed lecture notes, written by John

for eachj > 0. Formally, this algorithm can be written as
the composition of two sub-algorithm&,,, and 2., that are

defined as )
von Neumann in 1933. von Neumann proved that the alter-
Qo @ (y,2) — {y} x M*(y) and nating projection between two closed subspaces of a Hilbert
Qo © (y,2) — M, (2) x {z}. space converges pointwise to the orthogonal projector onto

their intersection [39]. Apparently, this theorem was not very
It follows thatQ = Q. 0 Q4. is a closed algorithm wheneverwell advertised, because many other authors have discovered
% and % are compact. Both sub-algorithms decrease the valiiéndependently, including Aronszajn [49] and Wiener [77]. It
of f, so it should also be clear th@tis monotonic with respect was shown by Aronszajn [49] and Kayalar—Weinert [50] that
to f. Zangwill's Theorem tenders a basic convergence resutibth sequences of iterates converge geometrically with a rate
Corollary 14: Let # and 2 be compact. Suppose that theexactly equal to the squared cosine of the (Friedrichs) principal
alternating projection betwee?t and 2 generates a sequenceangle between the two subspaces.
of iterates{(y;, z;) }. It is natural to extend the alternating projection between
« The sequence has at least one accumulation point. ~tWo subspaces by cyclically projecting onto several subspaces.
o Each accumulation point of the sequence liegink &. Halperin demonstrated that, in a Hilbert Space, the CyCIiC pro-
« Each accumulation point is a generalized fixed point ¢¢ction among a finite number of closed subspaces converges
the algorithm. pointwise to the orthogonal projector onto their intersection
« Each accumulation point(y,z) satisfies f(y,z) = [78]- The convergence is geometric [79]. Opt.imal bou'nds on
lim; f(y;, ;). the rate of convergence can be computed with techniques of
Xu and Zikatonov [80]. Bauschket al. study methods for

If the infimal mapsM, and M~ are single-valued, we canaccelerating cyclic projection in the recently minted paper
achieve a much more satisfactory result. [81].
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It will come as no surprise that researchers have alsommunity, alternating projection has been used as a compu-
studied alternating projection between subspaces of a Bangational method for solving inverse eigenvalue problems [36],
space. Unaware of von Neumann’s work, Diliberto and Stra{8] and for solving matrix nearness problems [37], [99]. In
introduced an alternating method for computing the best sugiatistics, one may view the Expectation Maximization (EM)
norm approximation of a bivariate continuous function as thegorithm as an alternating projection [100]. de Leeuw has
sum of two univariate continuous functions, and they provetiscussed other statistical applications in [51].
some weak convergence results [82]. The norm convergence
of the sequence of iterates remained open until the work APPENDIXII
of Aumann [83]. M. Golomb extended the Diliberto—Straus CONVERGENCE ANDFIXED POINTS
algorithm to other best-approximation problems [84]. For more pymed with the theory of the last appendix, we are finally
information on alternating algorithms in Banach spaces, sggged to attack the convergence of Algorithm 1. The results
the monograph of Cheney and Light [85]. on point-to-set maps will allow us to dispatch this dragon

Another fruitful generalization is to consider projectioryickly. Then we shall turn our attention to the convergence
onto convex subsets. The projector—gpximity map—onto  yf the algorithm in the special case that the frame vectors have
a closed, convex subset of a Hilbert space is well-definggtescribed norms. This problem will require a longer siege, but

because each point has a unique best approximation from §ato, will yield to our onslaught. The convergence results that
set. The basic result, due to Cheney and Goldstein, is that {i jevelop here are all novel.

alternating projection between two closed, convex subsets of
a Hilbert space will converge to a pair of points at minima
distance from each other, so long as one set is compact [4].
Dykstra [86], [87] and Han [88] independently developed a In this section, we establish the convergence of the basic
cyclic projection technique that, given a point, can compute i@éternati_ng projectipn algorithm that appears in Sectign lI-D.
best approximation from the intersection of a finite number &Ur main burden is to translate the language of point-to-set
closed, convex sets in a Hilbert space. Their algorithm requir@@ps into more familiar terms.
a correction to each projection. To date, the most extensivel N€orem 16 (Global Convergenceet % and 2° be
treatment of cyclic projection methods is the survey article t§joSed sets, one of which is bounded. Suppose that alternating
Bauschke and Borwein [89]. projection generates a sequence of |ter@(e§7 Zj)}: This se-
Most of the work on alternating projection has involved thgUence possesses at least one accumulation poinysay).
Euclidean distance, but it is possible to develop results fore The accumulation point lies i x 2.
other divergence measures. In particular, Geisnd Tusady  « The accumulation point satisfies
have shown that alternate minimization of the Kullback- IV =Z|, = lim |V, — Z]|
Leibler divergence can be used to find a pair of minimally L S JHE
distant points contained within two convex sets of probability , The accumulation point satisfies
measures [68]. _ o _
There has been some research on alternating projection |Y = Z|| = dist(Y, 2) = dist(Z,%).
between non-convex sets, but the theoretical results so far p e Assume without loss of generality tha is the

are limited. Fiorot and Huard have applied the theorems &f)mpact set, whileZ” is merely closed. We must establish that

Zangwill and Meyer to obtain weak convergence results for\/@\e have all the compactness necessary to apply Corollary 14.
class of block relaxation schemes that include alternating anQyithout loss of generality, assume thi € . If § —

cyclic projection onto non-convex sets [74]. Combettes an

Trussell have developed a technique which inflates the n

convex sets into convex sets; they offer some qualified conver- 1Y; = Zjllp <6 and

gence results [90]. Cadzow has also demonstrated empirically Y41 — Zj||p < 0.

that cyclic projections among non-convex sets can effectivel . i

solve some signal enhancement problems [91]. More resea%l‘r’s' we may restrict our attention to the sets

in X;tls dlr?CtIOI’l vyoutl.d bﬁ va]I(uabIde. oation i B ={Y e ¥ :dist(Y, Z) < 6} and
ernating projection has found application to many differ- e

ent problems, of which we offer a (small) selection. The most A ={ZeZ:dist(Z,¥) < o}

famous example from these pages must be the Blahut—-Arim&imce % is compact,#; is compact because it is a closed

algorithm for computing channel capacity and rate-distorticsubset of a compact set. On the other hafig,is compact

functions [92], [93]. In the field of signal restoration and recovsecause it is the intersection of the closed gtwith a

ery, we mention the work of Landau—Miranker [94], Gerchbergompact set, namely the collection of matrices within a fixed

[95], Youla—Webb [96], Cadzow [91] and Donoho-Stark [97distance of%'.

Cetin, Gerek and Yardimci show that projection on convex We may apply Corollary 14. Each of the conclusions

sets can compute multi-dimensional equiripple filters [98]. Xaf the corollary has a straightforward analogue among the

and Zikatonov discuss how alternating projection can be useahclusions of the present theorem. The only question that

to solve the linear systems that arise in the discretizatiomay remain is what it means for a pair of matrices, 2)

of partial differential equations [80]. In the matrix analysiso be a generalized fixed point of the alternating projection.

Basic Convergence Proof

ﬁ_’o — 2|, then subsequent iterates always satisfy
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A generalized fixed point of an algorithm is a point which « The component sequences are asymptotically regular, i.e.
is a possible successor of itself. In the present case, a pair of Y R

matrices can succeed itself if and only if the second component IYitr = Yillp = 0 and 1 Zjp1 = Zflp — 0.
is a potential successor of the fiestd the first component is o Either the component sequences both converge in norm,
a potential successor of the second. The mafrban succeed 1Y, = Y|, =0 and [Z-Z|,—0,

the matrix Y if and only if
_ _ or the set of accumulation points forms a continuum.

HZ - YHF = dist(Y, Z). Proof: The argument in the proof of Theorem 16 shows
that we are performing an alternating minimization between
o B two compact sets. The hypotheses of the theorem guarantee
|Y = Z||, = dist(Z, %). that each iterate is uniquely determined by the previous iterate.
Corollaries 14 and 15 furnish the stated conclusions.

The only point that may require clarification is what it takes
for a pair of matriceg Y, Z) to be a classical fixed point of the
g’l?ernating projection. A classical fixed point of an algorithm is
the only possible successor of itself. In the case of alternating

rojection, the matrixZ must be the unique successor of the

, and the matrixy’ must be the unique successorf This
observation completes the argument. ]

Due to the peculiar structure of the spectral constraint
sets 2, and ¥,, the solutions to the associated matrix
nearness problems are often unique. Therefore, the alternating
projection algorithms that we have considered in this paper
B. Stronger Convergence Results sometimes have better performance than the basic convergence

Meyer's Theorem suggests that it might be possible f§Sult, Theorem 16, would predict.
provide a stronger convergence result for Algorithm 1 if we e remind the reader that
can ensure that the matrix nearness problems have uniqueg; ' {x ¢ C™*V . XX* = oI}, and
solutions. In many cases, the nearness problems are uniquely .., NxN .
soluble whenever the iterates get sufficiently close together. Yo ={CeC 16=0G,
This provides a local convergence result that is much stronger and G has eigenvaluegy, ..., a,0,...,0)}.
than Zangwill's Theorem allows. First, we prove a general d

version of this result. Afterward, we show that it applieshe yniqueness of the matrix nearness problems will follow
to an alternating projection that involves one of the spectighm the Wielandt—Hoffman Theorem, a powerful result from

Likewise, Y can succeed if and only if

This observation completes the proof. ]

Since the collection of-tight frames and the collection of
their Gram matrices are both compact, the theorem has t
immediate corollaries.

Corollary 17: If 2, is the collection of-tight frames, and
. is a closed set of matrices, then Theorem 16 applies w
»E S andZ = Z,.

Corollary 18: If ¢, contains the Gram matrices of al+
tight frames, and’# is a closed set of Hermitian matrices
then Theorem 16 applies with = ¢, and 2 < 7.

constraint sets?,, or ¥,,. matrix analysis.
. Rec_:all that the distance between a mattixand a set? Theorem 20 (Wielandt—Hoffman [25]Buppose tha#i and
is defined as B are N x N Hermitian matrices, and let the vectok§A)
dist(M, #) % inf |[M— Y| . and .A(B) Ii;t the eigenvalues ofA and B in algebraically
Yew non-increasing order. Then
Theorem 19:Let % and 2 be closed sets of matrices, one IACA) = AB)l, < [|A = Bl -

of which is compact. Suppose that the alternating projection ) _
betweer?? and 2 generates a sequence of iterat€¥;, Z;)}, Suppose instead th@t and B ared x N rectangular matrices

and assume that the matrix nearness problems with d < N, and leto'(A) ando (B) list the largestl singular
values of A and B in non-increasing order. Then
min ||Y — M||g
vey lo(A) —o(B)ll, < [|A—Blg.
min [|[Z — M|/ ; ; ; :
Ze Note that if we solving matrix nearness problems with respect
have unique solutions for any matri¥ in the sequence of t0 the spectral norm, Weyl's Theorem would allow us to

iterates. Then we reach the following conclusions. provide stronger bounds [25].

« The sequence of iterates possesses at least one accumEI:-OrOIIary 21 (Local Convergence W'th Constrauﬁ’_a):
lation point, say(Y, Z). Let . be a closed set offl x N matrices for which the

« The accumulation point lies i x %. associated matrix nearness problem

« The pair(Y, Z) is a fixed point of the alternating projec- min [|S — M||p

tion. In other words, if we applied the algorithm 16 or d

to Z every iterate would equdlY’, Z). has a unigue solution whenevdist(M,.¥) < e. Imagine
« The accumulation point satisfies that the alternating projection betweeri and 2, generates

- . a sequence of iteratggS;, X;)} in which
IV = Z||p = lim Y5 = Zjll,. _ |
j—oo IS; = Xjllp < min{e,a} for some index/.
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Then the conclusions of Theorem 19 are in force. C. Specified Column Norms

Proof: According to Theorem 2, the matrix i, nearest  This section offers a detailed analysis of the alternating
to a matrixM is unique so long a8/ has full rank. Ad x N'  projection between the set aftight frames and the collection
matrix is rank-deficient only if itsl-th largest singular value is of matrices with specified column norms.
zero. Observe that the Iargeiss_ingular valugs of each matrix | gt c1,...,cxn be positive numbers that denote the squared
in 7, all equala > 0. According to the Wielandt-Hoffman ¢ojymn norms we desire in the frame. Without loss of gener-
Theorem, any matrix sufficiently close &, cannot be rank- ality, we assume tha}" c,/d = 1 to streamline the proofs.
deficient. More preciselylist(M, 2,,) < « implies thatM  Then the structural constraint set is
has full rank, which in turn shows tha# has a unique best
approximation in2,. S ELS e CN 1182 = e}

Define the constraint sets .
The tightness parameter of the framenust equal one, so we

e oA closure{S; : j = J} and define the set of 1-tight frames as
¥ = 2, Nclosure{X; : j > J}. 21 X e CPN XX =14}

Suppose thaby is a full-rank matrix drawn from¢’, and
rform an alternating projection between the sétand 23
obtain sequence$S;} and {X;}. Proposition 23 of the
sequel shows that the sequer{cg} lies in a compact subset

of . whose elements have full rank, while the sequefXg}

lies in a compact subset a7 whose elements have non-
zero columns. By an appeal to the matrix nearness results,
Theorem 2 and Proposition 5, we see that each iterate is
uniquely determined by its predecessor. We may therefore
apply Corollary 15.

In this subsection, we complete the foregoing argument
by demonstrating that the iterates are well-behaved. In the
has a unique solution whenevaist(M, ) < e. Imagine next subsection, we classify the full-rank fixed points of the
that the alternating projection betweéfy and ”#’ generates alternating projection betwees’ and 27.

Note that? is closed and that” is compact. We will apply
Theorem 19 to the tail of the sequence of iterates, beginniRc§
with indexJ. Forj > J, each matrixS; is close enough t& ¢
and each matriX; is close enough t& that we can ensure
the matrix nearness problems have unique solutions. =
Corollary 22 (Local Convergence with Constrai#t,):

Let 7 be a closed set ofV x N matrices for which the
associated matrix nearness problem

in [|H— M
Jniy, | e

a sequence of iteratgg G;, H;)} in which Set ¢pin = min, ¢,,, and define the diagonal matrig
whose entries arg/cy, ..., /cn.
1G; — H;|lp < min{e,/v2} for some index/. Proposition 23: Assume that the initial iterat§, is a full
rank matrix from.”. For every positive indey,
The conclusions of Theorem 19 are in force. 1) the Euclidean norm of each column of;, exceeds
Proof: Theorem 3 indicates that the matrix4, nearest Vemin/ ||Cllp; and

to a matrix M is unique so long as itg-th and (d + 1)-st 2) the smallest singular value & exceeds,/cmn.

eigenvalues are d|st_|nct. Imagine that is a r_natnx whose The matrices that satisfy these bounds form compact subsets
d-th and(d + 1)-st eigenvalues both equal Since thed-th of 2 and.#

and (d + 1)-st eigenvalue of a matrix i/, are« and zero,

: ;S . :
the Wielandt—Hofiman Theorem shows that Proof: Assume thatj > 0, and make the inductive

assumption thatS; has full rank. First, we bound the top
singular value ofS; by exploiting the relationship between
the singular values of a matrix and its Frobenius norm. Since

. . . o C lists the column norms of;, it follows that ||S;||7 =
Varying 7, the minimum value of the right-hand sideds /2. ||CH%. The squared Frobenius norm also equals the sum of

T;er?forf’d}St(M’l%) <Ma/\/§d.|rr;'pllislthat thed-th aqu the squared singular values 6f. It is immediate that the
(d+ )-s' eigenvalues oM are distinct. In consequenc maximum singular value of; satisfies
has a unique best approximation frof.

As before, define the constraint sets Omax(S;)? < ||C||§. 9)

dist(M,%,)* > (o — 7)* + 72

W N closure{H, : j > J} and Next we use this relation to estimate the column normX of
Let S; have singular value decompositidi>V*, and write
the n-th columns ofS; and X; ass,, andx,. On account of
the fact thatX; = (5;S;*)~1/2S;, we have

¥ =49, Nclosure{G; : j > J}.

The set# is closed, andZ is compact. We will apply

Theorem 19 to the tail of the sequence of iterates, beginning x . =1(S:5.%)"1/2 g

o e [@nlly = |{(555;7) n

with indexJ. Forj > J, each matrixH; is close enough tc . 2 (10)
and each matrbG; is close enough t& that we can ensure = [lu=~"u SnHz

the matrix nearness problems have unique solutions. | > \/Cmin/Omax(S;),
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since the norm o8, is at least,/c.i,. Introducing the estimate  Suppose thab is a full-rank fixed point of the algorithm.

(9) into (10) yields the first part of the proposition. Thus projectingS onto .2, and projecting back to” returns
Now, we show that the smallest singular value $f.; S. Symbolically,

remains well away from zero. The Courant—Fischer Theorem —1/2 .

for singular values [25] states that one may calculatektiie S =(a(S5Y) S)(T0).

largest singular value of a matri2 € C** as Define A = «T !C. Then the equation becomes

. 1Bz, (§5*)~1/2S = SA~'. Due to the joint eigenstructure of a
o1(B) = max s = positive-definite matrix and its positive-definite roots [25], it

#0 | 2|

) ) follows that (55*) S = SA%.

where 2 ranges over alk-dimensional subspaces 6f¥ and Conversely, suppose théthas full rank and thatSS*) S =

z € Z [25]. Define T; to be the diagonal matrix that lists theg 42 tor some positive diagonal matrixi. Equivalently,

column norms ofX;. Therefore, the nearest matrix if can (55%) s, = A2 s,, for eachn. It follows that

be written asS; 1 = X; T, ' C. Then put "

(85*)"Y%s, =A,'s, for eachn.
Z = {C'T;z: x € rowspan X; }. " noon
i . , Multiply by «, and take norms to see thgt = a X! /c,.
Since X; has full row-rank, 2" forms ad-dimensional sub- ~qpine these equations into the matrix equatibn —
space. ?elect a unit vector from %, and express it as , v-1¢ |t follows that S is a fixed point of the algorithm.
z = C7' T,z for somex in rowspan X;. By construction, .

X; has orthonormal rows, so we may compute

-1
15541 21, = X T C =], E. Fixed Points Il
=X; |, Proposition 24 allows us to provide a partial characterization
= |z, (sincex € rowspan Xj;) of the fixed points of any alternating projection between the
- H T-1c Z” set of a-tight framesZ,, and any structural constraint st
J 2"

o _ _ _ _ that contains matrices with fixed column norms. This result
The matrixX; is a submatrix of a unitary matrix, so its columngpplies even if the matrices i’ have additional properties.
norms cannot exceed one. Thus every entryTpfl must be Proposition 25: Suppose that the column norms of matrices

at least one. It follows that in & are fixed. A sufficient condition for a full-rank matrix
1511 2lly > v/Cmin. in 2 to be a fixed point of the alternating projection between
% and %, is that the columns of are all eigenvectors of
Applying the Courant-Fischer Theorem yields ZZ*. That is, ZZ*Z = ZA, where A is a positive, diagonal
matrix with no more than! distinct entries.
Omin(Sj+1) = v/Cmin- Proof: Let 2 be a closed subset of the closed sét a
The second part of the proposition is complete. collection of matrices with prescribed column norms. Suppose

Finally, we must make the compactness argument. We hawet P(-) is a sufficient condition foiS to be a fixed point of
shown that the squared singular values of an itefat@ust lie the alternating projection betwee# and 27,. Assume that
in the closed interval,/cmin, || C|l¢]. The minimum squared P(Z) for a matrix Z in 2, and letX be the matrix in2,
singular value of a matrix is a continuous function of thelosest toZ. SinceP(Z) andZ € ., it follows that Z is the
matrix entries, which follows from the Wielandt—Hoffmanmatrix in.# closest taX. Therefore Z is also a fixed point of
Theorem. Therefore, the matrices whose smallest singuire alternating minimization betwee# and 2. An appeal
value lies in this interval form a closed set. We conclude th&d Proposition 24 completes the proof. ]
the intersection of this set with the compact sétis compact.
The same argument implies that the sequefiXg} lies in a

compact subset ofZ7; whose matrices have column norms
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