Forward Error Correction using Erasure Codes

Reference:

L. Rizzo, "Effective Erasure Codes for Reliable Computer Communication Protocols," ACM SIGCOMM Computer Communication Review, April 1997

Erasure Codes

- □ Erasures are missing packets in a stream
 - O Uncorrectable errors at the link layer
 - Losses at congested routers
- \Box (n, k) code
 - blocks of source data are encoded to n blocks of encoded data, such that the source data can be reconstructed from any subset of k encoded blocks
 - each block is a data item which can be operated on with arithmetic operations

Encoding/decoding process

- k fixed-length packets; each packet is partitioned into data items.
- •The encoding/decoding process is applied to k data items from the k packets, one data item per packet

Erasure codes (Simon S. Lam)

5

Applications of FEC

- □ Used to reduce the number of packets that require ARQ recovery
- Particularly good for large-scale multicast of long files (packet flows)
 - Different packets are missing at different receivers - the same redundant packet(s) can be used by (almost) all receivers with missing packets

Linear codes

- Can be analyzed using the properties of linear algebra
- □ Let $\underline{x} = x_0 \dots x_{k-1}$ be the source data items, G an n x k matrix, then an (n, k) linear code can be represented by

for a properly defined G such that any subset of k equations are linearly independent, i.e., any k x k matrix extracted from G is invertible.

Encoding/decoding in matrix form

Encoder Decoder

- ☐ For a **systematic** code, the top k rows of G constitute the identity matrix.
- ☐ With a systematic code, the number of equations to be solved is small (< k) when few losses are expected.

Encoding/decoding in matrix form (cont.)

- \Box G is called the generator matrix of the code.
- □ For a systematic code, G contains the identity matrix
 - => the remaining rows of the matrix must all contain nonzero elements
- Any subset of k encoded blocks should convey information on all k source blocks
 - OG has rank k
 - o each column of G has at most k-1 zero elements

<u>Problem with using ordinary</u> arithmetic

- Suppose each x_i is represented using b bits, each coefficient of G is represented using b' bits
- □ Then y_i needs $b+b'+\lceil \log_2 k \rceil$ bits to avoid loss of precision
 - Expansion of source data!
- □ Extra bits to represent y_i constitute a sizable communication overhead

Computations in finite fields

- A field is a set in which we can add, subtract, multiply, and divide
- □ A finite field has a finite number of elements.
 It is closed under addition and multiplication.
 - o sums and products are field elements
 - o exact computation without requiring more bits
- Map data items into field elements, operate on them according to field rules, then apply inverse mapping

Prime fields

- \Box GF(p), with p prime, is the set of integers from 0 to p-1
 - GF stands for Galois field
- □ Field elements require $\lceil \log_2 p \rceil > \log_2 p$ bits each
 - Operand size may not align with word size
- Addition and multiplication require modulo p operations which are costly

Extension fields

- \Box GF(p^r), with p prime and r > 1
 - othere are q=p^r elements
- □ Each field element can be considered as a polynomial of degree r-1 with coefficients in GF(p)
- Addition of two elements (polynomials)
 - For each coefficient, sum modulo p

Polynomials

 \square Addition of two elements in $GF(p^r)$

$$c_{0} + c_{1}x^{1} + \dots + c_{r-2}x^{r-2} + c_{r-1}x^{r-1}$$

$$b_{0} + b_{1}x^{1} + \dots + b_{r-2}x^{r-2} + b_{r-1}x^{r-1}$$

$$d_{0} + d_{1}x^{1} + \dots + d_{r-2}x^{r-2} + d_{r-1}x^{r-1} \quad \text{sum}$$

where
$$d_i = (b_i + c_i) \mod p$$

Extension fields (cont.)

- Multiplication
 - The product of two polynomials (elements) is computed modulo an irreducible polynomial (one without divisors in GF(p^r)) of degree r, and with coefficients reduced modulo p
- \square The case of p=2, $GF(2^r)$
 - each element requires exactly r bits to represent
 - addition and substraction are the same, implemented by bit-wise exclusive OR

Special element

- \square For both prime and extension fields, there exists at least one special element, denoted by α , whose powers generate all non-zero elements of the field
- \square Powers of α repeat with a period of length q-1, hence α^{q-1} = α^0 = 1
- □ Example: generator for GF(5) is 2 whose powers are 1, 2, 4, 3, 1 where $2^3 \mod 5 = 3$ and $2^4 \mod 5 = 1$

Special element for GF(23)

```
Let u be the root of 1 + x + x^3 (u is the special element \alpha)
Thus 1+u+u^3=0
```

- \Box u⁰ = 1 001
- $\Box u^1 = u$ 010
- $\Box u^2 = u^2$ 100
- \Box u³ = u+1 011
- $\Box u^4 = u^2 + u$ 110
- $\Box u^5 = u^2 + u + 1$ 111
- \Box $u^6 = u^2 + 1$ 101
- $\Box u^7 = 1$ 001

There are 7 nonzero elements (q-1=7)

Special element for GF(28)

u is root of the irreducible polynomial $1 + x^2 + x^3 + x^4 + x^8$

Thus,
$$1 + u^2 + u^3 + u^4 + u^8 = 0$$

u generates a cyclic group of nonzero elements (q-1 = 255)

$$\Box u^{0} = 1$$

$$\Box$$
 $u^1 = u$

$$u^2 = u^2$$

$$\Box u^3 = u^3$$

$$\Box u^4 = u^4$$

$$\Box u^5 = u^5$$

$$\Box u^6 = u^6$$

$$\Box u^7 = u^7$$

$$\Box$$
 $u^8 = 1 + u^2 + u^3 + u^4$

Erasure codes (Simon S. Lam)

 $u^{q-1} = u^0 = 1$

•••

Multiplication and division

- ☐ Any nonzero element x can be expressed as $x = \alpha^{k_x}$ where k_x is logarithm of x
- Multiplication and division can be computed using logarithms, as follows:

$$xy = \alpha^{\left|k_x + k_y\right|_{q-1}}$$

$$\frac{1}{x} = \alpha^{q-1-k_x}$$

- Division performed as multiplication by inverse element
- The logarithm, exponential, and multiplicative inverse of each non-zero element can be kept in tables

Multiplication example for GF(23)

□ Alternatively, $u^5 \times u^6 = u^{5+6-(q-1)} = u^{5+6-7} = u^4$

Data recovery

- □ Assume use of a systematic code
- Let <u>x</u> denote source data items, <u>y'</u> denote data items at receiver, and matrix G' the subset of rows from G
 - \circ after y_i has been set equal to any x_i received
 - \circ rank of G' is $\leq k$

$$\underline{y}' = G' \underline{x} \rightarrow \underline{x} = G'^{-1} \underline{y}'$$

□ The cost of inverting G' is amortized over all data items contained in a packet

Data recovery (cont.)

- □ Cost of inverting G' is $O(kL^2)$, where $L \le min\{k, n-k\}$ is the number of packets to be recovered
 - Cost counted in no. of multiplications
 - This cost is negligible because it is amortized over a large number of data items in a packet (e.g., number of bytes)
- □ Reconstructing the L missing packets has a total cost of O(kL)

Vandermonde matrix

□ A kxk matrix with

$$v_{ij} = (x_i)^{j-1} = (\alpha^i)^{j-1}$$

$$for q = p^r > k$$

Such a matrix has the determinant

$$\prod_{i, j=1...k, i < j} (x_j - x_i)$$

which is nonzero

coefficients
$$v_{ij} = (x_i)^{j-1} = (\alpha^i)^{j-1}$$

where the x_i 's are elements of GF(pr)

for $q = p^r > k$
 $V = \begin{bmatrix} 1 & (\alpha)^1 & ... & (\alpha)^{k-1} \\ 1 & (\alpha^2)^1 & ... & (\alpha^2)^{k-1} \\ 1 & (\alpha^3)^1 & ... & (\alpha^3)^{k-1} \\ ... & ... & ... \\ 1 & (\alpha^k)^1 & ... & (\alpha^k)^{k-1} \end{bmatrix}$

Matrix G for a systematic code

□ Use the top h rows matrix, for $1 \le h \le k$

Use the top h rows of V as the bottom
$$V_{(n-k)\times k} = \begin{bmatrix} 1 & (\alpha)^1 & \dots & \alpha^{k-1} \\ 1 & (\alpha^2)^1 & \dots & (\alpha^2)^{k-1} \\ 1 & (\alpha^3)^1 & \dots & (\alpha^3)^{k-1} \\ \dots & \dots & \dots & \dots \\ 1 & (\alpha^k)^1 & \dots & (\alpha^k)^{k-1} \end{bmatrix}$$

RSE coder [Rizzo's implementation]

- Data items are elements of Galois field GF(2^r),
 r ranges from 2 to 16
 - o encoding time increases with r
- number of data items in each packet may be arbitrary (but must be same for all packets)
- 1-byte data items are most efficient in Rizzo's implementation
 - use table lookups
- \square (n, k) codes for $k \le 2^r-1$ and $n \le 2k$

Performance

- \Box Encoding speed = $c_e/(n-k)$, where c_e is a constant
- \square Decoding speed = c_d/L , where c_d is a constant, L is the number of missing data items
 - c_d is slightly smaller than c_e due to matrix inversion overhead at receiver
 - matrix inversion has a cost of O(kL²), which is amortized over all data items in a packet and is negligible for packet size larger than 256 bytes

