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Erasure CodesErasure Codes

 Erasures are missing packets in a streamm g p m
 Uncorrectable errors at the link layer
 Losses at congested routers

 (n, k) code
 k blocks of source data are encoded to n k blocks of source data are encoded to n

blocks of encoded data, such that the source 
data can be reconstructed from any subset of k
encoded blocksencoded blocks

 each block is a data item which can be operated 
on with arithmetic operations
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Encoding/decoding processEncod ng/decod ng process

• k fixed-length packets; each packet is partitioned into data 
items.  
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•The encoding/decoding process is applied to k data items from 
the k packets, one data item per packet
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Applications of FECAppl cat ons of FEC

Used to reduce the number of packetsUsed to reduce the number of packets 
that require ARQ recovery

 Particularly good for large-scale multicast 
of long files (packet flows)g (p )
 Different packets are missing at different 

receivers – the same redundant packet(s) can 
be used by (almost) all receivers with missingbe used by (almost) all receivers with missing 
packets
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Linear codesL near codes

 Can be analyzed using the properties of Can be analyzed using the properties of 
linear algebra

 Let x = x0 … xk-1 be the source data items, 0 k-1 m ,
G an n x k matrix, then an (n, k) linear code 
can be represented by

Y = G x
for a properly defined G such that any p p y y
subset of k equations are linearly 
independent, i.e.,  any k x k matrix 

t t d f G i i tibl
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extracted from G is invertible.  
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Encoding/decoding in matrix formE g g m f m

 For a systematic code, the top k rows of G 
h dconstitute the identity matrix.  

With a systematic code, the number of equations to 
b s l d is sm ll ( k) h n f l ss s xp t d
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be solved is small (< k) when few losses are expected.
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Encoding/decoding in matrix form 
( t )(cont.)
 G is called the generator matrix of the code. G is called the generator matrix of the code.  
 For a systematic code, G contains the 

identity matrix y m
=> the remaining rows of the matrix must all 
contain nonzero elements

Any subset of k encoded blocks should 
convey information on all k source blocks y
 G has rank k 
 each column of G has at most k-1 zero  elements
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Problem with using ordinary 
ith tiarithmetic

Suppose each xi is represented using bSuppose each xi is  represented using b 
bits, each coefficient of G is represented 
using b’ bits

 Then yi needs  b+b’+              bits to avoid 
loss of precision

2log k  

 Expansion of source data!
 Extra bits to represent yi constitute a 

i bl i i h dsizable communication overhead
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Computations in finite fieldsComputat ons n f n te f elds

A field is a set in which we can add, subtract,A field is a set in which we can add, subtract, 
multiply, and divide

A finite field has a finite number of elements.  f f f m f m
It is closed under addition and multiplication.  
 sums and products are field elements
 exact computation without requiring more bits

Map data items into field elements, operate 
h d f ld l h lon them according to field rules, then apply 

inverse mapping
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Prime fieldsPr me f elds
 GF(p), with p prime, is the set of integers 

f 0 t 1from 0 to p-1
 GF stands for Galois field

 Field elements require                                  
bits each

2 2log logp p>  
bits  each 
 Operand size may not align with word size

Addition and multiplication require modulo p 
operations which are costly
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Extension fieldsExtens on f elds
 GF(pr), with p prime and r > 1
there are q=pr elementsthere are q=p elements

 Each field element can be considered as a Each field element can be considered as a 
polynomial of degree r-1 with coefficients 
in GF(p)

Addition of two elements (polynomials)
F h ffi i t d l For each coefficient, sum modulo p
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Polynomialsy
Addition of two elements in GF(pr)

1 2 1
0 1 2 1... r r

r rc c x c x c x− −
− −+ + + +

1 2 1
0 1 2 1

1 2 1

... r r
r r

r r

b b x b x b x
d d d d

− −
− −

− −

+ + + +

+ + + +1 2 1
0 1 2 1...    sumr r

r rd d x d x d x− −+ + + +

where    ( ) modi i id b c p= +
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Extension fields (cont.)Extens on f elds (cont.)
 Multiplication

 The product of two polynomials (elements) is The product of two polynomials (elements) is  
computed modulo an irreducible polynomial (one 
without divisors in GF(pr)) of degree r, and with 
coefficients reduced modulo pcoefficients reduced modulo p

The case of p=2, GF(2r)p
 each element requires exactly r bits to 

represent
 addition and substraction are the same addition and substraction are the same, 

implemented by bit-wise exclusive OR
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Special elementSpec al element

 For both prime and extension fields, there For both prime and extension fields, there 
exists at least one special element, 
denoted by α, whose powers generate all y p
non-zero elements of the field

 Powers of α repeat with a period of length 
1 0q-1, hence αq-1 = α0 = 1

 Example: generator for GF(5) is 2 
whose powers are 1, 2, 4, 3, 1
where 23 mod 5 = 3  and 24 mod 5 = 1
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Special element for GF(23)Spec al element for GF( )

Let u be the root of 1 + x + x3  (u is the special element α)( p
Thus 1+u+u3 = 0  
 u0 = 1 001    
 1 010 u1 = u                 010    
 u2 = u2 100    
 u3 = u+1 011    u u
 u4 = u2+u           110     
 u5 = u2+u+1        111     

6 2 1 101 u6 = u2+1            101    
 u7 = 1 001     
There are 7 nonzero elements (q-1 = 7)
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There are 7 nonzero elements (q 1 = 7)
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Special element for GF(28)
4u is root of the irreducible polynomial  1 + x2 + x3 + x4 + x8

Thus,  1 + u2 + u3 + u4 + u8 = 0
u generates a cyclic group of nonzero elements (q-1 = 255)u generates a cyclic group of nonzero elements (q-1 = 255)
 u0 = 1 00000001                 
 u1 = u                 00000010      
 u2 = u2 00000100      
 u3 = u3 00001000
 u4 = u4 00010000 uq-1 = u0 =1 u4 = u4 00010000 uq 1 = u0 =1
 u5 = u5 00100000
 u6 = u6 01000000
 u7 = u7 10000000
 u8 = 1 + u2 + u3 + u4 00011101
 9 (1 2 3 4)
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 u9 = u(1 + u2 + u3 + u4)
= u + u3 + u4 + u5 00111010

…
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Multiplication and division
Any nonzero element x can be expressed as 

x = where kx is logarithm of xxkαx  where kx is logarithm of x
Multiplication and division can be computed 

using logarithms, as follows:

α

g g ,
• Division performed as 

multiplication by 
inverse element

1x y q
k k

xy α −
+

= inverse element
• The logarithm, 

exponential, and 

xy α

1 k multiplicative inverse 
of each non-zero 
element can be kept in

11
xq k

x
α − −=

element can be kept in 
tables
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Multiplication example for GF(23)p mp f F( )

 u5 x u6 = (u2+u+1)x(u2+1) = u4+u3+u2 + u2+u+1 u x u  (u u 1)x(u 1)  u u u  u u 1 
= u4 + u3 +u +1
= u4 (1+u+u3=0)=  u (1+u+u =0)   

AlternativelyAlternatively,
u5 x u6 = u5+6-(q-1) = u5+6 -7 = u4

Erasure codes (Simon S. Lam) 18
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Data recovery
Assume use of a systematic code
 Let x denote source data items,  y’ denote y

data items at receiver, and matrix G’ the 
subset of rows from G 
 after yi has been set equal to any xi received
 rank of G’ is ≤ k

y’ = G’ x  x = G’-1 y’

 The cost of inverting G’ is amortized over 
all data items contained in a packet

Erasure codes (Simon S. Lam) 19

all data items contained in a packet
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Data recovery (cont.)Data recovery (cont.)

 Cost of inverting G’ is O(kL2), Cost of inverting G  is O(kL ), 
where L ≤ min{k, n-k} is the number of 
packets to be recoveredp
 Cost  counted in no. of multiplications 
 This cost is negligible because it is amortized 

over a large number of data items in a packet 
(e.g., number of bytes)

 Reconstructing the L missing packets has a Reconstructing the L missing packets has a 
total cost of O(kL)

Erasure codes (Simon S. Lam) 20
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Vandermonde matrix
A kxk matrix with 

coefficients 1 11 ( ) ... ( )kα α − coefficients

where the xi’s are

2 1 2 1

3 1 3 1

1 ( ) ... ( )
1 ( ) ... ( )

V 1 ( ) ( )

k

k

α α
α α
α α

−

−

 
 
 
 =

1( ) j
ij iv x −= 1( )i jα −=

where the xi s are 
elements of GF(pr) 
for q = pr > k 1 1

V 1 ( ) ... ( )
... ... ... ...
1 ( ) ( )k k k

α α

−

 =
 
 
  

for q  p  k
Such a matrix has the 

determinant

1 11 ( ) ... ( )k k kα α  

m

, 1... ,
( )j i

i j k i j
x x

= <

−∏

which is nonzero
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Matrix G for a systematic code

Use the top h rows
1 1

2 1 2 1

1 ( ) ...
1 ( ) ... ( )

k

k

α α
α α

−

−

 
 
 Use the top h rows 

of V as the bottom 
h rows of G under 

3 1 3 1
( )  k

( ) ( )
V  1 ( ) ... ( )

... ... ... ...

k
n k α α −

− ×

 
 =
 
 

the identity 
matrix, for

1 11 ( ) ... ( )h h kα α −
 
  

1 h k≤ ≤
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RSE coder [Rizzo’s implementation]

 Data items are elements of Galois field GF(2r) Data items are elements of Galois field GF(2 ), 
r ranges from 2 to 16
o encoding time increases with  rg m

 number of data items in each packet may be 
arbitrary (but must be same for all packets)y p

 1-byte data items are most efficient in Rizzo’s   
implementation 
o use table lookups

 (n, k) codes for  k ≤ 2r-1  and  n ≤ 2k

Erasure codes (Simon S. Lam) 23
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Performance
 Encoding speed = ce/(n-k) , where ce is a 

constant
Decoding speed = cd/L , where cd is a 

constant, L is the number of missing data g
items
 cd is slightly smaller than ce due to matrix 

i i h d t iinversion overhead at receiver
matrix inversion has a cost of O(kL2), which is 

amortized over all data items in a packet and isamortized over all data items in a packet and is 
negligible for packet size larger than 256 bytes 
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The endThe end
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