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Abstract

Delaunay triangulation (DT) is a useful geometric structure for applications such as routing,
clustering, broadcast, distributed virtual reality systems, and multiplayer on-line games. In this paper
we investigate the design of join, leave, and maintenance protocols for a set of nodes to construct and
maintain a distributed DT dynamically. (Conceptually nodes are points in a Euclidean space.) We
define a distributed DT and present a necessary and sufficient condition for a distributed DT to be
correct. This condition is used as a guide for protocol design. We present join and leave protocols
as well as correctness proofs for serial joins and leaves. In addition, to handle concurrent joins and
leaves as well as node failures, we present a maintenance protocol. An accuracy metric is defined
for a distributed DT. Experimental results show that our join, leave and maintenance protocols are
scalable, and they achieve high accuracy for systems under churn and with node failures. To support
applications of distributed DT, we present protocols for greedy routing, clustering, broadcast, and
multicast within a radius. Each node in our greedy routing, broadcast and multicast protocols
does not maintain any per-session state. We also discuss and prove correctness for the application

protocols.

1 Introduction

With almost a hundred years of history, DT [1] and Voronoi diagram [2] have been widely used in many
applications in different fields of science and engineering, including computer science. A triangulation in

2D space means, for a given set of nodes, constructing edges between pairs of nodes such that the edges
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form a non-overlapping set of triangles that cover the convex hull of the nodes. DT in 2D space is usually
defined as a triangulation such that the circumcircle of each triangle does not include any node other
than the vertexes of the triangle. DT can be similarly generalized for higher dimensions.

An interesting property of DT is that it connects a node to other nodes that surround the node. This
property may be useful in simulation-type applications, including distributed virtual reality systems and
multiplayer on-line games, since an entity in a simulation usually interacts with other entities around
it. For example, a molecule interacts with other molecules around it, and a character in on-line games
mostly interacts with other characters around it. Furthermore, we also design a protocol to multicast
a message within a given radius from the source node, which will be useful for many simulation-type
applications such as multiplayer on-line games.

Another property of DT in networking context is that greedy routing always succeeds on a DT [3].
In greedy routing, a node forwards a message to one of its neighbors that is closest to a given destination
node. Note that greedy routing on an arbitrary graph is prone to the risk of being trapped at a local
optimum, i.e., routing stops at a non-destination node that is closer to the destination than any of its
neighbors. However, on a DT it is guaranteed that greedy routing always succeeds to find the destination
node. Note that greedy routing does not always find a shortest route. However, the quality of the greedy
route is often very good, since the length of an optimal route between a pair of nodes on a DT is within
a constant time of the direct distance [4, 5, 6].

While our approach is more system-oriented compared to previous work, our protocols are also based
on a rigorous theoretical foundation. In a distributed DT, each node in a system keeps a set of its
neighbor nodes. We specify a distributed DT by the neighbor sets of all nodes. A distributed DT is
correct when it is equivalent to its corresponding centralized DT. That is, a distributed DT is correct
when each node has the same set of neighbors as on the corresponding centralized DT.! In section 3, we
identify a necessary and sufficient condition to achieve correctness. We use this condition as a guide for
designing join, leave, and maintenance protocols for constructing and maintaining a distributed DT. Our
join and leave protocols are proved to be correct in the following sense: If a distributed DT is correct
when a new node joins or an existing node leaves and there is no other concurrent join, leave or failure
then, at the end of protocol execution, the resulting distributed DT is correct. Thus if a sequence of joins
and leaves occur serially (i.e., one finishes before another starts), the distributed DT is correct whenever

protocol execution finishes.

1We will define a distributed DT and its correctness more carefully in section 2.



In practice, nodes may join and leave concurrently. Furthermore, nodes may fail at any time, im-
mediately breaking correctness of the distributed DT. Our maintenance protocol has been designed to
address such scenarios. We do not have a convergence proof for the maintenance protocol. However, in
every one of a large number of experiments conducted to date, our maintenance protocol converged to a
correct DT some time after a long period of system churn during which nodes join and leave (also fail)
concurrently and frequently.

Note that even in the case of serial joins and leaves, correctness of a distributed DT is, strictly
speaking, broken as soon as a node joins or leaves, and it is recovered only at the end of protocol
execution. Therefore a correct distributed DT is impossible to achieve continually. We observe that some
applications can benefit from an incorrect distributed DT as long as it is sufficiently “accurate.” Thus
the accuracy of a distributed DT over a long duration of time is a more useful metric in practice than
the notion of convergence to correctness. We will define an accuracy metric for a distributed DT, and
show that our protocols achieve high accuracy under different scenarios of system churn.

In addition to protocols to construct and maintain a distributed DT, we present several application
protocols, including greedy routing, clustering, broadcast, and multicast within a radius. As we discussed
earlier, it is known that greedy routing from a node to another node on a DT always succeeds. Then
we prove that greedy routing can also be used to locate an existing node that is closest to a given point
(or a node that is not in the system yet). As an application of the protocol to find the closest existing
node, we present a node clustering protocol. Given a set of nodes and an upper bound on the radius of a
cluster, the clustering protocol partitions nodes into clusters of radii within the given upper bound. In the
protocol, each cluster has a center node and the center nodes form a distributed DT. Similar approaches
to clustering are found in prior work, based on a random graph of clusters [13] or a complete graph of
clusters [14]. Note that greedy routing on a random graph is not guaranteed to succeed and a complete
graph may result in limited scalability.

Our broadcast protocol is based on the reverse path of greedy routing, and is named GRPB (greedy
reverse path broadcast). GRPB does not require any knowledge of global triangulation or per-session
state. A node determines its next-hop nodes to forward a broadcast message solely using local information,
namely the coordinates of its neighbor nodes and the source node.

We observe that the distance from a source node monotonically increases in GRPB, since the distance
to a destination node decreases in greedy routing. Therefore our protocol to multicast within a given

radius easily follows. RadGRPM (radius greedy reverse path multicast) is basically the same as GRPB,



except that it additionally checks to make sure that the next-hop nodes are within the radius from
the source node. RadGRPM also keeps the advantage of GRPB that it does not require any global
information or per-session state. RadGRPM is simple and it is useful for simulation-type applications.
For example, an explosion of a bomb in a battlefield simulation will affect entities within some range and
will be observed within a longer range.

Experimental results show that our protocols are scalable, and work very well under system churn, i.e.,
when concurrent joins and leaves occur frequently. Even with ungraceful node failures, which inevitably
result in an incorrect distributed DT, the maintenance protocol recovers a correct distributed DT some
time after churn and failures stop.

The organization of this paper is as follows. In section 2, we introduce concepts and defintions of
distributed DT and also present application protocols. In section 3, we present a necessary and sufficient
correctness condition for a distributed DT, which was used as a guide to design our protocols. The
join and leave protocols are presented and proved correct for serial joins and leaves. Our maintenance
protocol is then presented as well as an accuracy metric for evaluating protocol performance. In section
4, experimental results are presented to demonstrate scalability of our protocols and their performance
for systems under churn and with node failures. We discuss related work in section 5 and conclude in

section 6.

2 Distributed Delaunay Triangulation

In this section we introduce DT, Voronoi diagram and distributed DT. Consider a set of nodes. Conceptu-
ally, nodes are points in a Euclidean space. (The results and protocols in this paper are for d-dimensional
spaces, where d > 2. Most previous results on distributed DT in the literature are limited to 2D[7, 10, 11]
and 3DI[8] spaces.)

We first define Voronoi diagram of a set of given nodes and then define DT as the dual of the Voronoi
diagram. Note that there is another way of directly defining DT using circumcircles of triangles (or
circum-hyperspheres of simplexes in higher dimensions), as was briefly introduced in the introduction.
Since the properties of DT of interest to us come from Voronoi diagram, we believe that this approach is
appropriate in our context. Lastly, we define distributed DT. In a distributed DT, each node maintains
a set of its neighbor nodes. We define a distributed DT by the neighbor sets of all nodes.

In the second part of this section, applications of DT are discussed. An important and well-known



property of DT is that a simple greedy routing algorithm is guaranteed to succeed on DT, without being
stuck at a local optimum [3]. We prove a similar property that greedy routing can also find the closest
node to a given point. Clustering of network nodes is an example for which this property can be utilized.
We also present protocols for broadcast and for multicast within a radius, and prove correctness for the

protocols.

2.1 Concepts and definitions

We first define a Voronoi diagram.

Definition 1. Consider a set of nodes S in a FEuclidean space. The Voronoi diagram of S is a
partitioning of the space into cells such that a node u € S is the closest node to all points within its

Voronoi cell VCg(u).

That is,
VCs(u) ={p| D(p,u) < D(p,w), for any w € S}

where D(z,y) denote the distance between z and y. Note that a Voronoi cell in a d-dimensional space is
a convex d-dimensional polytope enclosed by (d — 1)-dimensional facets. We say that two Voronoi cells

are neighbors of each other if they share a common facet.

Definition 2. Consider a set of nodes S in a Euclidean space. VCg(u) and VCgs(v) are neighboring
Voronoi cells, or neighbors of each other, if and only if VCs(u) and VCs(v) share a facet.

Figure 1(a) shows a Voronoi diagram in a 2-dimensional space. Note that VCs(v) and VCgs(w) are
neighbors of VCg(u) but VCs(z) is not, since VCs(u) and VCs(z) shares only a point. Similarly, in a
3-dimensional space, Voronoi cells that share only an edge or a point are not neighbors.

Then we define DT as follows.

Definition 3. Consider a set of nodes S in a Euclidean space. The Delaunay triangulation of S is a
graph on S where two nodes u and v in S have an edge between them if and only if VCs(u) and VCs(v)

are neighbors of each other.

We also say that u and v are neighbors of each other when VCgs(u) and VCg(v) are neighbors of

each other. Figure 1(b) shows the DT of nodes in Figure 1(a). Note that facets of a Voronoi cell



(a) Voronoi diagram (b) Delaunay triangulation
Figure 1: A Voronoi diagram and the corresponding DT in a 2-dimensional space.

perpendicularly bisect edges of a DT. Therefore, a DT is the dual of a Voronoi diagram.? Let us denote
the Voronoi diagram of S as V. D(S), and the DT of S as DT'(S).

By a distributed DT, we mean that each node u € S maintains a set N, of its neighbor nodes.

Definition 4. A distributed Delaunay triangulation of a set of node S is specified by {< u, N, >|

u € S}, where N, represents the set of u’s neighbor nodes, which is locally determined by u.

Definition 5. A distributed Delaunay triangulation of a set of nodes S is correct if and only if both of

the following conditions hold for every pair of nodes u,v € S:
e if there exists an edge between u and v on the global DT of S, v € N, and u € N,,
o if there does not exist an edge between u and v on the global DT of S, v € Ny and u & N,.

That is, a distributed DT is correct when for every node u, N, is the same as the neighbors of u on
DT(S). Since u does not have global knowledge, it is not straightforward to achieve correctness. We will

identify the condition to achieve correctness for a distributed DT in section 3.

2.2 Applications of distributed Delaunay triangulation

In this section we present several protocols to illustrate the usefulness of distributed DT for networking

applications. We assume for now that a set of nodes S form a distributed DT. Our protocols to construct

2In geometry, polyhedra are associated into pairs called duals, where the vertices of one correspond to the faces of the
other.



and maintain a distributed DT are deferred to section 3. We also assume that nodes are associated with
their coordinates. When a node “knows” other nodes, it also knows their coordinates. That is, a node
knows its own coordinates, its neighbor’s coordinates, and the coordinates of other nodes that it knows
such as the destination node in routing and the source node in broadcasting. The distance between any
two nodes can be calculated from their coordinates.

Greedy routing

A well-known property of DT is that greedy routing always succeeds on DT [3]. In greedy routing,
a node forwards a message to the closest node to the destination among its neighbors. As with many
greedy approaches, the greedy routing algorithm is prone to risk of being stuck at a local optimum.
That is, on an arbitrary graph, a non-destination node may be closer than any of its neighbors to the
destination, thus stopping greedy routing at the node. However, on a DT, it is guaranteed that greedy
routing succeeds to deliver a message to the destination node. Furthermore, the quality of the greedy
route is often very good, since the length of an optimal route between a pair of nodes on a DT is within
a constant time of the direct distance [4, 5, 6].

Finding the closest existing node.

Similar to the previous application of greedy routing, a DT may be utilized in finding the closest
existing node to a given point. (Note that the given point may not be a node in the DT.) Finding the
closest existing node is a common operation in many Internet applications, including server selection,
node clustering, and peer-to-peer overlay networks.

Consider the problem of finding the closest existing node (destination) d € S to a given point n & S,
starting from a given node s € S. If there are more than one closest nodes to n, the destination may be
any one of them. Let vy be s. At v;, the greedy routing algorithm selects the next-hop node v;; which
is closest to n among the neighbor nodes of v;. If v;;1 is closer to n than v;, greedy routing is repeated
at v;y1. Otherwise, routing stops at v;, which is denoted as v. If vy, is the closest node or one of the
closest nodes to n, we say the routing succeeds; otherwise we say it fails. In other words, the routing
succeeds if n € VCg(vg).

The following theorem shows that the greedy routing algorithm always succeeds as long as it is run on
a DT. Bose and Morin [3] proved a similar theorem that greedy routing between nodes always succeeds

on DT. We use an approach similar to theirs to prove the following theorem.

Theorem 1. Finding a closest node d € S to a given point n € S using greedy routing always succeeds

on a DT of S.



Proof. We prove by showing that every node v # d in Delaunay triangulation has a neighbor that is
closer to n. Suppose that v # d. Draw a straight line L from v to n, and let P the first Voronoi facet
which L crosses. Let u be the node in the adjacent Voronoi cell which shares P with v. Therefore there
is an edge between v and u in the Delaunay triangulation. Note that P divides the space into two regions
SP and SP; points in S? is closer to w than to v. Since n belongs to SZ, n is closer to v than v. Therefore
if v # d, v has a neighbor that is closer to n. On the other hand, if v = d, the routing stops at v. Since

there are a finite number of nodes, eventually a closest node d is found in a finite number of steps. [

Clustering of network nodes

To illustrate an application of finding the closest existing node to a given point, we present a simple
clustering protocol of network nodes. The protocol is a distributed version of a clustering algorithm
adopted from [12]. The upper bound R of the radius of a cluster is given as a parameter. Nodes are
considered sequentially whether they should join an existing cluster or create a new cluster. The first
node considered creates a new cluster and becomes the center of it, since there is no existing cluster.
From the second node on, the considered node is tested whether its distance to the center of the closest
existing cluster is within R or not. If so, the considered node joins the cluster; otherwise it creates its
own cluster and becomes the center of it. The algorithm stops when all nodes are considered. Note that
the result of clustering may be different depending on the order in which nodes are considered [12].

Our clustering protocol is a distributed version of this centralized algorithm. The main challenge in
converting it into a distributed version is to find the closest existing cluster without global knowledge.
We solve this problem by utilizing greedy routing on a DT. Recall that each cluster has a center node. In
our protocol, existing center nodes form a distributed DT. A non-center node does not participate in the
distributed DT. When a node u joins the system, it first finds the closest existing center node by using
greedy routing on the distributed DT of the center nodes. Suppose that the center node s, is found. If
the distance from u to s, is within the upper bound R, u becomes a member of the cluster centered at s,;
otherwise u creates its own cluster, becomes the center node of the new cluster, and joins the distributed
DT.

Other distributed approaches to clustering are found in prior work. In [13], clusters form a random
graph and a joining node may fail to find the closest existing cluster. In [14], every node maintains links
to every other clusters, limiting scalability. The scalability issue is addressed in [14] by introducing a
hierarchy of clusters. Our protocol finds the closest cluster for a joining node and is scalable.

Broadcast using reverse path



As was discussed earlier, the greedy routing algorithm finds a path from a source node to a destination.
Consider such paths from all nodes in S to a node s. The union of the paths is a tree rooted at s. Therefore
by reversing the direction of each path, we get a broadcast tree from a source node s to every other node
in S. Figure 2(a) illustrates an example of a reverse path. In forward greedy routing, v selects u as the
next hop, since w is its closest neighbor to the destination s. Thus in reverse path broadcast from the
source node s, u should forward a message to v,, below line revised if u knows that « is the next hop of v
in the forward route. Note that s is the destination in forward greedy routing and the source in reverse

path broadcast.

S S
{ {
w w
Forward greedy routingto S Destination
— euU eS u X u
VR~ Source
Reverse path broadcast from S
\Y \Y
(a) Forward path and reverse path (b) Ambiguous situation due to limited knowledge

Figure 2: Forwarding in GRPB

We introduce a simple broadcast protocol which utilizes the reverse path tree. Note that our protocol
does not require knowledge of the global triangulation over S. Each node u is assumed only to know its
set of neighbor nodes, and determines to which node(s) it should forward a message based on its local
knowledge. Specifically, node u in the previous example may not know all the neighbors of v. u only
knows the neighbors of u, but still has to determine whether u is the closest node to s among v’s neighbor
nodes.

The idea of using reverse path for broadcast goes back to as early as 1978 [15]. In the context of DT,
Hypercast [7] is the first system to introduce the idea. Our protocol is different in that it is based on
greedy routing in an arbitrary dimension while Hypercast is based on compass routing in 2D space. The
major advantage of both approaches is that a broadcast tree does not need to be explicitly maintained.
A node can immediately determine next-hop nodes based on the coordinates of its neighbors and the

destination node, without maintaining any per-session routing information.



We name our broadcast protocol as GRPB (greedy reverse path broadcast). In GRPB, a node u
maintains a local DT for u and w’s neighbors. For each neighbor v, u forwards a message from a source

node s to v if both of the following two conditions hold:
C1 w is closer to s than v is;
C2 in the local DT for v and u’s neighbor nodes, there does not exist a node w # u such that

C2.1 w is closer to s than w is, and

C2.2 u, v and w are included in the same triangle (or simplex in d-dimensional space).

Condition C1 is easy to understand. Suppose Cl1 is true. Then u does not forward to v if u is sure
that another node, say w, is the next hop of v in the forward greedy routing. The conditions for such w

are:
C2.1 w is closer to s than u

C2.2 u, v, and w are included in the same triangle (or simplex) in u’s local DT
C2.3 w is a neighbor of v on the global DT

Note that C2.1 and 2.3 are necessary and sufficient. However, u does not have global information and
cannot check C2.3. Hence we specifiy condition C2.2 which includes C2.3. C2.1 and C2.2 are necessary
but not sufficient.

Note that in case of a tie between w and u in C2.1, v must forward to v at the cost of possible
duplication, since v may or may not choose u as the next hop in the forward greedy routing. Note also
that even if node w appears to be v’s neighbor in u’s local DT, w may not actually be v’s neighbor in
the global DT. Figure 2(b) illustrates an example in 2D space. The left graph shows w’s local DT, in
which v and w are neighbors. However, as shown in the right graph, there may exist a node z outside
u’s local knowledge and thus w may not actually be a neighbor of v. Without including C2.2 in C2, u
might erroneously conclude that it does not need to forward to v, since w appears to be the closest node
to s among v’s neighbors. C2.2 detects such ambiguous situations and requires that u forwards to v at
the cost of possible duplication. The protocol pseudocode is given in Figure 3.

The following theorem guarantees the correctness of GRPB, namely it delivers a message to all nodes in
the system. As explained before, the two conditions of GRPB are necessary, but not sufficient. Therefore

some duplicate messages may be forwarded. We performed experiments to broadcast a message using

10



Start_broadcast(msg) of node u
; u is a source node
for all ve N, do
Send(v, BROADCAST (msg, u))
end for

On u’s receiving BROADCAST (msg, s)
; u is a recipient of a BROADCAST message
Deliver(msg)
for all v € N, do
if v satisfies conditions C1 and C2 from s then
Send(v, BROADCAST (msg, s))
end if
end for

Figure 3: Greedy reverse path broadcast (GRPB) protocol at a node w.

GRPB on a distributed DT of 200 randomly placed nodes in various dimensions. Ideally the number of
messages for each broadcast should be the number of nodes minus 1 when there is no duplication. In our

experiments, the number of duplicate messages was from 3% to 10% of the number of nodes.

Theorem 2. Let a set of nodes S form a correct distributed DT. The GRPB protocol delivers a message

from a source node s € S to all the other nodes in S.

Proof. We prove the theorem by showing that if there exists an edge from u to v in the global reverse
path tree, the GRPB protocol also forwards a message from u to v.

Assume that the theorem is not true. Suppose that a node u fails to forward to its neighbor v when
there exists an edge from u to v in the global reverse path tree, that is when w is the closest node from s
among the neighbors of v. Note that v is a neighbor of u on the local Delaunay triangulation of u. Then
there exists a node w which is a mutual neighbor of u and v on the local Delaunay triangulation of w,
and the distance between w and s is shorter than the distance between u and s, but w is not a neighbor
of v on the global Delaunay triangulation. (If w is a neighbor of v, the next hop of v in the forward path
should not be u since u is not the closest to s among v’s neighbors.) On the local Delaunay triangulation
of u, remember that there exists a simplex which includes u, v and w. Let the simplex p. Note that p
does not exist on the global Delaunay triangulation, since w is not a neighbor of v. and then the space of
p is occupied by other simplexes. Let x one of the simplexes and which includes v and v. Let x;...x; the
other nodes of = other than u or v. Then z;...z) are neighbors of u in the global Delaunay triangulation

and in the local Delaunay triangulation of u. Then on the local Delaunay triangulation of u, since v and

11



x1...x) are neighbors of u, there exists the same simplex z. It is impossible that z and p co-exist on the

local Delaunay triangulation of u, since they overlap. O

Multicast within a radius

In a distributed virtual reality system or a multiplayer on-line game, an entity or a player interacts
with other entities or players that are located around it in the virtual space. Suppose that entities or
characters in a distributed virtual reality system or a multiplayer on-line game are represented as nodes.
Then the DT of the nodes is a good interconnection topology since neighbors of a node in DT are nodes
that surround the node in the virtual space.

In addition to interaction between neighboring nodes, multicast within a given radius from a point
is another common operation, since an event may affect nodes within some distance. For example, in a
war simulation, an explosion of a bomb will be seen only by soldiers within some distance, and will affect
those within a shorter distance. We observe that in the GRPB protocol the distance from the source
monotonically increases, since the distance to the destination monotonically decreases in the forward
greedy routing. We utilize this observation in our multicast protocol within a given radius.

In our radius greedy reverse path multicast (RadGRPM) protocol from a source node s to all the
other nodes within a radius r, s first sends the message to all its neighbors within the radius r. Then for
each neighbor node v, a node u forwards a message to v if the following condition holds as well as C1

and C2 in GRPB:
C3 the distance from s to v does not exceed the radius r.

Essentially the protocol is the same as the original GRPB protocol, except that forwarding stops
when the distance from the source exceeds the given radius in C3. Pseudocode of the protocol is given in
Figure 4. Theorem 3 guarantees that RadGRPM delivers the message to all nodes within a given radius.
The proof is straightforward since the distance from the source node monotonically increases whenever

the message is forwarded by GRPB.

Theorem 3. Let a set of nodes S form a correct distributed DT. The RadGRPM protocol delivers a

message from a source node s € S to all nodes within a radius r from s.

Proof. By Theorem 2, the original GRPB protocol delivers a message to all the other nodes in S. Since
the distance from s monotonically increases whenever a message is forwarded and the forwarding stops

when the distance from s exceeds r, all the nodes along the original multicast path after stopping have

12



Start_radius_broadcast(msg, rad) of node u

; u is a source node

for all v € N, within rad from u do
Send(v, BROADCAST (msg, rad, u))

end for

On u’s receiving BROADCAST (msg, rad, s)
; u is a recipient of a BROADCAST message
Deliver(msg)
for all v € N, do
if v satisfies conditions C1, C2 and C3 from s then
Send(v, BROADCAST (msg, rad, s))
end if

end for

Figure 4: The radius greedy reverse path multicast(RadGRPM) protocol at a node wu.

distances longer than r from s. Therefore the RadGRPM protocol delivers the message to all the nodes

within the radius r. O

3 Protocol Design

Our distributed DT protocols consist of a join, a leave, and a maintenance protocol. Our join protocol
ensures that a joining node obtains enough information to identify its correct neighbors and that the
joining of the new node is notified to all existing nodes affected by the joining node, so that the resulting
distributed DT is correct after protocol execution. Similarly, our leave protocol notifies the deletion of a
leaving node to all affected nodes so that the resulting distributed DT is correct after protocol execution.
Our join and leave protocols are proved to be correct only for serial joins and leaves.

We assume that nodes may join, leave or fail at any time. In addition to node failures, which
inevitably result in an incorrect distributed DT, concurrent joins and leaves of multiple nodes may result
in an incorrect distributed DT as well. To address such scenarios, we introduce a maintenance protocol
which is run periodically to detect and repair any errors in the system state. (When the distributed
DT of a set of nodes is incorrect, for convenience, we say “the system state is incorrect” or “the system
state has errors.”) Lastly, to simplify our protocol descriptions, we assume reliable delivery of protocol
messages. In a real implementation, additional mechanisms such as ARQ or simply TCP can be used to

ensure reliable message delivery.

3Due to the overhead of opening and closing connections, TCP may not be a practical choice.
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3.1 System model

Our approach to construct a distributed DT is as follows. We assume that each node is associated with its
coordinates in a d-dimentional Euclidean space. Each node has prior knowledge of its own coordinates,
as is assumed in previous work [7, 8, 9, 10, 11]. The mechanism to obtain coordinates is beyond the
scope of this study. Coordinates may be given by an application, a GPS device[18], or topology-aware
virtual coordinates[19].* Also when we say a node u knows another node v, we assume that u knows v’s
coordinates as well.

Let S be a set of nodes to construct a distributed DT. We will present protocols to enable each node
u € S to get to know a set of its nearby nodes including u itself, denoted as C,,, to be referred to as u’s
candidate set. Then u determines the set of its neighbor nodes N,, based on C,. Specifically, u determines
N, by calculating a local DT of C,, denoted by DT'(C,). That is, v € N, if and only if there exists an
edge between v and v on DT (C,,).

3.2 Correctness condition for a distributed Delaunay triangulation

Recall that a distributed DT is correct when for every node u, N, is the same as the neighbors of u
on DT(S). Since N, is the set of u’s neighbor nodes on DT(C,) in our model, to achieve a correct
distributed DT, the neighbors of u on DT (C,) must be the same as the neighbors of v on DT'(S). Note
that C, is local information of u while S is global knowledge. Therefore in designing our protocols, we
need to ensure that C, is “enough” for u to correctly identify its global neighbors. If C,, is too limited,
u cannot identify its global neighbors. For the extreme case of C;, = S, u can identify its neighbors on
the global DT since DT(C,) = DT(S); however, the communication overhead for each node to acquire
global knowledge would be extremely high. Before we present Theorem 4, which identifies a necessary
and sufficient condition for a distributed DT is correct, we present several lemmas for convenience of

proof.

Lemma 1. Let S be a set of nodes. Let v € S be a neighbor node of u € S on DT (S). Then there exists

a point p in VCs(u) such that D(p,u) < D(p,v) < D(p,w) for any other node w € S,w # u,w # v.

Proof. Consider a point p' on the shared facet of VCg(u) and VCs(v). Then D(p',u) = D(p',v) <
D(p',w) for any other node w € S,w # u,w # v. Let wy be the third closest node from p’ in S and let
A =D(p',w1)— D(p',v). Let p be the point that is % away from p’ toward u. Then D(p,u) < D(p,v) <

4 Application performance on a DT may be affected by the accuracy of virtual coordinates.
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D(p,w) for any other node w € S,w # u,w # v. O

Lemma 2. Let S be a set of nodes. If there exists a point p in VCgs(u) such that D(p,u) < D(p,v) <
D(p,w) for any other node w € S,w # u,w # v, Then u,v € S are neighbors of each other on DT(S).

Proof. Consider a line from p toward v. As a point p’ moves along the line, D(p’,v) will decrease toward
0 while D(p',u) > 0. In addition, D(p',v) decreases faster than D(p',w) decreases for any other node
w € S,w # u,w # v. Therefore there must be a point where D(p',u) = D(p',v) < D(p',w) for any other
node w € S,w # u,w # v, which means that p’ belongs to exactly two Voronoi cells VCgs(u) and VCg(v),

but not other Voronoi cells. By Observation ??, p' is on the shared facet of VCg(u) and VCg(v). O

Lemma 3. Let S be a set of nodes. Let u € C, v € C, and C C S. If v is a neighbor of u on DT(S), v
is also a neighbor of u on DT (C).

Proof. By Lemma 1, there exists a point p where D(p,u) < D(p,v) < D(p,w) for any other node
w € S,w # u,w # v. Since C C S, D(p,u) < D(p,v) < D(p,w) for any other node w € C,w # u,w # v.
Therefore by Lemma 2, v is a neighbor of u on DT(C). O

Lemma 4. Let S be a set of nodes. Letu € S and C,, C S include all the neighbor nodes of u on DT(S).
If v € Cy is a neighbor of u on DT (C\,), then v is also a neighbor of u on DT(S).

Proof. When v € S is a neighbor of u on DT(C,), by Lemma 1, there exists a point p in VCg¢, (u)
such that D(p,u) < D(p,v) < D(p,w) for any other node w € Cy,w # u,w # v. Now, suppose
that v is not a neighbor of u on DT(S). Then there must be a node z € S,z ¢ Cy,z # u,z # v
that satisfies D(p,v) > D(p,z). Let z1,...,z; be those nodes which satisfy such condition. That is,
D(p,u),D(p,x1), ..., D(p,z) < D(p,w) for any other node w € S,w # u,w # x;,1 < i < k. We show
below that there exists a node z;,1 < i < k which is a neighbor of v on DT'(S). Since z; & C,, it is
contradictory to the assumption that C,, includes all the neighbor nodes of v on DT'(S). Therefore v is
a neighbor of u on DT'(5).

Case A-1. Suppose that D(p,u) < D(p,z1) < D(p,w) for any other node w € S,w # u,w # z;.
Then by Lemma 2, z; is a neighbor of u on DT'(S).

Case A-2. Suppose that D(p,u) < D(p,z1) = ... = D(p, z1) < D(p,w1) < D(p,w) for any other node
wE S,w # u,w # w,w # 5,1 <i < h Let A = D(p,w1) — D(p,z1). Consider a point p’ which is
A/4 away from p toward z;. Then D(p',u) < D(p,z1) < D(p,w), where w € S,w # u,w # x;. Then by

Lemma 2, z; is a neighbor of v on DT(S).
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Case B. Suppose that D(p,u) = D(p,z1) = ... = D(p,zp) < D(p,w1) < D(p,w) for any other node
weE S,w#u,w# w,w#z;,1 <i<h Let A =D(p,wi) — D(p,z1). Consider a point p’ which is A/4
away from p toward u. Then D(p',u) < D(p,z;) < D(p,w),1 <i < h, where w € S,w # u,w # z;,1 <
i < h. Let z' be z; with smallest D(p, z;),1 < i < h. Then ' is a neighbor of u on DT(S), similarly to
in the cases A-1 or A-2.

Case C. Suppose that D(p, 1), ..., D(p, zp) < D(p,u) < D(p,w) for any other node w € S, w # u,w #
z;,1 < i < h. Consider a point p’ which moves from p toward u. Since D(p’,u) decreases the fastest,
D(p',u) < D(p',w) for any other nodes w € S,w # u,w # x;,1 < i < h is preserved. Moreover, there
must be a point where D(p',z') < D(p',u) < D(p',w) for any other node w € S,w # u,w # z’, where &'

is one of z;,1 <4 < h. Then 2’ is a neighbor of v on DT(S), similarly to in the cases A-1 or A-2. O

Theorem 4 (Correctness Condition). Let S be a set of nodes and for each node u € S, u € C,, and
C, CS. Let Ny, u € S be the set of u’s neighbor nodes on DT (C,). A distributed DT of S is correct if

and only if, for every u € S, C,, includes all the neighbor nodes of u on DT(S).

Proof. (only if) Suppose that C, does not include a node v that is a neighbor node of u on DT(S).
Clearly, N, cannot include v and the distributed Delaunay triangulation is not correct.

(if) Suppose that for every u € S, C,, includes all the neighbor nodes of v on DT'(S). We show that
v € S is a neighbor of u on DT'(C,) if and only if v is a neighbor of v on DT'(S). i) Consider a neighbor
v of w on DT(S). Since C,, C S, by Lemma 3, v is a neighbor of u on DT (C,,). ii) Consider a neighbor
v of w on DT (C,). By Lemma 4, v is a neighbor of u of DT'(S). O

Theorem 4 identifies a necessary and sufficient condition for a distributed DT is correct, namely: the
candidate set of each node must contain all of its global neighbors. In the following subsections, we use

the above correctness condition as a guide to design our protocols.

3.3 Join protocol

In our join protocol, we assume that a joining node n is first led to the nearest existing node u, which
is guaranteed to be found using greedy routing by Theorem 1. C,, is initialized as {n}, and n sends a
NEIGHBOR_SET_REQUEST messages to u. When u receives NEIGHBOR_SET_REQUEST from n, u
puts n into C,, updates N, by recalculating DT (C,), computes N* which is the set of the neighbor
nodes of n on DT(C,), and replies N* to n. When n receives the reply, C,, is updated to include all

nodes in the reply, and n determines its neighbor nodes again using the updated C,. If n finds any new
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neighbor nodes, n sends NEIGHBOR_SET_REQUEST messages to them. This process is repeated until

n does not find any new neighbor node. The protocol pseudocode is given in Figure 5.

Join(v) of node u
; Input: wu is the joining node, if u is the only node in the system, v = NULL;
otherwise v is the closest existing node to w.
Cy  {u}
N, 0
if v# NULL then
Send(v, NEIGHBOR_SET_REQUEST)
end if

On u’s receiving NEIGHBOR_SET_REQUEST from w
if w¢C, then
Cy + Cy U {w}
Update_Neighbors(C\,, Ny)
end if
N} < {z | z is a neighbor of w on DT(C,)}
Send(w, NEIGHBOR_SET_REPLY (N%))

On u’s receiving NEIGHBOR_SET_REPLY (NY) from w
Cy+—C,UNY
Update_Neighbors(C\,, N,)

Update_Neighbors(C,,, N,,) of node u
NoW¥ + N,
N, < neighbor nodes of v on DT'(C},)
N;Lew «~ N, — Ngld
for all v e N} do

Send(v, NEIGHBOR_SET_REQUEST)
end for

Figure 5: Join protocol at a node u

Theorem 5 guarantees that the join protocol, if run on a correct distributed DT, results in a correct
distributed DT for a single join. The main ideas of the proof are the following: i) the closest existing
node will be a neighbor of a joining node (Lemma 5), ii) all neighbor nodes of the joining node are
connected by existing neighbor relations, thus it is possible to find them all by following the neighbor
relations (Lemma 8), and iii) the neighbor nodes of the joining node are also notified of the joining node’s
addition in the process. Note that this proof is based on Theorem 4, which determines the condition

when a distributed DT is correct.
Lemma 5. Let S' = S|J{n} and u be the closest node to n in S. Then u is a neighbor of n on DT (S").

Proof. Consider n, which is in VCg/ (n). D(n,n) < D(n,u) < D(n,w), for any other node w € S',w #
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n,w # u. Therefore, by Lemma 2, u is a neighbor of n on DT'(S"). O

Lemma 6. Let u' and v' be two points on an n-dimensional convex polytope P,, n > 2. Then there

exists a path from u' to v' on the surface of P, which goes through adjacent facets of P,.

Proof. On 2-dimensional convex polygon, there exists a path from u' to v" which goes along the edges of
the polygon. Suppose that the lemma holds for k-dimensional convex polytope, k > 2, and consider two
points u' and v’ on an (k + 1)-dimensional convex polytope Pyy;. Consider a cross section of the Py
which contains u’ and v'. The cross section is an k-dimensional convex polytope and there exists a path
from v’ to v’ on the surface of the polytope, which goes through adjacent facets. Note that each facet of
the cross section is a part of a corresponding facet of P;1, and two adjacent facets of the cross section
correspond to adjacent facets of P;1. Therefore the path is also on the surface of Py 1, going through

its adjacent facets. By induction, the lemma holds for n-dimensional polytopes, n > 2. O

Lemma 7. Let ' = SU{n}. Ifu € S and v € S are two neighbor nodes of n on DT(S") and V Fg' (n,u)

and V Fsi(n,v) are adjacent, u and v are neighbors on DT(S).

Proof. Let p' be a point where V Fg/(n,u) and V Fg (n,v) meet. That is, D(p’,n) = D(p’,u) = D(p',v).
Let w; € S be the closest node to p’ except for n, v and v, and A = D(p',w;) — D(p’,n). Consider
A

a point p which is ' away from p' toward u. Then D(p,u) < D(p,v) < D(p,w), for any other node

w € S,w # u,w # v. By Lemma 2, v is a neighbor node of v on DT(S). O

Lemma 8. Let ' = S|J{n} and u be a neighbor node of n of DT(S'). Then for any neighbor v of n on
on DT (S'), there exists a series of nodes < pp = u,...,pp = v >, where p;,0 < i < k, is a neighbor of n

on DT(S'), and p; and piy1, 0 < i < k — 1, are neighbors on DT(S).

Proof. Note that V Cs:(n) is a convex polytope enclosed by facets and each facet corresponds to a neighbor
node of n. Also note that two neighbors of n are defined adjacent when their corresponding facets are
adjacent on VCg/(n). Let u' be a point on the facet which corresponds to u and v’ be a point on the
facet which corresponds to v. By Lemma 6, there exists a path from v’ to v’ which goes through adjacent
facets of VCg (n). That is, there exists a series of nodes < pp = u,...,pr = v >, where p;,0 < i < k,
is a neighbor of n on DT'(S’") and V Fs: (n,p;) and V Fs/ (n,pi+1), 0 < i < k — 1, are adjacent. And by

Lemma 7, p; and p;41 are neighbors on DT(S). O
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Lemma 9. Let n denote a newly joining node, S be the set of existing node, and S' = S|J{n}. Suppose
that the existing distributed Delaunay triangulation for S is correct. Then when the join protocol finishes,

C,, includes all the neighbor nodes of n on DT(S").

Proof. By Lemma 5, u is a neighbor node of n on DT(S’). For any neighbor node v of n on DT(S'),
by Lemma 8, there exists a series of nodes < py = u,...,pr, = v >, where p;,0 < i < k, are neighbors
of n on DT(S") and p; and p;y1, 0 < i < k — 1, are neighbors on DT(S). First u receives NEIGH-
BOR_SET_REQUEST from n. Since p; is a neighbor of u on DT(S), C, includes p;, and p; is also
included in N¥ by Lemma 3 since p; is also a neighbor of n on DT'(S'). After n receives N from u, Cy,
includes p;.

Suppose that p; is included in C,. By Lemma 3, p; is also included in N,, and n sends NEIGH-
BOR_SET_REQUEST to p;. Since p;y; is a neighbor of p; on DT'(S), Cp, includes p;+1, and p;;1 is also
included NP by Lemma 3, since p;1; is also a neighbor of n on DT (S’). After n receives N?¢ from p;,
C), includes p;11.

Therefore, within k iterations, C,, will include p; = v. O

Theorem 5. Let S be a set of existing nodes and the distributed DT of S be correct. Let a node n € S
join to the distributed DT using our join protocol. Assume that there is no other join, leave, or failure.

After the join protocol finishes, the updated distributed DT is correct.

Proof. Lemma 9 shows that when the join process finishes, C,, will include all of its neighbor nodes on
DT(S'). Also, whenever n discovers a neighbor node v of itself during the process, n sends NEIGH-
BOR_SET_REQUEST to v so that v includes n into C,. Therefore the candidate sets of all nodes are

properly updated, and the updated distributed Delaunay triangulation is correct. O

Though the join protocol achieves a correct distributed DT after it finishes, the transient states are
not correct, which may result in malfunction of upper-layer applications. For example, a new node in
an early stage of the joining process may not have a complete set of neighbors and may not be able to
properly forward a message for greedy routing. To address such situations, we introduce a mechanism
for a joining node to defer to be a part of the system until it establishes its complete set of neighbor
nodes. When an existing node receives NEIGHBOR_SET_REQUEST, it does not immediately update its
neighbor set. When the joining node n finishes its joining process, it then notifies all its neighbors that

it is safe to update their candidate sets and their neighbor sets to include n. Due to delay of notification
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message delivery, some transient states may still be incorrect. However, greedy routing will work well
even with imperfect states, as to be shown in section 4.

Also note that the join protocol is proved to be correct only for serial joins. In case of concurrent
joins, the protocol may not result in a correct distributed DT. Such imperfection is addressed by the

maintenance protocol to be presented in section 3.5.

3.4 Leave protocol

We first address the case of graceful leaves. The case of ungraceful leaves or failures is addressed by our
maintenance protocol in section 3.5.

A straightforward approach to address graceful leave would be that a leaving node, before it leaves,
notifies all of its neighbors that it is about to leave. This simple notification is, however, not enough to
maintain a correct distributed DT.

Suppose that a node u leaves and it notifies a neighbor node v that it is leaving. Then v should
remove u from C, and update N,. The problem is that in some cases v may have a new neighbor w that
was not previously a neighbor of v and may not be in C,. In such cases, the straightforward approach
may resulting in an incorrect distributed DT. However, we observe that such w is always a neighbor of u.
Therefore it is possible for u to notify v that u is leaving and also introduce w to v, resulting in a correct
distributed DT.

When a node u leaves, u calculates a local DT of its neighbor nodes, but not including itself. Then
u notifies each of its neighbors, say v, that u is leaving as well as a list of the neighbors of v on the local
DT of u. Upon receiving such notification, v updates its candidate set and neighbor set. In addition,
a DELETE message that u is leaving is propagated using GRPB. Note that even if « is not a neighbor
node of another node z, £ may have u in C;,. The DELETE message ensures that u is removed from
such C,, if any. The protocol pseudocode is given in Figure 6.

The following theorem assures that the leave protocol is correct for serial leaves. The theorem is
based on the previous observation that if a node w becomes a new neighbor of v after u leaves, w was a

neighbor of u before u leaves.

Lemma 10. Let S’ =S — {u}. Let v be a neighbor node of u on DT(S). If w is a neighbor node of v
on DT (S'), then w is a neighbor node of u on DT(S) or w is a neighbor node of v on DT(S).

Proof. Since w is a neighbor of v on DT'(S’), by Lemma 1, there exists a point p such that D(p,v) <
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Leave() of node u

Calculate DT'(N,) ; Note: u € N,

for all ve N, do
N} < {w | w is a neighbor of v on DT(N,)}
Send(v, LEAVE(NY))

end for

On u’s receiving LEAVE(NY) from v
Cy < Cy — {v}UNY
N, < neighbor nodes of v on DT'(C,,)
for all w e N, do
if w satisfies conditions C1 and C2 from v then
Send(w, DELETE(v))
end if

end for

On u’s receiving DELETE(w) from v
Cy <+ Cy, —{w}
for all z € N, do
if z satisfies conditions C1 and C2 from w then
Send(z, DELETE(w))
end if
end for

Figure 6: Leave protocol at a node u

D(p,w) < D(p, z), for any other node z € S',z # v,z # w.

Case A) D(p,w) < D(p,u). Since S = S’" U {u}, D(p,v) < D(p,w) < D(p,z), for any other node
z € S. Then by Lemma 2, v and w are neighbors on DT'(S).

case B) D(p,u) < D(p,w). Then consider a point p’ which moves from p toward w. Since D(p’,w)
decreases faster than D(p',z), z € S,z # u,x # v,z # w, as p’ moves and D(p',u) > 0 and D(p',v) > 0,
there must be a point where D(p’,v) < D(p',w) < D(p',u) < D(p',z) or D(p',u) < D(p',w) < D(p',v) <
D(p',x), for any other node z. Then by Lemma 2, v and w are neighbors on DT'(S) or v and w are

neighbors on DT'(S). O

Theorem 6. Let S be a set of nodes and the distributed DT of S be correct. Let a node u € S leave the
distributed DT using our leave protocol. Assume that there is no other join, leave, or failure. After the

leave protocol finishes, the updated distributed DT is correct.

Proof. Let S' = S —{u}. Consider a node v € S’. First, u is removed from C,, by propagation of LEAVE
and DELETE messages. Therefore C,, C S'.
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Case A) Suppose that v is not a neighbor of v on DT'(S). Consider a node w € S, w # v. If w is a
neighbor of v on DT(S'), w is also a neighbor of v on DT(S) by Lemma 3. If w is a neighbor of v on
DT(S), w is also a neighbor of v on DT(S’) by Lemma 4. Therefore the neighbors of v on DT(S) are
the same as the neighbors of v on DT(S’) and v is not affected by leave of u.

Case B) Suppose that v is a neighbor of v on DT(S). Consider a node w € S',w # v. If w is a
neighbor of v on DT'(S’), by Lemma 10, either w is already in C, or v is notified of w by u. Therefore
C, will include all the neighbor nodes of v on DT'(S"). O

Note that the leave protocol is correct only for serial leaves. Similar to the case of concurrent joins,
concurrent leaves may result in an incorrect distributed DT. Such cases are addressed by our maintenance
protocol, to be discussed in the next subsection. In our implementation, propagation of a DELETE
message is stopped when the message arrives at a node that does not have the leaving node in its
candidate set. This modification greatly reduces communication cost, without affecting correctness of
the leave protocol in almost all cases. A very rare case where a left node remains in a candidate set and
causes incorrectness can be addressed by the maintenance protocol.

Also, similar to the case of a join, transient incorrect states during a leave may result in malfunction
of upper-layer application. In the case of a leave, it is desirable for a leaving node to defer leaving after
making sure that each of its neighbors has updated its neighbor set. This may be achieved by requiring

an acknowledgement of a LEAVE message.

3.5 Maintenance protocol

The join and leave protocols are proved correct only for serial joins and leaves, assuming that there is no
other concurrent join, leave, or failure. In practice, however, nodes may join and leave concurrently, or
even fail at any time, causing errors in the system state. Therefore an additional mechanism is needed
to repair errors in the system state. To address system churn and failures, we present a maintenance
protocol, which is run periodically to detect and repair errors, if any, in the system state.

From Definition 5, for a distributed DT to be correct, two conditions must be satisfied: i) Each node
u must include in its neighbor set N, all of its neighbors on the global DT, and ii) N, must not contain
any node that is not in the system.

To satisfy the first condition, a node periodically exchanges information with each of its neighbors.

Specifically, a node u informs its neighbor node v the neighbors of v on u’s local DT. Note that the
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process is essentially the same as what is done when a node joins, since the goals of the two protocols are
same i.e. each node learns its neighbors on the global DT.

To satisfy the second condition, a node probes its neighbors by sending ping messages periodically.
If a probed node does not reply, the node is considered to be not in the system and removed from the
candidate set. This mechanism also addresses the case of ungraceful node failures. Note that this probing
can be easily integrated with the exchange of information for the first condition.

The maintenance protocol is as follows. A node u sends out NEIGHBOR_SET _REQUEST to its
neighbor node v. When v receives the request, it replies with N, which is the set of neighbors of u
on DT(C,). That is, N! is the set of u’s neighbors in v’s local view. v also checks whether u is in its
candidate set C,. If u € C,, v puts v in C,,. When u receives the reply N, u checks whether N C C,,. If
there exists any node in N that is not in C,, it is added to C,,. In case u does not receive a reply from v
before TIMEOUT, v is considered to have failed and removed from C,,. u also propagates the deletion of v
similarly as in the leave protocol. Once C,, is updated, u recalculates the local DT and determines its set
of neighbor nodes N,. If there are any new neighbor nodes in N, u sends NEIGHBOR_SET_REQUEST
to them. The protocol pseudocode is given in Figure 7.

From a large number of simulation experiments, we found that the maintenance protocol converged to
a correct distributed DT in every experiment, for different dimensionalities (2D to 6D), numbers of nodes
(200 to 800), scenarios (random initial graph, severe churn with node failures) as long as the system is
not partitioned. Note that it is extremely difficult to prove correctness of the maintenance protocol for
any combinations of concurrent joins, leaves and failures. Furthermore, in an environment where system
churn occurs continually, another join or leave may occur before the system converges to a correct state.
As a result, convergence to a correct system state may be impossible during system churn. Fortunately,
some applications can still benefit from an imperfect DT as long as it is “accurate” enough. Therefore
the accuracy of a distributed DT over time is more important in practice than eventual convergence to
a correct distributed DT for systems under churn.

We found that our maintenance protocol converged to a correct distributed DT some time after churn
and failure have stopped in every one of our experiments. However this does not mean that our join and
leave protocols are no longer needed. Note that it takes time for the maintenance protocol to detect and
repair errors, resulting in a lower average accuracy. Furthermore, the maintenance protocol requires a
much higher communication overhead than those of the join and leave protocols, and thus should be run

only periodically, with the period being a design parameter to be tuned.
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On u’s expiration of PERIOD TIMER
for all v € N, do
Send(v, NEIGHBOR_SET_REQUEST)
Set TIMEOUT TIMER, asT +TO
; T is current time. T'O is the timeout value.
end for
Set PERIOD TIMER asT + P
; T is current time. P is the period of maintenance protocol.

On u’s expiration of TIMEQUT TIMER,
Cy «+ Cy — {v}
Update_Neighbors(C',, Ny,)
for all we N, do
Send(w, DELETE(v))
end for

On u’s receiving NEIGHBOR_SET_REQUEST from v
if v¢C, then
Cy + Cy U{v}
Update_Neighbors(C\,, Ny)
end if
N} ¢ {w | w is a neighbor of v on DT(C,)}
Send(v, NEIGHBOR_SET_REPLY (N %))

On u’s receiving NEIGHBOR_SET_REPLY (N?) from v
Cy+—C,UN}
Update_Neighbors(C,, N,,)

Figure 7: Maintenance protocol at a node u. Update_Neighbors(C,,, N,) is the same as the one specified
in Figure 5.

We define an accuracy metric of a distributed DT as follows, which is used for all of our experiments.
Let DDTs be a distributed DT of a set of in-system nodes S. We consider a node to be in-system from
when it finishes joining to when it starts leaving. (Note that some nodes may be in the process of joing
or leaving and not included.) Let Nepprect(DDTs) be the number of correct neighbor entries of all nodes
and Nyrong(DDTs) be the number of wrong neighbor entries of all nodes on DDTs. A neighbor entry v
of a node w is correct when v is a neighbor of u on the global DT (namely, DT'(S)), and wrong when u
and v are not neighbors on the global DT. Let N(DT(S)) be the number of edges on DT'(S). Note that

edges on a global Distributed triangulation are undirectional and thus are counted twice to be compared

24



with neighbor entries. The accuracy of DDTys is defined as follows:

Ncorrect (DDTS) - Nwrong (DDTs)
2% N(DT(S))

accuracy(DDTs) =

A distributed DT is correct if and only if its accuracy is 1.

To demonstrate accuracy and effectiveness of the maintenance protocol, we designed a “ring” scenario
beginning with a barely connected graph in which each node initially knows only one other node. That
is, node p;, ¢ > 1, has only p;_; in its candidate set and its neighbor set. Figure 8 shows accuracy of
the distributed DT versus time as the maintenance protocol runs. Note that the maintenance protocol
achieved a correct distributed DT within a few rounds of protocol execution. The convergence is faster

in a higher dimension space, since nodes have more neighbors and information is exchanged faster.

Accuracy

1 1
4
Rounds

(o))

Figure 8: Accuracy of the maintenance protocol in a “ring” scenario, where each node initially knows
only one other node. The number of nodes is 200.

3.6 Timestamp

In a dynamic environment, it is possible that a node receives messages with conflicting information. For
example, some nodes may keep in their candidate set a node that has already left or failed, and disperse
the information later. Then other nodes may consider the node as new, adding it to their candidate
sets. Although the maintenance protocol will later detect that the node does not exist and delete it,
such wrong information may again be forwarded to other nodes before the detection. In this way, wrong
information may linger in the system unless the wrong information is detected and discarded as soon as

it is received.
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To address this issue, we introduce a clock T, at each node u. The clock value is incremented whenever
u sends out a message. Any information regarding a node is timestamped with its clock. In addition,
a node u maintains the latest timestamp 7' of the information regarding another node v it knows of.
When a node u receives any information regarding a node v from another node w, the timestamp of the
information T is compared with the latest timestamp T at node uw. If T < T (that is, the received
information is older), the information is discarded; otherwise it is accepted and the latest timestamp is

updated (T = T").

4 Experimental results

4.1 Scalability

The per-node communication cost of our distributed DT protocols largely depends on the average number
of neighbors per node. Since the number of neighbors of a node on a DT is independent of the number of
nodes in the system, the scalability of our distributed DT protocols is generally very good. However, there
are two minor factors that affect the per-node cost as the system size increases. First, greedy routing to
locate the closest existing node in the join process will take O(/n) steps, where d is the dimensionality of
the space and n is the number of nodes in the system. In addition, nodes on the boundary of a DT have
fewer neighbors than those in the middle. When the network size is smaller, the fraction of boundary
nodes is larger, making the average number of neighbors smaller. Figure 9(a) and Figure 9(b) show the
number of messages and the amount of messages (in Kbytes) versus system size in 3D. The join and leave
curves represent the costs of 100 joins and 100 leaves respectively, and are more or less independent of
system size showing very good scalability. The per-round cost of the maintenance protocol for all nodes

increases linearly with system size; thus the average cost per node is constant versus system size.

4.2 Performance under churn

Figure 10(a) shows accuracy of a distributed DT as a function of time for a system under churn, more
specifically, when nodes are joining and leaving concurrently but not failing. Initially, the sytem has 200,
400, or 800 nodes with a correct distributed DT. Then 1 node joins and 1 node gracefully leaves once

every second on the average until time 110 second, using our join and leave protocols. Our maintenance
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Figure 9: The communication cost of protocols versus number of nodes in 3D. The join and leave curves
represent the total costs of 100 serial joins and 100 serial leaves, respectively. The maintenance curve
represents the per-round cost for all nodes to run the maintenance protocol.

protocol is run once every 10 seconds.® In spite of the churn, accuracy of the distributed DT remains
very high. The small error is due to concurrent joins and leaves, and is repaired by our maintenance
protocol periodically. Figure 10(b) shows the success rate of a greedy routing protocol for a system under
churn while running our join, leave and maintenance protocols. Note that the success rate is much higher
than the accuracy value, due to careful design of our join and leave protocols. In our join protocol, the
neighbor nodes of a joining node defer adding the joining node to their neighbor sets until the joining
node finishes its joining process and is ready to function properly. Similarly, in our leave protocol, a

leaving node continues service until all of its neighbors are notified.

4.3 Performance with node failures

Figure 11(a) and Figure 11(b) show accuracy of distributed DT and greedy routing success rate for
a system in which nodes join and fail concurrently. Except for nodes failing instead of leaving, the
simulation parameters are the same as in the previous set of system churn experiments. Initially, the
system has 200, 400, or 800 nodes with a correct distributed DT. Then, 1 node joins and 1 node fails
once every second on the average until time 110 second, and our maintenance protocol is run once every
10 seconds.

Both accuracy and greedy routing success rate are much worse than in the previous case of system

5By Little’s Law, for an initial system size of 200, the average lifetime of a node is 200 seconds. For P2P systems, this
is a very high churn rate[16]. Note that accuracy in Figure 10(a) improves as the system size increases.
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Figure 10: Performance of a system in 3D under churn versus time. 1 node joins and 1 node leaves per
second on the average until 110 second. The maintenance protocol is run every 10 seconds.

churn with graceful leaves instead of failures. Since any error caused by a failed node cannot be recovered
until the maintenance protocol detects it by a message timeout, the lower accuracy and routing success
rate are to be expected considering the high failure rate.

Lastly, note that in all simulations the maintenance protocol

converged to a correct system state in a

few rounds after churning stopped.
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5 Related work

The first protocol to construct DT was proposed by Liebeherr and Nahas [7]. The protocol utilizes
the locally equiangular property of DT in 2D space. Nodes are assumed to have pre-assigned logical
coordinates in 2D space. Each node checks whether the equiangular property holds among itself and
its neighbor nodes. Whenever a violation is detected, the node flips triangles to maintain a correct DT.
Their application was application-layer multicast, called HyperCast. Since compass routing on DT is
guaranteed to succeed, a multicast tree can be implicitly determined for a given source using reverse
path.

Steiner and Biersack [8] proposed a distributed approach to construct DT in 3D space. In their work,
the tetrahedron which includes a joining node is determined and split. Then the new tetrahedra are
checked whether they include any nodes in their circumspheres and flipped if necessary.

Simon et al. [9] proposed a similar approach in d-dimensional space. They also addressed the case of
node departures as well as arrivals. They assume that no d + 1 nodes are on the same hyperplane and
no d + 2 nodes are on the same hypersphere. It is also assumed that a new node is in the interior of the
convex hull of existing nodes.

While DT has been extensively studied in computational geometry, most work in the field focuses on
centralized algorithms. Ohnishi et al. [10] proposed an incremental algorithm to construct a distributed
DT in 2D space. Yoo et al. [11] proposed a distributed algorithm to maintain DT for moving nodes in
2D space.

Locating the closest node to a given point is a common problem in many applications. Wong et al.
[17] proposed a solution called Meridian, which uses multi-resolution rings. While Meridian is efficient
since it requires O(log N) steps, where N is number of nodes in the system, it does not guarantee to find

the closest node.

6 Conclusions

While DT has been known and used for a long time, the design of protocols for constructing and main-
taining a DT for a dynamic system has not received much attention. In this paper, we investigate the
design of join, leave and maintenance protocols for a set of nodes to construct and maintain a distributed
DT dynamically, as well as some application-level protocols to support DT applications.

We define a distributed DT and present a necessary and sufficient condition for a distributed DT to
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be correct. This condition was used as a guide to design our join, leave, and maintenance protocols. Our
join and leave protocols are proved correct for serial joins and leaves. For a system under churn and with
node failures, we define an accuracy metric for a distributed DT. Experimental results show that our
protocols are scalable and they achieve high accuracy for systems under churn and with node failures. In
every one of our experiments conducted to date, the system converged to a correct distributed DT some
time after churn and failures stopped. Typically convergence was achieved after running the maintenance
protocol for a few rounds.

To support applications of distributed DT, we present application-level protocols for greedy routing,
network node clustering, broadcast, and multicast within a radius. Each node in our greedy routing,
broadcast and multicast protocols does not maintain any per-session state. We also discuss and prove

correctness for the application protocols.
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