

<u>Secure Group Communications</u> <u>Using Key Graphs</u>

by Chung Kei Wong, Mohamed Gouda, and Simon S. Lam in Proc. ACM SIGCOMM '98

2/28/2017

Secure Group Communications (Simon S. Lam) 4

Secure group communications

Applications

- o teleconference
- o information services
- o collaborative work
- o virtual private networks

Group members share a symmetric key to

o encrypt/decrypt communications

providing confidentiality, integrity, and authenticity of messages delivered between group members

o access resources

Key server is trusted and secure (may be replicated)

An authentication service

o for example, SSL

• mutual authentication of server and joining user

 distribution of a key shared by server and joining user (individual key)

Access control by key server or by an authorization service (e.g., a set of registrars)

Key graph

- A directed acyclic graph with u-nodes and k-nodes
 - u-node no incoming edge
 - root a k-node with no outgoing edge
 - user u has key k if
 and only if there is a
 directed path from
 node u to node k
 - one or more roots (e.g., for multiple groups)

Key covering problem

- When a user u' leaves a secure group, every key k' that has been held by u' and shared by other users should be changed
- To minimize the work of rekeying, the server would like to find a minimum size subset K' of keys and securely send new keys to affected users i.e., userset(K') is the subset of users who need new keys
- □ This problem is NP-hard in general

Special cases of key graph

- n users, 1 key server manages key graph
- 🗖 Star
- Tree assumed to be full and balanced with height h, degree d
- Complete a key for every nonempty subset of users (there are 2ⁿ - 1)

	Star	Tree	Complete
Total $\#$ of keys	n+1	$\frac{d}{d-1}n$	$2^{n}-1$
# of keys per user	2	h	2^{n-1}

Secure Group Communications 11 (Simon S. Lam)

<u>Key star</u>

Group of *n* users, one group key, *n* individual keys

Leave Protocol

■ Protocol $u_4 \rightarrow s$: {leave request} $_{k_4}$ $s \rightarrow u_4$: {leave granted} $_{k_4}$ s: generate k_{123} $s \rightarrow \{u_1\}$: $\{k_{123}\}_{k_1}$ $s \rightarrow \{u_2\}$: $\{k_{123}\}_{k_2}$ $s \rightarrow \{u_3\}$: $\{k_{123}\}_{k_3}$

Encryption cost: n-1 for group size n
 O(n) cost is not scalable

Key graph

How to compose and deliver rekey messages

user-oriented

key-oriented

□ group-oriented

2/28/2017

Secure Group Communications (Simon S. Lam) 18

(Simon S. Lam)

Join: group-oriented rekeying

- Encryption cost: 2(h-1)
- Key tree incurs a larger cost than key star

Ave. encryption/decryption cost of a request

(a)	the requesting user			
	Star	Tree	Complete	
join	1	h - 1	2^{n} -1	
leave	0	0	0	
(b)	a non-requesting user			
	Star	Tree	Complete	
join	1	d/(d-1)	2^{n-1}	
leave	1	d/(d-1)	0	
(C)	the server			
	Star	Tree	Complete	
join	2	2(h-1)	2^{n+1} -2	
leave	n-1	d(h-1)-1	0	

Secure Group Communications 23

(Simon S. Lam)

<u>Average encryption/decryption cost of</u> <u>a request (join or leave)</u>

	Star	Tree	Complete
cost of the server	n / 2	(d+2)(h-1)/2	2^n
cost of a user	1	d/(d-1)	2^n

□ For a full and balanced tree, $h-1 = \log_d(n)$

- For a key tree (instead of key star), server does less work, but user does slightly more work
- Optimal key tree degree is 4

Experiments

 Two SGI machines connected by 100 Mbps Ethernet

 server on one, users on the other

 Rekey messages sent as UDP packets
 DES, MD5, RSA from CryptoLib
 n joins, then 1000 randomly generated join/leave requests

2/28/2017

Server processing time per join/leave request

includes:

- time to parse a request, traverses key tree to determine which keys to change, generates new keys, updates key tree
- time to encrypt new keys and construct rekey messages,
- time to compute message digest of rekey messages and digital signatures,
- time to send out rekey messages using socket system calls

Technique for signing rekey messages

	one signature per rekey msg				
	msg size (byte)		proc time (msec)		
	join	leave	join	leave	ave
user-oriented	263.1	233.8	76.7	204.6	140.6
key-oriented	303.0	270.9	76.3	203.8	140.1
group-oriented	525.5	1005.7	11.9	12.0	11.9
	one signature for all rekey msgs				
	msg size (byte)		proc time (msec)		
	join	leave	join	leave	ave
user-oriented	312.8	306.9	13.6	17.1	15.3
key-oriented	352.8	344.0	13.1	15.9	14.5
group-oriented	525.5	1005.7	11.9	12.0	11.9

key tree degree 4, initial group size 8192, encryption and signature

Secure Group Communications 27 (Simon S. Lam)

Rekey messages sent by server

With encryption and signature (initial group size 8192, key tree degree 4)

	Ave. rekey message size (bytes)		Ave. number of rekey messages	
	per join	per leave	per join	per leave
User-oriented	312.8	306.9	7.00	19.02
Key-oriented	352.8	344.0	7.00	19.02
Group-oriented	525.5	1005.7	1	1

Total number of bytes sent is much smaller for group-oriented rekeying than the others

<u>Rekey messages received by</u> <u>user</u>

With encryption and signature (initial group size 8192, key tree degree 4)

	Ave. rekey message size (bytes)		Ave. number of rekey messages	
	per join	per leave	per join	per leave
User-oriented	209.3	237.4	1	1
Key-oriented	227.9	256.0	1	1
Group-oriented	525.5	1005.7	1	1
Group-oriented	525.5	1005.7	1	1

2/28/2017

Conclusions

- Scalable server performance demonstrated experimentally and analytically
 - Group-oriented rekeying requires smallest processing time and transmission bandwidth of server (signing is also easier), but requires each user to do more work
 - Hybrid approach with use of user- or key-oriented rekeying for users with limited capabilities
- Solution to just the most obvious problem of scalable server processing
 Many more papers to follow

