Forward Error Correction using Erasure Codes

Reference:
L. Rizzo, "Effective Erasure Codes for Reliable Computer Communication Protocols," ACM SIGCOMM Computer Communication Review, April 1997

Erasure Codes

\square Erasures are missing packets in a stream
o Uncorrectable errors at the link layer

- Losses at congested routers
$\square(n, k)$ code
o k blocks of source data are encoded to n blocks of encoded data, such that the source data can be reconstructed from any subset of k encoded blocks
o each block is a data item which can be operated on with arithmetic operations

Encoding/decoding process

- k fixed-length packets; each packet is partitioned into data items.
-The encoding/decoding process is applied to k data items from the k packets, one data item per packet

Applications of FEC

\square Used to reduce the number of packets that require $A R Q$ recovery
\square Particularly good for large-scale multicast of long files (packet flows)

- Different packets are missing at different receivers - the same redundant packet(s) can be used by (almost) all receivers with missing packets

Linear codes

\square Can be analyzed using the properties of linear algebra
\square Let $\underline{x}=x_{0} \ldots x_{k-1}$ be the source data items, G an $n \times k$ matrix, then an (n, k) linear code can be represented by

$$
\underline{y}=G \underline{x}
$$

for a properly defined G such that any subset of k equations are linearly independent, i.e., any $\mathrm{k} \times \mathrm{k}$ matrix extracted from G is invertible.

Encoding/decoding in matrix form

Encoder

Decoder

\square For a systematic code, the top k rows of G constitute the identity matrix.
\square With a systematic code, the number of equations to be solved is small ($<k$) when few losses are expected.

Encoding/decoding in matrix form (cont.)

$\square G$ is called the generator matrix of the code.
\square For a systematic code, G contains the identity matrix
=> the remaining rows of the matrix must all contain nonzero elements
\square Any subset of k encoded blocks should convey information on all k source blocks
$\circ G$ has rank k
o each column of G has at most $k-1$ zero elements

Problem with using ordinary arithmetic

\square Suppose each x_{i} is represented using b bits, each coefficient of G is represented using b' bits
\square Then y_{i} needs $b+b^{\prime}+\left\lceil\log _{2} k\right\rceil$ bits to avoid loss of precision
o Expansion of source data!
\square Extra bits to represent y_{i} constitute a sizable communication overhead

Computations in finite fields

\square A field is a set in which we can add, subtract, multiply, and divide
\square A finite field has a finite number of elements. It is closed under addition and multiplication.
o sums and products are field elements
o exact computation without requiring more bits
\square Map data items into field elements, operate on them according to field rules, then apply inverse mapping

Prime fields

$\square G F(p)$, with p prime, is the set of integers from 0 to $p-1$

- GF stands for Galois field
\square Field elements require $\left\lceil\log _{2} p\right\rceil>\log _{2} p$ bits each
- Operand size may not align with word size
\square Addition and multiplication require modulo p operations which are costly

Extension fields

$\square G F\left(p^{r}\right)$, with p prime and $r>1$
othere are $q=p^{r}$ elements
\square Each field element can be considered as a polynomial of degree r - 1 with coefficients in $G F(p)$
\square Addition of two elements (polynomials)
o For each coefficient, sum modulo p

Polynomials

\square Addition of two elements in GF(pr)

$$
\begin{aligned}
& c_{0}+c_{1} x^{1}+\ldots+c_{r-2} x^{r-2}+c_{r-1} x^{r-1} \\
& \frac{b_{0}+b_{1} x^{1}+\ldots+b_{r-2} x^{r-2}+b_{r-1} x^{r-1}}{d_{0}+d_{1} x^{1}+\ldots+d_{r-2} x^{r-2}+d_{r-1} x^{r-1} \quad \operatorname{sum}} \\
& \text { where } \quad d_{i}=\left(b_{i}+c_{i}\right) \bmod p
\end{aligned}
$$

Extension fields (cont.)

- Multiplication
- The product of two polynomials (elements) is computed modulo an irreducible polynomial (one without divisors in GF($\left.p^{r}\right)$) of degree r, and with coefficients reduced modulo p
\square The case of $\mathrm{p}=2, \mathrm{GF}\left(2^{r}\right)$
o each element requires exactly r bits to represent
o addition and substraction are the same, implemented by bit-wise exclusive OR

Special element

\square For both prime and extension fields, there exists at least one special element, denoted by α, whose powers generate all non-zero elements of the field
\square Powers of α repeat with a period of length $q-1$, hence $\alpha^{q-1}=\alpha^{0}=1$
\square Example: generator for GF(5) is 2 whose powers are 1, 2, 4, 3, 1 where $2^{3} \bmod 5=3$ and $2^{4} \bmod 5=1$

Special element for GF(23)

Let u be the root of $1+x+x^{3} \quad(u$ is the special element α)
Thus $1+u+u^{3}=0$
$\square u^{0}=1 \quad 001$
$\square u^{1}=u \quad 010$
$\square u^{2}=u^{2} \quad 100$
$\square u^{3}=u+1 \quad 011$
$\square u^{4}=u^{2}+u \quad 110$
$\square u^{5}=u^{2}+u+1 \quad 111$
$\square u^{6}=u^{2}+1 \quad 101$
$\square u^{7}=1 \quad 001$
There are 7 nonzero elements ($q-1=7$)

Special element for GF(28)

u is root of the irreducible polynomial $1+x^{2}+x^{3}+x^{4}+x^{8}$
Thus, $1+u^{2}+u^{3}+u^{4}+u^{8}=0$
u generates a cyclic group of nonzero elements $(q-1=255)$
$\square u^{0}=1$
00000001
$\square u^{1}=u$
00000010
$\square u^{2}=u^{2}$
00000100
$\square u^{3}=u^{3}$
$\square u^{4}=u^{4}$
$\square u^{5}=u^{5}$
$\square u^{6}=u^{6}$
$\square u^{7}=u^{7}$
$\square u^{8}=1+u^{2}+u^{3}+u^{4}$
$\square u^{9}=u\left(1+u^{2}+u^{3}+u^{4}\right)$
$=u+u^{3}+u^{4}+u^{5} \quad 00111010$

Multiplication and division

\square Any nonzero element x can be expressed as

$$
x=\alpha^{k_{x}} \quad \text { where } k_{x} \text { is logarithm of } x
$$

\square Multiplication and division can be computed using logarithms, as follows:

$$
\begin{aligned}
& x y=\alpha^{\left|k_{x}+k_{y}\right|_{q-1}} \\
& \frac{1}{x}=\alpha^{q-1-k_{x}}
\end{aligned}
$$

- Division performed as multiplication by inverse element
- The logarithm, exponential, and multiplicative inverse of each non-zero element can be kept in tables

Multiplication example for $G F\left(2^{3}\right)$

$$
\begin{aligned}
& u^{5} \times u^{6}=\left(u^{2}+u+1\right) \times\left(u^{2}+1\right)=u^{4}+u^{3}+u^{2}+u^{2}+u+1 \\
& =u^{4}+u^{3}+u+1 \\
& =u^{4}
\end{aligned}
$$Alternatively,

$$
u^{5} \times u^{6}=u^{5+6-(q-1)}=u^{5+6-7}=u^{4}
$$

Data recovery

\square Assume use of a systematic code
\square Let \underline{x} denote source data items, y^{\prime} denote data items at receiver, and matrix G^{\prime} the subset of rows from G

- after y_{i} has been set equal to any x_{i} received
o rank of G^{\prime} is $\leq k$

$$
\underline{y}^{\prime}=G^{\prime} \underline{x} \rightarrow \underline{x}=G^{\prime-1} \underline{y}^{\prime}
$$

\square The cost of inverting G^{\prime} is amortized over all data items contained in a packe \dagger

Data recovery (cont.)

\square Cost of inverting G^{\prime} is $\mathrm{O}\left(\mathrm{kL}^{2}\right)$, where $L \leq \min \{k, n-k\}$ is the number of packets to be recovered

- Cost counted in no. of multiplications
- This cost is negligible because it is amortized over a large number of data items in a packet (e.g., number of bytes)
\square Reconstructing the L missing packets has a total cost of $O(\mathrm{~kL})$

Vandermonde matrix

- A kxk matrix with coefficients

$$
v_{i j}=\left(x_{i}\right)^{j-1}=\left(\alpha^{i}\right)^{j-1}
$$

where the x_{i}^{\prime} 's are elements of GF(pr)
for $q=p^{r}>k$

$$
\mathrm{V}=\left[\begin{array}{cccc}
1 & (\alpha)^{1} & \ldots & (\alpha)^{k-1} \\
1 & \left(\alpha^{2}\right)^{1} & \ldots & \left(\alpha^{2}\right)^{k-1} \\
1 & \left(\alpha^{3}\right)^{1} & \ldots & \left(\alpha^{3}\right)^{k-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & \left(\alpha^{k}\right)^{1} & \ldots & \left(\alpha^{k}\right)^{k-1}
\end{array}\right]
$$

\square Such a matrix has the determinant

$$
\prod_{i, j=1 . . ., i<j}\left(x_{j}-x_{i}\right)
$$

which is nonzero

Matrix G for a systematic code

\square Use the top h rows
$\mathrm{V}_{(n-k) \times k}=\left[\begin{array}{cccc}1 & (\alpha)^{1} & \ldots & \alpha^{k-1} \\ 1 & \left(\alpha^{2}\right)^{1} & \ldots & \left(\alpha^{2}\right)^{k-1} \\ 1 & \left(\alpha^{3}\right)^{1} & \ldots & \left(\alpha^{3}\right)^{k-1} \\ \ldots & \ldots & \ldots & \ldots \\ 1 & \left(\alpha^{h}\right)^{1} & \ldots & \left(\alpha^{h}\right)^{k-1}\end{array}\right]$ matrix, for $1 \leq h \leq k$

RSE coder [Rizzo's implementation]

- Data items are elements of Galois field GF(2r), r ranges from 2 to 16
- encoding time increases with r
a number of data items in each packet may be arbitrary (but must be same for all packets)
- 1-byte data items are most efficient in Rizzo's implementation
- use table lookups
- (n, k) codes for $k \leq 2^{r}-1$ and $n \leq 2 k$

Performance

\square Encoding speed $=c_{e} /(n-k)$, where c_{e} is a constant
\square Decoding speed $=c_{d} / L$, where c_{d} is a constant, L is the number of missing data items

- c_{d} is slightly smaller than c_{e} due to matrix inversion overhead at receiver
- matrix inversion has a cost of $O\left(\mathrm{~kL}^{2}\right)$, which is amortized over all data items in a packet and is negligible for packet size larger than 256 bytes

The end

