
Formal study of plane Delaunay triangulation

Jean-François Dufourd
Yves Bertot

July 2010

Introduction

I divide objects on the plane into triangles

I Choose a good data-structure for subdivisions

I Remove bad triangles: the ones that are too flat

I Delaunay criterion to recognize bad triangles

I Naive algorithm successive flips

I Method to guarantee termination

The algorithm at work

The algorithm at work

p

q

s

r

The algorithm at work

p

r

s

q

The algorithm at work

p

r

s

q

The algorithm at work

The algorithm at work

The algorithm at work

The algorithm at work

Hypermaps

I What elementary objects compose a triangulation?

I Idea : darts (half-edges),

I Connect darts together : two permutations α0 α1

I Two darts linked by α0 constitute an edge (α0 involutive)

I all darts in the same α1 orbit constitute a point

I Implementation content: permutations represent pointers!

Two levels

I Use a set of dart identfiers (typically nat)
I Use a list structure as a free map containg

I darts
I links between darts

I Add predicates for:
I when darts can be added (only if not already present)
I when links can be added (permutation properties, geometry

constraints)

I Recognize faces: actually orbits for α−1
1 ◦ α−1

0

Characterizing triangulations

I Planar graphs: Euler formula on point, edge, and face counts

I Triangulations: all faces must be triangular
I Geometry: all triangles must be oriented

I Except the outer face

Geometric presentation of subdivisions

1 2 3 4 5 9 11

α1

8 D

α0 2

6

1

3

4

9

3 6

7

6 7

7

8

 9 8

10

10 11

101145

5

1 2

1

2

3

4

5

6

7

8
9

10

11

Triangulations as hypermaps

Fine points of permutation handling

I Invariant for map data-structure: only simple links
I d ′ = αi (d),

I if there is a link at dimension i from d to d ′

I if there is no link to d ′, no link from d , and a chain of links
from d ′ to d

I Orbits are open, they have a cut

I The cut can be “rotated” in the orbit

Splitting and merging

I Detaching objects: splitting point orbits
I Keep together adjacent edges in two sets
I Done by first rotating, then removing a link

I Merging points
I Need rotating the orbits to choose how orbits arrange
I Then add only one link

I Proofs required: make sure the hypermap invariants are
preserved

I Merging points also requires a change of coordinates

Splitting illustration

y

x
y1

x1

m

y

y1

x

x1

m

y

y1

x

x1

rotate the cut to x

Flip : two splits, two merges

m4 := Merge m3 one yff y m3 := Merge m2 one xff x

yffy

xxff

yff

x

y

xff

yff

y

x

xff

yff

x

y

xff

xf xf

 yfyf

 yf yf

xf xf

m1 := Split m one x yf m2 := Split m1 one y xf

Orientation

r

qp

ccw p q r

Property expressed by an algebraic computation∣∣∣∣∣∣
xp yp 1
xq yq 1
xr yr 1

∣∣∣∣∣∣ > 0

Orientation and Flip

o is the center of the circumcircle
p o q r s are in the configuration of a property known by Knuth
That property was proved formally in 2001 for convex hulls

Detecting illegal edges

∣∣∣∣∣∣∣∣
xp yp xp

2 + yp
2 1

xq yq xq
2 + yq

2 1
xr yr xr

2 + yr
2 1

xs ys xs
2 + ys

2 1

∣∣∣∣∣∣∣∣ > 0

This determinant actually is a volume

Ensuring termination

I Project each point onto the revolution paraboloid z = x2 + y2

I Thus define a triangulated surface in space

I Consider the volume under this surface

I This volume decreases everytime one flips an illegal edge

I Termination argument: only a finite set of possible
triangulations

I We developed a generic approach to describe this “finiteness”
argument

Computing volumes

Conclusion

I Data structures closer to graphs

I Hypermaps actually represent efficient representations in
memory

I Also adapted to handle more dimensions (add α2 etcetera)

I Need to add a function to create the initial triangulation

I Need to also consider arbitrary external faces

I Wish: use this functional model as a basis to study an
imperative implementation

