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Proto
ol Design for Dynami
 Delaunay Triangulation �Dong-Young Lee and Simon S. Lamfdylee, lamg�
s.utexas.eduDepartment of Computer S
ien
esThe University of Texas at AustinAbstra
tDelaunay triangulation (DT) is a useful geometri
 stru
ture for appli
ations su
h as routing,
lustering, broad
ast, distributed virtual reality systems, and multiplayer on-line games. In this paperwe investigate the design of join, leave, and maintenan
e proto
ols for a set of nodes to 
onstru
t andmaintain a distributed DT dynami
ally. (Con
eptually nodes are points in a Eu
lidean spa
e.) Wede�ne a distributed DT and present a ne
essary and suÆ
ient 
ondition for a distributed DT to be
orre
t. This 
ondition is used as a guide for proto
ol design. We present join and leave proto
olsas well as 
orre
tness proofs for serial joins and leaves. In addition, to handle 
on
urrent joins andleaves as well as node failures, we present a maintenan
e proto
ol. An a

ura
y metri
 is de�nedfor a distributed DT. Experimental results show that our join, leave and maintenan
e proto
ols ares
alable, and they a
hieve high a

ura
y for systems under 
hurn and with node failures. To supportappli
ations of distributed DT, we present proto
ols for greedy routing, 
lustering, broad
ast, andmulti
ast within a radius. Ea
h node in our greedy routing, broad
ast and multi
ast proto
olsdoes not maintain any per-session state. We also dis
uss and prove 
orre
tness for the appli
ationproto
ols.1 Introdu
tionWith almost a hundred years of history, DT [1℄ and Voronoi diagram [2℄ have been widely used in manyappli
ations in di�erent �elds of s
ien
e and engineering, in
luding 
omputer s
ien
e. A triangulation in2D spa
e means, for a given set of nodes, 
onstru
ting edges between pairs of nodes su
h that the edges�Resear
h sponsored by National S
ien
e Foundation ANI-0319168 and CNS-0434515.1



form a non-overlapping set of triangles that 
over the 
onvex hull of the nodes. DT in 2D spa
e is usuallyde�ned as a triangulation su
h that the 
ir
um
ir
le of ea
h triangle does not in
lude any node otherthan the vertexes of the triangle. DT 
an be similarly generalized for higher dimensions.An interesting property of DT is that it 
onne
ts a node to other nodes that surround the node. Thisproperty may be useful in simulation-type appli
ations, in
luding distributed virtual reality systems andmultiplayer on-line games, sin
e an entity in a simulation usually intera
ts with other entities aroundit. For example, a mole
ule intera
ts with other mole
ules around it, and a 
hara
ter in on-line gamesmostly intera
ts with other 
hara
ters around it. Furthermore, we also design a proto
ol to multi
asta message within a given radius from the sour
e node, whi
h will be useful for many simulation-typeappli
ations su
h as multiplayer on-line games.Another property of DT in networking 
ontext is that greedy routing always su

eeds on a DT [3℄.In greedy routing, a node forwards a message to one of its neighbors that is 
losest to a given destinationnode. Note that greedy routing on an arbitrary graph is prone to the risk of being trapped at a lo
aloptimum, i.e., routing stops at a non-destination node that is 
loser to the destination than any of itsneighbors. However, on a DT it is guaranteed that greedy routing always su

eeds to �nd the destinationnode. Note that greedy routing does not always �nd a shortest route. However, the quality of the greedyroute is often very good, sin
e the length of an optimal route between a pair of nodes on a DT is withina 
onstant time of the dire
t distan
e [4, 5, 6℄.While our approa
h is more system-oriented 
ompared to previous work, our proto
ols are also basedon a rigorous theoreti
al foundation. In a distributed DT, ea
h node in a system keeps a set of itsneighbor nodes. We spe
ify a distributed DT by the neighbor sets of all nodes. A distributed DT is
orre
t when it is equivalent to its 
orresponding 
entralized DT. That is, a distributed DT is 
orre
twhen ea
h node has the same set of neighbors as on the 
orresponding 
entralized DT.1 In se
tion 3, weidentify a ne
essary and suÆ
ient 
ondition to a
hieve 
orre
tness. We use this 
ondition as a guide fordesigning join, leave, and maintenan
e proto
ols for 
onstru
ting and maintaining a distributed DT. Ourjoin and leave proto
ols are proved to be 
orre
t in the following sense: If a distributed DT is 
orre
twhen a new node joins or an existing node leaves and there is no other 
on
urrent join, leave or failurethen, at the end of proto
ol exe
ution, the resulting distributed DT is 
orre
t. Thus if a sequen
e of joinsand leaves o

ur serially (i.e., one �nishes before another starts), the distributed DT is 
orre
t wheneverproto
ol exe
ution �nishes.1We will de�ne a distributed DT and its 
orre
tness more 
arefully in se
tion 2.2



In pra
ti
e, nodes may join and leave 
on
urrently. Furthermore, nodes may fail at any time, im-mediately breaking 
orre
tness of the distributed DT. Our maintenan
e proto
ol has been designed toaddress su
h s
enarios. We do not have a 
onvergen
e proof for the maintenan
e proto
ol. However, inevery one of a large number of experiments 
ondu
ted to date, our maintenan
e proto
ol 
onverged to a
orre
t DT some time after a long period of system 
hurn during whi
h nodes join and leave (also fail)
on
urrently and frequently.Note that even in the 
ase of serial joins and leaves, 
orre
tness of a distributed DT is, stri
tlyspeaking, broken as soon as a node joins or leaves, and it is re
overed only at the end of proto
olexe
ution. Therefore a 
orre
t distributed DT is impossible to a
hieve 
ontinually. We observe that someappli
ations 
an bene�t from an in
orre
t distributed DT as long as it is suÆ
iently \a

urate." Thusthe a

ura
y of a distributed DT over a long duration of time is a more useful metri
 in pra
ti
e thanthe notion of 
onvergen
e to 
orre
tness. We will de�ne an a

ura
y metri
 for a distributed DT, andshow that our proto
ols a
hieve high a

ura
y under di�erent s
enarios of system 
hurn.In addition to proto
ols to 
onstru
t and maintain a distributed DT, we present several appli
ationproto
ols, in
luding greedy routing, 
lustering, broad
ast, and multi
ast within a radius. As we dis
ussedearlier, it is known that greedy routing from a node to another node on a DT always su

eeds. Thenwe prove that greedy routing 
an also be used to lo
ate an existing node that is 
losest to a given point(or a node that is not in the system yet). As an appli
ation of the proto
ol to �nd the 
losest existingnode, we present a node 
lustering proto
ol. Given a set of nodes and an upper bound on the radius of a
luster, the 
lustering proto
ol partitions nodes into 
lusters of radii within the given upper bound. In theproto
ol, ea
h 
luster has a 
enter node and the 
enter nodes form a distributed DT. Similar approa
hesto 
lustering are found in prior work, based on a random graph of 
lusters [13℄ or a 
omplete graph of
lusters [14℄. Note that greedy routing on a random graph is not guaranteed to su

eed and a 
ompletegraph may result in limited s
alability.Our broad
ast proto
ol is based on the reverse path of greedy routing, and is named GRPB (greedyreverse path broad
ast). GRPB does not require any knowledge of global triangulation or per-sessionstate. A node determines its next-hop nodes to forward a broad
ast message solely using lo
al information,namely the 
oordinates of its neighbor nodes and the sour
e node.We observe that the distan
e from a sour
e node monotoni
ally in
reases in GRPB, sin
e the distan
eto a destination node de
reases in greedy routing. Therefore our proto
ol to multi
ast within a givenradius easily follows. RadGRPM (radius greedy reverse path multi
ast) is basi
ally the same as GRPB,3



ex
ept that it additionally 
he
ks to make sure that the next-hop nodes are within the radius fromthe sour
e node. RadGRPM also keeps the advantage of GRPB that it does not require any globalinformation or per-session state. RadGRPM is simple and it is useful for simulation-type appli
ations.For example, an explosion of a bomb in a battle�eld simulation will a�e
t entities within some range andwill be observed within a longer range.Experimental results show that our proto
ols are s
alable, and work very well under system 
hurn, i.e.,when 
on
urrent joins and leaves o

ur frequently. Even with ungra
eful node failures, whi
h inevitablyresult in an in
orre
t distributed DT, the maintenan
e proto
ol re
overs a 
orre
t distributed DT sometime after 
hurn and failures stop.The organization of this paper is as follows. In se
tion 2, we introdu
e 
on
epts and de�ntions ofdistributed DT and also present appli
ation proto
ols. In se
tion 3, we present a ne
essary and suÆ
ient
orre
tness 
ondition for a distributed DT, whi
h was used as a guide to design our proto
ols. Thejoin and leave proto
ols are presented and proved 
orre
t for serial joins and leaves. Our maintenan
eproto
ol is then presented as well as an a

ura
y metri
 for evaluating proto
ol performan
e. In se
tion4, experimental results are presented to demonstrate s
alability of our proto
ols and their performan
efor systems under 
hurn and with node failures. We dis
uss related work in se
tion 5 and 
on
lude inse
tion 6.2 Distributed Delaunay TriangulationIn this se
tion we introdu
e DT, Voronoi diagram and distributed DT. Consider a set of nodes. Con
eptu-ally, nodes are points in a Eu
lidean spa
e. (The results and proto
ols in this paper are for d-dimensionalspa
es, where d � 2. Most previous results on distributed DT in the literature are limited to 2D[7, 10, 11℄and 3D[8℄ spa
es.)We �rst de�ne Voronoi diagram of a set of given nodes and then de�ne DT as the dual of the Voronoidiagram. Note that there is another way of dire
tly de�ning DT using 
ir
um
ir
les of triangles (or
ir
um-hyperspheres of simplexes in higher dimensions), as was brie
y introdu
ed in the introdu
tion.Sin
e the properties of DT of interest to us 
ome from Voronoi diagram, we believe that this approa
h isappropriate in our 
ontext. Lastly, we de�ne distributed DT. In a distributed DT, ea
h node maintainsa set of its neighbor nodes. We de�ne a distributed DT by the neighbor sets of all nodes.In the se
ond part of this se
tion, appli
ations of DT are dis
ussed. An important and well-known4



property of DT is that a simple greedy routing algorithm is guaranteed to su

eed on DT, without beingstu
k at a lo
al optimum [3℄. We prove a similar property that greedy routing 
an also �nd the 
losestnode to a given point. Clustering of network nodes is an example for whi
h this property 
an be utilized.We also present proto
ols for broad
ast and for multi
ast within a radius, and prove 
orre
tness for theproto
ols.2.1 Con
epts and de�nitionsWe �rst de�ne a Voronoi diagram.De�nition 1. Consider a set of nodes S in a Eu
lidean spa
e. The Voronoi diagram of S is apartitioning of the spa
e into 
ells su
h that a node u 2 S is the 
losest node to all points within itsVoronoi 
ell V CS(u).That is, V CS(u) = fp j D(p; u) � D(p; w); for any w 2 Sgwhere D(x; y) denote the distan
e between x and y. Note that a Voronoi 
ell in a d-dimensional spa
e isa 
onvex d-dimensional polytope en
losed by (d � 1)-dimensional fa
ets. We say that two Voronoi 
ellsare neighbors of ea
h other if they share a 
ommon fa
et.De�nition 2. Consider a set of nodes S in a Eu
lidean spa
e. V CS(u) and V CS(v) are neighboringVoronoi 
ells, or neighbors of ea
h other, if and only if V CS(u) and V CS(v) share a fa
et.Figure 1(a) shows a Voronoi diagram in a 2-dimensional spa
e. Note that V CS(v) and V CS(w) areneighbors of V CS(u) but V CS(x) is not, sin
e V CS(u) and V CS(x) shares only a point. Similarly, in a3-dimensional spa
e, Voronoi 
ells that share only an edge or a point are not neighbors.Then we de�ne DT as follows.De�nition 3. Consider a set of nodes S in a Eu
lidean spa
e. The Delaunay triangulation of S is agraph on S where two nodes u and v in S have an edge between them if and only if V CS(u) and V CS(v)are neighbors of ea
h other.We also say that u and v are neighbors of ea
h other when V CS(u) and V CS(v) are neighbors ofea
h other. Figure 1(b) shows the DT of nodes in Figure 1(a). Note that fa
ets of a Voronoi 
ell5
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(b) Delaunay triangulationFigure 1: A Voronoi diagram and the 
orresponding DT in a 2-dimensional spa
e.perpendi
ularly bise
t edges of a DT. Therefore, a DT is the dual of a Voronoi diagram.2 Let us denotethe Voronoi diagram of S as V D(S), and the DT of S as DT (S).By a distributed DT, we mean that ea
h node u 2 S maintains a set Nu of its neighbor nodes.De�nition 4. A distributed Delaunay triangulation of a set of node S is spe
i�ed by f< u;Nu >ju 2 Sg, where Nu represents the set of u's neighbor nodes, whi
h is lo
ally determined by u.De�nition 5. A distributed Delaunay triangulation of a set of nodes S is 
orre
t if and only if both ofthe following 
onditions hold for every pair of nodes u; v 2 S:� if there exists an edge between u and v on the global DT of S, v 2 Nu and u 2 Nv,� if there does not exist an edge between u and v on the global DT of S, v 62 Nu and u 62 Nv.That is, a distributed DT is 
orre
t when for every node u, Nu is the same as the neighbors of u onDT (S). Sin
e u does not have global knowledge, it is not straightforward to a
hieve 
orre
tness. We willidentify the 
ondition to a
hieve 
orre
tness for a distributed DT in se
tion 3.2.2 Appli
ations of distributed Delaunay triangulationIn this se
tion we present several proto
ols to illustrate the usefulness of distributed DT for networkingappli
ations. We assume for now that a set of nodes S form a distributed DT. Our proto
ols to 
onstru
t2In geometry, polyhedra are asso
iated into pairs 
alled duals, where the verti
es of one 
orrespond to the fa
es of theother. 6



and maintain a distributed DT are deferred to se
tion 3. We also assume that nodes are asso
iated withtheir 
oordinates. When a node \knows" other nodes, it also knows their 
oordinates. That is, a nodeknows its own 
oordinates, its neighbor's 
oordinates, and the 
oordinates of other nodes that it knowssu
h as the destination node in routing and the sour
e node in broad
asting. The distan
e between anytwo nodes 
an be 
al
ulated from their 
oordinates.Greedy routingA well-known property of DT is that greedy routing always su

eeds on DT [3℄. In greedy routing,a node forwards a message to the 
losest node to the destination among its neighbors. As with manygreedy approa
hes, the greedy routing algorithm is prone to risk of being stu
k at a lo
al optimum.That is, on an arbitrary graph, a non-destination node may be 
loser than any of its neighbors to thedestination, thus stopping greedy routing at the node. However, on a DT, it is guaranteed that greedyrouting su

eeds to deliver a message to the destination node. Furthermore, the quality of the greedyroute is often very good, sin
e the length of an optimal route between a pair of nodes on a DT is withina 
onstant time of the dire
t distan
e [4, 5, 6℄.Finding the 
losest existing node.Similar to the previous appli
ation of greedy routing, a DT may be utilized in �nding the 
losestexisting node to a given point. (Note that the given point may not be a node in the DT.) Finding the
losest existing node is a 
ommon operation in many Internet appli
ations, in
luding server sele
tion,node 
lustering, and peer-to-peer overlay networks.Consider the problem of �nding the 
losest existing node (destination) d 2 S to a given point n 62 S,starting from a given node s 2 S. If there are more than one 
losest nodes to n, the destination may beany one of them. Let v0 be s. At vi, the greedy routing algorithm sele
ts the next-hop node vi+1 whi
his 
losest to n among the neighbor nodes of vi. If vi+1 is 
loser to n than vi, greedy routing is repeatedat vi+1. Otherwise, routing stops at vi, whi
h is denoted as vk. If vk is the 
losest node or one of the
losest nodes to n, we say the routing su

eeds; otherwise we say it fails. In other words, the routingsu

eeds if n 2 V CS(vk).The following theorem shows that the greedy routing algorithm always su

eeds as long as it is run ona DT. Bose and Morin [3℄ proved a similar theorem that greedy routing between nodes always su

eedson DT. We use an approa
h similar to theirs to prove the following theorem.Theorem 1. Finding a 
losest node d 2 S to a given point n 62 S using greedy routing always su

eedson a DT of S. 7



Proof. We prove by showing that every node v 6= d in Delaunay triangulation has a neighbor that is
loser to n. Suppose that v 6= d. Draw a straight line L from v to n, and let P the �rst Voronoi fa
etwhi
h L 
rosses. Let u be the node in the adja
ent Voronoi 
ell whi
h shares P with v. Therefore thereis an edge between v and u in the Delaunay triangulation. Note that P divides the spa
e into two regionsSpu and Spv ; points in Spu is 
loser to u than to v. Sin
e n belongs to Spu, n is 
loser to u than v. Thereforeif v 6= d, v has a neighbor that is 
loser to n. On the other hand, if v = d, the routing stops at v. Sin
ethere are a �nite number of nodes, eventually a 
losest node d is found in a �nite number of steps.Clustering of network nodesTo illustrate an appli
ation of �nding the 
losest existing node to a given point, we present a simple
lustering proto
ol of network nodes. The proto
ol is a distributed version of a 
lustering algorithmadopted from [12℄. The upper bound R of the radius of a 
luster is given as a parameter. Nodes are
onsidered sequentially whether they should join an existing 
luster or 
reate a new 
luster. The �rstnode 
onsidered 
reates a new 
luster and be
omes the 
enter of it, sin
e there is no existing 
luster.From the se
ond node on, the 
onsidered node is tested whether its distan
e to the 
enter of the 
losestexisting 
luster is within R or not. If so, the 
onsidered node joins the 
luster; otherwise it 
reates itsown 
luster and be
omes the 
enter of it. The algorithm stops when all nodes are 
onsidered. Note thatthe result of 
lustering may be di�erent depending on the order in whi
h nodes are 
onsidered [12℄.Our 
lustering proto
ol is a distributed version of this 
entralized algorithm. The main 
hallenge in
onverting it into a distributed version is to �nd the 
losest existing 
luster without global knowledge.We solve this problem by utilizing greedy routing on a DT. Re
all that ea
h 
luster has a 
enter node. Inour proto
ol, existing 
enter nodes form a distributed DT. A non-
enter node does not parti
ipate in thedistributed DT. When a node u joins the system, it �rst �nds the 
losest existing 
enter node by usinggreedy routing on the distributed DT of the 
enter nodes. Suppose that the 
enter node su is found. Ifthe distan
e from u to su is within the upper bound R, u be
omes a member of the 
luster 
entered at su;otherwise u 
reates its own 
luster, be
omes the 
enter node of the new 
luster, and joins the distributedDT.Other distributed approa
hes to 
lustering are found in prior work. In [13℄, 
lusters form a randomgraph and a joining node may fail to �nd the 
losest existing 
luster. In [14℄, every node maintains linksto every other 
lusters, limiting s
alability. The s
alability issue is addressed in [14℄ by introdu
ing ahierar
hy of 
lusters. Our proto
ol �nds the 
losest 
luster for a joining node and is s
alable.Broad
ast using reverse path 8



As was dis
ussed earlier, the greedy routing algorithm �nds a path from a sour
e node to a destination.Consider su
h paths from all nodes in S to a node s. The union of the paths is a tree rooted at s. Thereforeby reversing the dire
tion of ea
h path, we get a broad
ast tree from a sour
e node s to every other nodein S. Figure 2(a) illustrates an example of a reverse path. In forward greedy routing, v sele
ts u as thenext hop, sin
e u is its 
losest neighbor to the destination s. Thus in reverse path broad
ast from thesour
e node s, u should forward a message to v,, below line revised if u knows that u is the next hop of vin the forward route. Note that s is the destination in forward greedy routing and the sour
e in reversepath broad
ast.
s

Destination

Source

Forward greedy routing to S

Reverse path broadcast from S

uv

(a) Forward path and reverse path
s

u

v

w

x

s

u

v

w

(b) Ambiguous situation due to limited knowledgeFigure 2: Forwarding in GRPBWe introdu
e a simple broad
ast proto
ol whi
h utilizes the reverse path tree. Note that our proto
oldoes not require knowledge of the global triangulation over S. Ea
h node u is assumed only to know itsset of neighbor nodes, and determines to whi
h node(s) it should forward a message based on its lo
alknowledge. Spe
i�
ally, node u in the previous example may not know all the neighbors of v. u onlyknows the neighbors of u, but still has to determine whether u is the 
losest node to s among v's neighbornodes.The idea of using reverse path for broad
ast goes ba
k to as early as 1978 [15℄. In the 
ontext of DT,Hyper
ast [7℄ is the �rst system to introdu
e the idea. Our proto
ol is di�erent in that it is based ongreedy routing in an arbitrary dimension while Hyper
ast is based on 
ompass routing in 2D spa
e. Themajor advantage of both approa
hes is that a broad
ast tree does not need to be expli
itly maintained.A node 
an immediately determine next-hop nodes based on the 
oordinates of its neighbors and thedestination node, without maintaining any per-session routing information.9



We name our broad
ast proto
ol as GRPB (greedy reverse path broad
ast). In GRPB, a node umaintains a lo
al DT for u and u's neighbors. For ea
h neighbor v, u forwards a message from a sour
enode s to v if both of the following two 
onditions hold:C1 u is 
loser to s than v is;C2 in the lo
al DT for u and u's neighbor nodes, there does not exist a node w 6= u su
h thatC2.1 w is 
loser to s than u is, andC2.2 u, v and w are in
luded in the same triangle (or simplex in d-dimensional spa
e).Condition C1 is easy to understand. Suppose C1 is true. Then u does not forward to v if u is surethat another node, say w, is the next hop of v in the forward greedy routing. The 
onditions for su
h ware:C2.1 w is 
loser to s than uC2.2 u, v, and w are in
luded in the same triangle (or simplex) in u's lo
al DTC2.3 w is a neighbor of v on the global DTNote that C2.1 and 2.3 are ne
essary and suÆ
ient. However, u does not have global information and
annot 
he
k C2.3. Hen
e we spe
i�y 
ondition C2.2 whi
h in
ludes C2.3. C2.1 and C2.2 are ne
essarybut not suÆ
ient.Note that in 
ase of a tie between w and u in C2.1, u must forward to v at the 
ost of possibledupli
ation, sin
e v may or may not 
hoose u as the next hop in the forward greedy routing. Note alsothat even if node w appears to be v's neighbor in u's lo
al DT, w may not a
tually be v's neighbor inthe global DT. Figure 2(b) illustrates an example in 2D spa
e. The left graph shows u's lo
al DT, inwhi
h v and w are neighbors. However, as shown in the right graph, there may exist a node x outsideu's lo
al knowledge and thus w may not a
tually be a neighbor of v. Without in
luding C2.2 in C2, umight erroneously 
on
lude that it does not need to forward to v, sin
e w appears to be the 
losest nodeto s among v's neighbors. C2.2 dete
ts su
h ambiguous situations and requires that u forwards to v atthe 
ost of possible dupli
ation. The proto
ol pseudo
ode is given in Figure 3.The following theorem guarantees the 
orre
tness of GRPB, namely it delivers a message to all nodes inthe system. As explained before, the two 
onditions of GRPB are ne
essary, but not suÆ
ient. Thereforesome dupli
ate messages may be forwarded. We performed experiments to broad
ast a message using10



Start broad
ast(msg) of node u; u is a sour
e nodefor all v 2 Nu doSend(v, BROADCAST(msg, u))end forOn u's re
eiving BROADCAST(msg, s); u is a re
ipient of a BROADCAST messageDeliver(msg)for all v 2 Nu doif v satis�es 
onditions C1 and C2 from s thenSend(v, BROADCAST(msg, s))end ifend forFigure 3: Greedy reverse path broad
ast (GRPB) proto
ol at a node u.GRPB on a distributed DT of 200 randomly pla
ed nodes in various dimensions. Ideally the number ofmessages for ea
h broad
ast should be the number of nodes minus 1 when there is no dupli
ation. In ourexperiments, the number of dupli
ate messages was from 3% to 10% of the number of nodes.Theorem 2. Let a set of nodes S form a 
orre
t distributed DT. The GRPB proto
ol delivers a messagefrom a sour
e node s 2 S to all the other nodes in S.Proof. We prove the theorem by showing that if there exists an edge from u to v in the global reversepath tree, the GRPB proto
ol also forwards a message from u to v.Assume that the theorem is not true. Suppose that a node u fails to forward to its neighbor v whenthere exists an edge from u to v in the global reverse path tree, that is when u is the 
losest node from samong the neighbors of v. Note that v is a neighbor of u on the lo
al Delaunay triangulation of u. Thenthere exists a node w whi
h is a mutual neighbor of u and v on the lo
al Delaunay triangulation of u,and the distan
e between w and s is shorter than the distan
e between u and s, but w is not a neighborof v on the global Delaunay triangulation. (If w is a neighbor of v, the next hop of v in the forward pathshould not be u sin
e u is not the 
losest to s among v's neighbors.) On the lo
al Delaunay triangulationof u, remember that there exists a simplex whi
h in
ludes u, v and w. Let the simplex p. Note that pdoes not exist on the global Delaunay triangulation, sin
e w is not a neighbor of v. and then the spa
e ofp is o

upied by other simplexes. Let x one of the simplexes and whi
h in
ludes u and v. Let x1:::xk theother nodes of x other than u or v. Then x1:::xk are neighbors of u in the global Delaunay triangulationand in the lo
al Delaunay triangulation of u. Then on the lo
al Delaunay triangulation of u, sin
e v and11



x1:::xk are neighbors of u, there exists the same simplex x. It is impossible that x and p 
o-exist on thelo
al Delaunay triangulation of u, sin
e they overlap.Multi
ast within a radiusIn a distributed virtual reality system or a multiplayer on-line game, an entity or a player intera
tswith other entities or players that are lo
ated around it in the virtual spa
e. Suppose that entities or
hara
ters in a distributed virtual reality system or a multiplayer on-line game are represented as nodes.Then the DT of the nodes is a good inter
onne
tion topology sin
e neighbors of a node in DT are nodesthat surround the node in the virtual spa
e.In addition to intera
tion between neighboring nodes, multi
ast within a given radius from a pointis another 
ommon operation, sin
e an event may a�e
t nodes within some distan
e. For example, in awar simulation, an explosion of a bomb will be seen only by soldiers within some distan
e, and will a�e
tthose within a shorter distan
e. We observe that in the GRPB proto
ol the distan
e from the sour
emonotoni
ally in
reases, sin
e the distan
e to the destination monotoni
ally de
reases in the forwardgreedy routing. We utilize this observation in our multi
ast proto
ol within a given radius.In our radius greedy reverse path multi
ast (RadGRPM) proto
ol from a sour
e node s to all theother nodes within a radius r, s �rst sends the message to all its neighbors within the radius r. Then forea
h neighbor node v, a node u forwards a message to v if the following 
ondition holds as well as C1and C2 in GRPB:C3 the distan
e from s to v does not ex
eed the radius r.Essentially the proto
ol is the same as the original GRPB proto
ol, ex
ept that forwarding stopswhen the distan
e from the sour
e ex
eeds the given radius in C3. Pseudo
ode of the proto
ol is given inFigure 4. Theorem 3 guarantees that RadGRPM delivers the message to all nodes within a given radius.The proof is straightforward sin
e the distan
e from the sour
e node monotoni
ally in
reases wheneverthe message is forwarded by GRPB.Theorem 3. Let a set of nodes S form a 
orre
t distributed DT. The RadGRPM proto
ol delivers amessage from a sour
e node s 2 S to all nodes within a radius r from s.Proof. By Theorem 2, the original GRPB proto
ol delivers a message to all the other nodes in S. Sin
ethe distan
e from s monotoni
ally in
reases whenever a message is forwarded and the forwarding stopswhen the distan
e from s ex
eeds r, all the nodes along the original multi
ast path after stopping have12



Start radius broad
ast(msg, rad) of node u; u is a sour
e nodefor all v 2 Nu within rad from u doSend(v, BROADCAST(msg, rad, u))end forOn u's re
eiving BROADCAST(msg, rad, s); u is a re
ipient of a BROADCAST messageDeliver(msg)for all v 2 Nu doif v satis�es 
onditions C1, C2 and C3 from s thenSend(v, BROADCAST(msg, rad, s))end ifend forFigure 4: The radius greedy reverse path multi
ast(RadGRPM) proto
ol at a node u.distan
es longer than r from s. Therefore the RadGRPM proto
ol delivers the message to all the nodeswithin the radius r.3 Proto
ol DesignOur distributed DT proto
ols 
onsist of a join, a leave, and a maintenan
e proto
ol. Our join proto
olensures that a joining node obtains enough information to identify its 
orre
t neighbors and that thejoining of the new node is noti�ed to all existing nodes a�e
ted by the joining node, so that the resultingdistributed DT is 
orre
t after proto
ol exe
ution. Similarly, our leave proto
ol noti�es the deletion of aleaving node to all a�e
ted nodes so that the resulting distributed DT is 
orre
t after proto
ol exe
ution.Our join and leave proto
ols are proved to be 
orre
t only for serial joins and leaves.We assume that nodes may join, leave or fail at any time. In addition to node failures, whi
hinevitably result in an in
orre
t distributed DT, 
on
urrent joins and leaves of multiple nodes may resultin an in
orre
t distributed DT as well. To address su
h s
enarios, we introdu
e a maintenan
e proto
olwhi
h is run periodi
ally to dete
t and repair any errors in the system state. (When the distributedDT of a set of nodes is in
orre
t, for 
onvenien
e, we say \the system state is in
orre
t" or \the systemstate has errors.") Lastly, to simplify our proto
ol des
riptions, we assume reliable delivery of proto
olmessages. In a real implementation, additional me
hanisms su
h as ARQ or simply TCP 
an be used toensure reliable message delivery.33Due to the overhead of opening and 
losing 
onne
tions, TCP may not be a pra
ti
al 
hoi
e.13



3.1 System modelOur approa
h to 
onstru
t a distributed DT is as follows. We assume that ea
h node is asso
iated with its
oordinates in a d-dimentional Eu
lidean spa
e. Ea
h node has prior knowledge of its own 
oordinates,as is assumed in previous work [7, 8, 9, 10, 11℄. The me
hanism to obtain 
oordinates is beyond thes
ope of this study. Coordinates may be given by an appli
ation, a GPS devi
e[18℄, or topology-awarevirtual 
oordinates[19℄.4 Also when we say a node u knows another node v, we assume that u knows v's
oordinates as well.Let S be a set of nodes to 
onstru
t a distributed DT. We will present proto
ols to enable ea
h nodeu 2 S to get to know a set of its nearby nodes in
luding u itself, denoted as Cu, to be referred to as u's
andidate set. Then u determines the set of its neighbor nodes Nu based on Cu. Spe
i�
ally, u determinesNu by 
al
ulating a lo
al DT of Cu, denoted by DT (Cu). That is, v 2 Nu if and only if there exists anedge between u and v on DT (Cu).3.2 Corre
tness 
ondition for a distributed Delaunay triangulationRe
all that a distributed DT is 
orre
t when for every node u, Nu is the same as the neighbors of uon DT (S). Sin
e Nu is the set of u's neighbor nodes on DT (Cu) in our model, to a
hieve a 
orre
tdistributed DT, the neighbors of u on DT (Cu) must be the same as the neighbors of u on DT (S). Notethat Cu is lo
al information of u while S is global knowledge. Therefore in designing our proto
ols, weneed to ensure that Cu is \enough" for u to 
orre
tly identify its global neighbors. If Cu is too limited,u 
annot identify its global neighbors. For the extreme 
ase of Cu = S, u 
an identify its neighbors onthe global DT sin
e DT (Cu) = DT (S); however, the 
ommuni
ation overhead for ea
h node to a
quireglobal knowledge would be extremely high. Before we present Theorem 4, whi
h identi�es a ne
essaryand suÆ
ient 
ondition for a distributed DT is 
orre
t, we present several lemmas for 
onvenien
e ofproof.Lemma 1. Let S be a set of nodes. Let v 2 S be a neighbor node of u 2 S on DT (S). Then there existsa point p in V CS(u) su
h that D(p; u) < D(p; v) < D(p; w) for any other node w 2 S;w 6= u;w 6= v.Proof. Consider a point p0 on the shared fa
et of V CS(u) and V CS(v). Then D(p0; u) = D(p0; v) <D(p0; w) for any other node w 2 S;w 6= u;w 6= v. Let w1 be the third 
losest node from p0 in S and let� = D(p0; w1)�D(p0; v). Let p be the point that is �4 away from p0 toward u. Then D(p; u) < D(p; v) <4Appli
ation performan
e on a DT may be a�e
ted by the a

ura
y of virtual 
oordinates.14



D(p; w) for any other node w 2 S;w 6= u;w 6= v.Lemma 2. Let S be a set of nodes. If there exists a point p in V CS(u) su
h that D(p; u) < D(p; v) <D(p; w) for any other node w 2 S;w 6= u;w 6= v, Then u; v 2 S are neighbors of ea
h other on DT (S).Proof. Consider a line from p toward v. As a point p0 moves along the line, D(p0; v) will de
rease toward0 while D(p0; u) � 0. In addition, D(p0; v) de
reases faster than D(p0; w) de
reases for any other nodew 2 S;w 6= u;w 6= v. Therefore there must be a point where D(p0; u) = D(p0; v) < D(p0; w) for any othernode w 2 S;w 6= u;w 6= v, whi
h means that p0 belongs to exa
tly two Voronoi 
ells V CS(u) and V CS(v),but not other Voronoi 
ells. By Observation ??, p0 is on the shared fa
et of V CS(u) and V CS(v).Lemma 3. Let S be a set of nodes. Let u 2 C, v 2 C, and C � S. If v is a neighbor of u on DT (S), vis also a neighbor of u on DT (C).Proof. By Lemma 1, there exists a point p where D(p; u) < D(p; v) < D(p; w) for any other nodew 2 S;w 6= u;w 6= v. Sin
e C � S, D(p; u) < D(p; v) < D(p; w) for any other node w 2 C;w 6= u;w 6= v.Therefore by Lemma 2, v is a neighbor of u on DT (C).Lemma 4. Let S be a set of nodes. Let u 2 S and Cu � S in
lude all the neighbor nodes of u on DT (S).If v 2 Cu is a neighbor of u on DT (Cu), then v is also a neighbor of u on DT (S).Proof. When v 2 S is a neighbor of u on DT (Cu), by Lemma 1, there exists a point p in V CCu(u)su
h that D(p; u) < D(p; v) < D(p; w) for any other node w 2 Cu; w 6= u;w 6= v. Now, supposethat v is not a neighbor of u on DT (S). Then there must be a node x 2 S; x 62 Cu; x 6= u; x 6= vthat satis�es D(p; v) � D(p; x). Let x1; :::; xk be those nodes whi
h satisfy su
h 
ondition. That is,D(p; u); D(p; x1); :::; D(p; xk) < D(p; w) for any other node w 2 S;w 6= u;w 6= xi; 1 � i � k. We showbelow that there exists a node xi; 1 � i � k whi
h is a neighbor of u on DT (S). Sin
e xi 62 Cu, it is
ontradi
tory to the assumption that Cu in
ludes all the neighbor nodes of u on DT (S). Therefore v isa neighbor of u on DT (S).Case A-1. Suppose that D(p; u) < D(p; x1) < D(p; w) for any other node w 2 S;w 6= u;w 6= x1.Then by Lemma 2, x1 is a neighbor of u on DT (S).Case A-2. Suppose that D(p; u) < D(p; x1) = ::: = D(p; xh) < D(p; w1) � D(p; w) for any other nodew 2 S;w 6= u;w 6= w1; w 6= xi; 1 � i � h. Let � = D(p; w1) � D(p; x1). Consider a point p0 whi
h is�=4 away from p toward x1. Then D(p0; u) < D(p; x1) < D(p; w), where w 2 S;w 6= u;w 6= x1. Then byLemma 2, x1 is a neighbor of u on DT (S). 15



Case B. Suppose that D(p; u) = D(p; x1) = ::: = D(p; xh) < D(p; w1) � D(p; w) for any other nodew 2 S;w 6= u;w 6= w1; w 6= xi; 1 � i � h. Let � = D(p; w1)�D(p; x1). Consider a point p0 whi
h is �=4away from p toward u. Then D(p0; u) < D(p; xi) < D(p; w); 1 � i � h, where w 2 S;w 6= u;w 6= xi; 1 �i � h. Let x0 be xi with smallest D(p; xi); 1 � i � h. Then x0 is a neighbor of u on DT (S), similarly toin the 
ases A-1 or A-2.Case C. Suppose that D(p; x1); :::; D(p; xh) < D(p; u) � D(p; w) for any other node w 2 S;w 6= u;w 6=xi; 1 � i � h. Consider a point p0 whi
h moves from p toward u. Sin
e D(p0; u) de
reases the fastest,D(p0; u) � D(p0; w) for any other nodes w 2 S;w 6= u;w 6= xi; 1 � i � h is preserved. Moreover, theremust be a point where D(p0; x0) < D(p0; u) � D(p0; w) for any other node w 2 S;w 6= u;w 6= x0, where x0is one of xi; 1 � i � h. Then x0 is a neighbor of u on DT (S), similarly to in the 
ases A-1 or A-2.Theorem 4 (Corre
tness Condition). Let S be a set of nodes and for ea
h node u 2 S, u 2 Cu andCu � S. Let Nu, u 2 S be the set of u's neighbor nodes on DT (Cu). A distributed DT of S is 
orre
t ifand only if, for every u 2 S, Cu in
ludes all the neighbor nodes of u on DT (S).Proof. (only if) Suppose that Cu does not in
lude a node v that is a neighbor node of u on DT (S).Clearly, Nu 
annot in
lude v and the distributed Delaunay triangulation is not 
orre
t.(if) Suppose that for every u 2 S, Cu in
ludes all the neighbor nodes of u on DT (S). We show thatv 2 S is a neighbor of u on DT (Cu) if and only if v is a neighbor of u on DT (S). i) Consider a neighborv of u on DT (S). Sin
e Cu � S, by Lemma 3, v is a neighbor of u on DT (Cu). ii) Consider a neighborv of u on DT (Cu). By Lemma 4, v is a neighbor of u of DT (S).Theorem 4 identi�es a ne
essary and suÆ
ient 
ondition for a distributed DT is 
orre
t, namely: the
andidate set of ea
h node must 
ontain all of its global neighbors. In the following subse
tions, we usethe above 
orre
tness 
ondition as a guide to design our proto
ols.3.3 Join proto
olIn our join proto
ol, we assume that a joining node n is �rst led to the nearest existing node u, whi
his guaranteed to be found using greedy routing by Theorem 1. Cn is initialized as fng, and n sends aNEIGHBOR SET REQUEST messages to u. When u re
eives NEIGHBOR SET REQUEST from n, uputs n into Cu, updates Nu by re
al
ulating DT (Cu), 
omputes Nun whi
h is the set of the neighbornodes of n on DT (Cu), and replies Nun to n. When n re
eives the reply, Cn is updated to in
lude allnodes in the reply, and n determines its neighbor nodes again using the updated Cn. If n �nds any new16



neighbor nodes, n sends NEIGHBOR SET REQUEST messages to them. This pro
ess is repeated untiln does not �nd any new neighbor node. The proto
ol pseudo
ode is given in Figure 5.Join(v) of node u; Input: u is the joining node, if u is the only node in the system, v = NULL;otherwise v is the 
losest existing node to u.Cu  fugNu  ;if v 6= NULL thenSend(v, NEIGHBOR SET REQUEST)end ifOn u's re
eiving NEIGHBOR SET REQUEST from wif w 62 Cu thenCu  Cu [ fwgUpdate Neighbors(Cu, Nu)end ifNuw  fx j x is a neighbor of w on DT (Cu)gSend(w, NEIGHBOR SET REPLY(Nuw))On u's re
eiving NEIGHBOR SET REPLY(Nwu ) from wCu  Cu [NwuUpdate Neighbors(Cu, Nu)Update Neighbors(Cu, Nu) of node uNoldu  NuNu  neighbor nodes of u on DT (Cu)Nnewu  Nu �Noldufor all v 2 Nnewu doSend(v, NEIGHBOR SET REQUEST)end for Figure 5: Join proto
ol at a node uTheorem 5 guarantees that the join proto
ol, if run on a 
orre
t distributed DT, results in a 
orre
tdistributed DT for a single join. The main ideas of the proof are the following: i) the 
losest existingnode will be a neighbor of a joining node (Lemma 5), ii) all neighbor nodes of the joining node are
onne
ted by existing neighbor relations, thus it is possible to �nd them all by following the neighborrelations (Lemma 8), and iii) the neighbor nodes of the joining node are also noti�ed of the joining node'saddition in the pro
ess. Note that this proof is based on Theorem 4, whi
h determines the 
onditionwhen a distributed DT is 
orre
t.Lemma 5. Let S0 = SSfng and u be the 
losest node to n in S. Then u is a neighbor of n on DT (S0).Proof. Consider n, whi
h is in V CS0(n). D(n; n) < D(n; u) < D(n;w), for any other node w 2 S0; w 6=17



n;w 6= u. Therefore, by Lemma 2, u is a neighbor of n on DT (S0).Lemma 6. Let u0 and v0 be two points on an n-dimensional 
onvex polytope Pn, n � 2. Then thereexists a path from u0 to v0 on the surfa
e of Pn, whi
h goes through adja
ent fa
ets of Pn.Proof. On 2-dimensional 
onvex polygon, there exists a path from u0 to v0 whi
h goes along the edges ofthe polygon. Suppose that the lemma holds for k-dimensional 
onvex polytope, k � 2, and 
onsider twopoints u0 and v0 on an (k + 1)-dimensional 
onvex polytope Pk+1. Consider a 
ross se
tion of the Pk+1whi
h 
ontains u0 and v0. The 
ross se
tion is an k-dimensional 
onvex polytope and there exists a pathfrom u0 to v0 on the surfa
e of the polytope, whi
h goes through adja
ent fa
ets. Note that ea
h fa
et ofthe 
ross se
tion is a part of a 
orresponding fa
et of Pk+1, and two adja
ent fa
ets of the 
ross se
tion
orrespond to adja
ent fa
ets of Pk+1. Therefore the path is also on the surfa
e of Pk+1, going throughits adja
ent fa
ets. By indu
tion, the lemma holds for n-dimensional polytopes, n � 2.Lemma 7. Let S0 = SSfng. If u 2 S and v 2 S are two neighbor nodes of n on DT (S0) and V FS0(n; u)and V FS0(n; v) are adja
ent, u and v are neighbors on DT (S).Proof. Let p0 be a point where V FS0(n; u) and V FS0(n; v) meet. That is, D(p0; n) = D(p0; u) = D(p0; v).Let w1 2 S be the 
losest node to p0 ex
ept for n, u and v, and � = D(p0; w1) � D(p0; n). Considera point p whi
h is �4 away from p0 toward u. Then D(p; u) < D(p; v) < D(p; w), for any other nodew 2 S;w 6= u;w 6= v. By Lemma 2, v is a neighbor node of u on DT (S).Lemma 8. Let S0 = SSfng and u be a neighbor node of n of DT (S0). Then for any neighbor v of n onon DT (S0), there exists a series of nodes < p0 = u; :::; pk = v >, where pi; 0 � i � k, is a neighbor of non DT (S0), and pi and pi+1, 0 � i � k � 1, are neighbors on DT (S).Proof. Note that V CS0(n) is a 
onvex polytope en
losed by fa
ets and ea
h fa
et 
orresponds to a neighbornode of n. Also note that two neighbors of n are de�ned adja
ent when their 
orresponding fa
ets areadja
ent on V CS0(n). Let u0 be a point on the fa
et whi
h 
orresponds to u and v0 be a point on thefa
et whi
h 
orresponds to v. By Lemma 6, there exists a path from u0 to v0 whi
h goes through adja
entfa
ets of V CS0(n). That is, there exists a series of nodes < p0 = u; :::; pk = v >, where pi; 0 � i � k,is a neighbor of n on DT (S0) and V FS0(n; pi) and V FS0(n; pi+1), 0 � i � k � 1, are adja
ent. And byLemma 7, pi and pi+1 are neighbors on DT (S).
18



Lemma 9. Let n denote a newly joining node, S be the set of existing node, and S0 = SSfng. Supposethat the existing distributed Delaunay triangulation for S is 
orre
t. Then when the join proto
ol �nishes,Cn in
ludes all the neighbor nodes of n on DT (S0).Proof. By Lemma 5, u is a neighbor node of n on DT (S0). For any neighbor node v of n on DT (S0),by Lemma 8, there exists a series of nodes < p0 = u; :::; pk = v >, where pi; 0 � i � k, are neighborsof n on DT (S0) and pi and pi+1, 0 � i � k � 1, are neighbors on DT (S). First u re
eives NEIGH-BOR SET REQUEST from n. Sin
e p1 is a neighbor of u on DT (S), Cu in
ludes p1, and p1 is alsoin
luded in Nun by Lemma 3 sin
e p1 is also a neighbor of n on DT (S0). After n re
eives Nun from u, Cnin
ludes p1.Suppose that pi is in
luded in Cn. By Lemma 3, pi is also in
luded in Nn, and n sends NEIGH-BOR SET REQUEST to pi. Sin
e pi+1 is a neighbor of pi on DT (S), Cpi in
ludes pi+1, and pi+1 is alsoin
luded Npin by Lemma 3, sin
e pi+1 is also a neighbor of n on DT (S0). After n re
eives Npin from pi,Cn in
ludes pi+1.Therefore, within k iterations, Cn will in
lude pk = v.Theorem 5. Let S be a set of existing nodes and the distributed DT of S be 
orre
t. Let a node n 62 Sjoin to the distributed DT using our join proto
ol. Assume that there is no other join, leave, or failure.After the join proto
ol �nishes, the updated distributed DT is 
orre
t.Proof. Lemma 9 shows that when the join pro
ess �nishes, Cn will in
lude all of its neighbor nodes onDT (S0). Also, whenever n dis
overs a neighbor node v of itself during the pro
ess, n sends NEIGH-BOR SET REQUEST to v so that v in
ludes n into Cv . Therefore the 
andidate sets of all nodes areproperly updated, and the updated distributed Delaunay triangulation is 
orre
t.Though the join proto
ol a
hieves a 
orre
t distributed DT after it �nishes, the transient states arenot 
orre
t, whi
h may result in malfun
tion of upper-layer appli
ations. For example, a new node inan early stage of the joining pro
ess may not have a 
omplete set of neighbors and may not be able toproperly forward a message for greedy routing. To address su
h situations, we introdu
e a me
hanismfor a joining node to defer to be a part of the system until it establishes its 
omplete set of neighbornodes. When an existing node re
eives NEIGHBOR SET REQUEST, it does not immediately update itsneighbor set. When the joining node n �nishes its joining pro
ess, it then noti�es all its neighbors thatit is safe to update their 
andidate sets and their neighbor sets to in
lude n. Due to delay of noti�
ation19



message delivery, some transient states may still be in
orre
t. However, greedy routing will work welleven with imperfe
t states, as to be shown in se
tion 4.Also note that the join proto
ol is proved to be 
orre
t only for serial joins. In 
ase of 
on
urrentjoins, the proto
ol may not result in a 
orre
t distributed DT. Su
h imperfe
tion is addressed by themaintenan
e proto
ol to be presented in se
tion 3.5.3.4 Leave proto
olWe �rst address the 
ase of gra
eful leaves. The 
ase of ungra
eful leaves or failures is addressed by ourmaintenan
e proto
ol in se
tion 3.5.A straightforward approa
h to address gra
eful leave would be that a leaving node, before it leaves,noti�es all of its neighbors that it is about to leave. This simple noti�
ation is, however, not enough tomaintain a 
orre
t distributed DT.Suppose that a node u leaves and it noti�es a neighbor node v that it is leaving. Then v shouldremove u from Cv and update Nv. The problem is that in some 
ases v may have a new neighbor w thatwas not previously a neighbor of v and may not be in Cv. In su
h 
ases, the straightforward approa
hmay resulting in an in
orre
t distributed DT. However, we observe that su
h w is always a neighbor of u.Therefore it is possible for u to notify v that u is leaving and also introdu
e w to v, resulting in a 
orre
tdistributed DT.When a node u leaves, u 
al
ulates a lo
al DT of its neighbor nodes, but not in
luding itself. Thenu noti�es ea
h of its neighbors, say v, that u is leaving as well as a list of the neighbors of v on the lo
alDT of u. Upon re
eiving su
h noti�
ation, v updates its 
andidate set and neighbor set. In addition,a DELETE message that u is leaving is propagated using GRPB. Note that even if u is not a neighbornode of another node x, x may have u in Cx. The DELETE message ensures that u is removed fromsu
h Cx, if any. The proto
ol pseudo
ode is given in Figure 6.The following theorem assures that the leave proto
ol is 
orre
t for serial leaves. The theorem isbased on the previous observation that if a node w be
omes a new neighbor of v after u leaves, w was aneighbor of u before u leaves.Lemma 10. Let S0 = S � fug. Let v be a neighbor node of u on DT (S). If w is a neighbor node of von DT (S0), then w is a neighbor node of u on DT (S) or w is a neighbor node of v on DT (S).Proof. Sin
e w is a neighbor of v on DT (S0), by Lemma 1, there exists a point p su
h that D(p; v) <20



Leave() of node uCal
ulate DT (Nu) ; Note: u 62 Nufor all v 2 Nu doNuv  fw j w is a neighbor of v on DT (Nu)gSend(v, LEAVE(Nuv ))end forOn u's re
eiving LEAVE(Nvu) from vCu  Cu � fvg [NvuNu  neighbor nodes of u on DT (Cu)for all w 2 Nu doif w satis�es 
onditions C1 and C2 from v thenSend(w, DELETE(v))end ifend forOn u's re
eiving DELETE(w) from vCu  Cu � fwgfor all x 2 Nu doif x satis�es 
onditions C1 and C2 from w thenSend(x, DELETE(w))end ifend for Figure 6: Leave proto
ol at a node uD(p; w) < D(p; x), for any other node x 2 S0; x 6= v; x 6= w.Case A) D(p; w) < D(p; u). Sin
e S = S0 [ fug, D(p; v) < D(p; w) < D(p; x), for any other nodex 2 S. Then by Lemma 2, v and w are neighbors on DT (S).
ase B) D(p; u) � D(p; w). Then 
onsider a point p0 whi
h moves from p toward w. Sin
e D(p0; w)de
reases faster than D(p0; x), x 2 S; x 6= u; x 6= v; x 6= w, as p0 moves and D(p0; u) � 0 and D(p0; v) � 0,there must be a point whereD(p0; v) < D(p0; w) < D(p0; u) < D(p0; x) orD(p0; u) < D(p0; w) < D(p0; v) <D(p0; x), for any other node x. Then by Lemma 2, v and w are neighbors on DT (S) or u and w areneighbors on DT (S).Theorem 6. Let S be a set of nodes and the distributed DT of S be 
orre
t. Let a node u 2 S leave thedistributed DT using our leave proto
ol. Assume that there is no other join, leave, or failure. After theleave proto
ol �nishes, the updated distributed DT is 
orre
t.Proof. Let S0 = S�fug. Consider a node v 2 S0. First, u is removed from Cv by propagation of LEAVEand DELETE messages. Therefore Cv � S0. 21



Case A) Suppose that v is not a neighbor of u on DT (S). Consider a node w 2 S0; w 6= v. If w is aneighbor of v on DT (S0), w is also a neighbor of v on DT (S) by Lemma 3. If w is a neighbor of v onDT (S), w is also a neighbor of v on DT (S0) by Lemma 4. Therefore the neighbors of v on DT (S) arethe same as the neighbors of v on DT (S0) and v is not a�e
ted by leave of u.Case B) Suppose that v is a neighbor of u on DT (S). Consider a node w 2 S0; w 6= v. If w is aneighbor of v on DT (S0), by Lemma 10, either w is already in Cv or v is noti�ed of w by u. ThereforeCv will in
lude all the neighbor nodes of v on DT (S0).Note that the leave proto
ol is 
orre
t only for serial leaves. Similar to the 
ase of 
on
urrent joins,
on
urrent leaves may result in an in
orre
t distributed DT. Su
h 
ases are addressed by our maintenan
eproto
ol, to be dis
ussed in the next subse
tion. In our implementation, propagation of a DELETEmessage is stopped when the message arrives at a node that does not have the leaving node in its
andidate set. This modi�
ation greatly redu
es 
ommuni
ation 
ost, without a�e
ting 
orre
tness ofthe leave proto
ol in almost all 
ases. A very rare 
ase where a left node remains in a 
andidate set and
auses in
orre
tness 
an be addressed by the maintenan
e proto
ol.Also, similar to the 
ase of a join, transient in
orre
t states during a leave may result in malfun
tionof upper-layer appli
ation. In the 
ase of a leave, it is desirable for a leaving node to defer leaving aftermaking sure that ea
h of its neighbors has updated its neighbor set. This may be a
hieved by requiringan a
knowledgement of a LEAVE message.3.5 Maintenan
e proto
olThe join and leave proto
ols are proved 
orre
t only for serial joins and leaves, assuming that there is noother 
on
urrent join, leave, or failure. In pra
ti
e, however, nodes may join and leave 
on
urrently, oreven fail at any time, 
ausing errors in the system state. Therefore an additional me
hanism is neededto repair errors in the system state. To address system 
hurn and failures, we present a maintenan
eproto
ol, whi
h is run periodi
ally to dete
t and repair errors, if any, in the system state.From De�nition 5, for a distributed DT to be 
orre
t, two 
onditions must be satis�ed: i) Ea
h nodeu must in
lude in its neighbor set Nu all of its neighbors on the global DT, and ii) Nu must not 
ontainany node that is not in the system.To satisfy the �rst 
ondition, a node periodi
ally ex
hanges information with ea
h of its neighbors.Spe
i�
ally, a node u informs its neighbor node v the neighbors of v on u's lo
al DT. Note that the22



pro
ess is essentially the same as what is done when a node joins, sin
e the goals of the two proto
ols aresame i.e. ea
h node learns its neighbors on the global DT.To satisfy the se
ond 
ondition, a node probes its neighbors by sending ping messages periodi
ally.If a probed node does not reply, the node is 
onsidered to be not in the system and removed from the
andidate set. This me
hanism also addresses the 
ase of ungra
eful node failures. Note that this probing
an be easily integrated with the ex
hange of information for the �rst 
ondition.The maintenan
e proto
ol is as follows. A node u sends out NEIGHBOR SET REQUEST to itsneighbor node v. When v re
eives the request, it replies with Nvu , whi
h is the set of neighbors of uon DT (Cv). That is, Nvu is the set of u's neighbors in v's lo
al view. v also 
he
ks whether u is in its
andidate set Cv. If u 62 Cv , v puts u in Cv . When u re
eives the reply Nvu , u 
he
ks whether Nvu � Cu. Ifthere exists any node in Nvu that is not in Cu, it is added to Cu. In 
ase u does not re
eive a reply from vbefore TIMEOUT, v is 
onsidered to have failed and removed from Cu. u also propagates the deletion of vsimilarly as in the leave proto
ol. On
e Cu is updated, u re
al
ulates the lo
al DT and determines its setof neighbor nodes Nu. If there are any new neighbor nodes in Nu, u sends NEIGHBOR SET REQUESTto them. The proto
ol pseudo
ode is given in Figure 7.From a large number of simulation experiments, we found that the maintenan
e proto
ol 
onverged toa 
orre
t distributed DT in every experiment, for di�erent dimensionalities (2D to 6D), numbers of nodes(200 to 800), s
enarios (random initial graph, severe 
hurn with node failures) as long as the system isnot partitioned. Note that it is extremely diÆ
ult to prove 
orre
tness of the maintenan
e proto
ol forany 
ombinations of 
on
urrent joins, leaves and failures. Furthermore, in an environment where system
hurn o

urs 
ontinually, another join or leave may o

ur before the system 
onverges to a 
orre
t state.As a result, 
onvergen
e to a 
orre
t system state may be impossible during system 
hurn. Fortunately,some appli
ations 
an still bene�t from an imperfe
t DT as long as it is \a

urate" enough. Thereforethe a

ura
y of a distributed DT over time is more important in pra
ti
e than eventual 
onvergen
e toa 
orre
t distributed DT for systems under 
hurn.We found that our maintenan
e proto
ol 
onverged to a 
orre
t distributed DT some time after 
hurnand failure have stopped in every one of our experiments. However this does not mean that our join andleave proto
ols are no longer needed. Note that it takes time for the maintenan
e proto
ol to dete
t andrepair errors, resulting in a lower average a

ura
y. Furthermore, the maintenan
e proto
ol requires amu
h higher 
ommuni
ation overhead than those of the join and leave proto
ols, and thus should be runonly periodi
ally, with the period being a design parameter to be tuned.23



On u's expiration of PERIOD TIMERfor all v 2 Nu doSend(v, NEIGHBOR SET REQUEST)Set TIMEOUT TIMERv as T + TO; T is 
urrent time. TO is the timeout value.end forSet PERIOD TIMER as T + P; T is 
urrent time. P is the period of maintenan
e proto
ol.On u's expiration of TIMEOUT TIMERvCu  Cu � fvgUpdate Neighbors(Cu, Nu)for all w 2 Nu doSend(w, DELETE(v))end forOn u's re
eiving NEIGHBOR SET REQUEST from vif v 62 Cu thenCu  Cu [ fvgUpdate Neighbors(Cu, Nu)end ifNuv  fw j w is a neighbor of v on DT (Cu)gSend(v, NEIGHBOR SET REPLY(Nuv ))On u's re
eiving NEIGHBOR SET REPLY(Nvu) from vCu  Cu [NvuUpdate Neighbors(Cu, Nu)Figure 7: Maintenan
e proto
ol at a node u. Update Neighbors(Cu, Nu) is the same as the one spe
i�edin Figure 5.We de�ne an a

ura
y metri
 of a distributed DT as follows, whi
h is used for all of our experiments.Let DDTS be a distributed DT of a set of in-system nodes S. We 
onsider a node to be in-system fromwhen it �nishes joining to when it starts leaving. (Note that some nodes may be in the pro
ess of joingor leaving and not in
luded.) Let N
orre
t(DDTS) be the number of 
orre
t neighbor entries of all nodesand Nwrong(DDTS) be the number of wrong neighbor entries of all nodes on DDTS . A neighbor entry vof a node u is 
orre
t when v is a neighbor of u on the global DT (namely, DT (S)), and wrong when uand v are not neighbors on the global DT. Let N(DT (S)) be the number of edges on DT (S). Note thatedges on a global Distributed triangulation are undire
tional and thus are 
ounted twi
e to be 
ompared
24



with neighbor entries. The a

ura
y of DDTS is de�ned as follows:a

ura
y(DDTS) = N
orre
t(DDTS)�Nwrong(DDTS)2�N(DT (S)) :A distributed DT is 
orre
t if and only if its a

ura
y is 1.To demonstrate a

ura
y and e�e
tiveness of the maintenan
e proto
ol, we designed a \ring" s
enariobeginning with a barely 
onne
ted graph in whi
h ea
h node initially knows only one other node. Thatis, node pi, i � 1, has only pi�1 in its 
andidate set and its neighbor set. Figure 8 shows a

ura
y ofthe distributed DT versus time as the maintenan
e proto
ol runs. Note that the maintenan
e proto
ola
hieved a 
orre
t distributed DT within a few rounds of proto
ol exe
ution. The 
onvergen
e is fasterin a higher dimension spa
e, sin
e nodes have more neighbors and information is ex
hanged faster.
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ura
y of the maintenan
e proto
ol in a \ring" s
enario, where ea
h node initially knowsonly one other node. The number of nodes is 200.3.6 TimestampIn a dynami
 environment, it is possible that a node re
eives messages with 
on
i
ting information. Forexample, some nodes may keep in their 
andidate set a node that has already left or failed, and dispersethe information later. Then other nodes may 
onsider the node as new, adding it to their 
andidatesets. Although the maintenan
e proto
ol will later dete
t that the node does not exist and delete it,su
h wrong information may again be forwarded to other nodes before the dete
tion. In this way, wronginformation may linger in the system unless the wrong information is dete
ted and dis
arded as soon asit is re
eived. 25



To address this issue, we introdu
e a 
lo
k Tu at ea
h node u. The 
lo
k value is in
remented wheneveru sends out a message. Any information regarding a node is timestamped with its 
lo
k. In addition,a node u maintains the latest timestamp T uv of the information regarding another node v it knows of.When a node u re
eives any information regarding a node v from another node w, the timestamp of theinformation Twv is 
ompared with the latest timestamp T uv at node u. If Twv < T uv (that is, the re
eivedinformation is older), the information is dis
arded; otherwise it is a

epted and the latest timestamp isupdated (T uv = Twv ).4 Experimental results4.1 S
alabilityThe per-node 
ommuni
ation 
ost of our distributed DT proto
ols largely depends on the average numberof neighbors per node. Sin
e the number of neighbors of a node on a DT is independent of the number ofnodes in the system, the s
alability of our distributed DT proto
ols is generally very good. However, thereare two minor fa
tors that a�e
t the per-node 
ost as the system size in
reases. First, greedy routing tolo
ate the 
losest existing node in the join pro
ess will take O( dpn) steps, where d is the dimensionality ofthe spa
e and n is the number of nodes in the system. In addition, nodes on the boundary of a DT havefewer neighbors than those in the middle. When the network size is smaller, the fra
tion of boundarynodes is larger, making the average number of neighbors smaller. Figure 9(a) and Figure 9(b) show thenumber of messages and the amount of messages (in Kbytes) versus system size in 3D. The join and leave
urves represent the 
osts of 100 joins and 100 leaves respe
tively, and are more or less independent ofsystem size showing very good s
alability. The per-round 
ost of the maintenan
e proto
ol for all nodesin
reases linearly with system size; thus the average 
ost per node is 
onstant versus system size.4.2 Performan
e under 
hurnFigure 10(a) shows a

ura
y of a distributed DT as a fun
tion of time for a system under 
hurn, morespe
i�
ally, when nodes are joining and leaving 
on
urrently but not failing. Initially, the sytem has 200,400, or 800 nodes with a 
orre
t distributed DT. Then 1 node joins and 1 node gra
efully leaves on
eevery se
ond on the average until time 110 se
ond, using our join and leave proto
ols. Our maintenan
e
26



 0

 5000

 10000

 15000

 20000

 25000

 30000

 200  300  400  500  600  700  800  900  1000

N
um

be
r 

of
 m

es
sa

ge
s

Initial number of nodes

join
leave

maintenance

(a) The number of messages.  0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 200  300  400  500  600  700  800  900  1000

A
m

ou
nt

 o
f m

es
sa

ge
s(

K
B

)

Initial number of nodes

join
leave

maintenance

(b) The amount of messages.Figure 9: The 
ommuni
ation 
ost of proto
ols versus number of nodes in 3D. The join and leave 
urvesrepresent the total 
osts of 100 serial joins and 100 serial leaves, respe
tively. The maintenan
e 
urverepresents the per-round 
ost for all nodes to run the maintenan
e proto
ol.proto
ol is run on
e every 10 se
onds.5 In spite of the 
hurn, a

ura
y of the distributed DT remainsvery high. The small error is due to 
on
urrent joins and leaves, and is repaired by our maintenan
eproto
ol periodi
ally. Figure 10(b) shows the su

ess rate of a greedy routing proto
ol for a system under
hurn while running our join, leave and maintenan
e proto
ols. Note that the su

ess rate is mu
h higherthan the a

ura
y value, due to 
areful design of our join and leave proto
ols. In our join proto
ol, theneighbor nodes of a joining node defer adding the joining node to their neighbor sets until the joiningnode �nishes its joining pro
ess and is ready to fun
tion properly. Similarly, in our leave proto
ol, aleaving node 
ontinues servi
e until all of its neighbors are noti�ed.4.3 Performan
e with node failuresFigure 11(a) and Figure 11(b) show a

ura
y of distributed DT and greedy routing su

ess rate fora system in whi
h nodes join and fail 
on
urrently. Ex
ept for nodes failing instead of leaving, thesimulation parameters are the same as in the previous set of system 
hurn experiments. Initially, thesystem has 200, 400, or 800 nodes with a 
orre
t distributed DT. Then, 1 node joins and 1 node failson
e every se
ond on the average until time 110 se
ond, and our maintenan
e proto
ol is run on
e every10 se
onds.Both a

ura
y and greedy routing su

ess rate are mu
h worse than in the previous 
ase of system5By Little's Law, for an initial system size of 200, the average lifetime of a node is 200 se
onds. For P2P systems, thisis a very high 
hurn rate[16℄. Note that a

ura
y in Figure 10(a) improves as the system size in
reases.27
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e of a system in 3D under 
hurn versus time. 1 node joins and 1 node leaves perse
ond on the average until 110 se
ond. The maintenan
e proto
ol is run every 10 se
onds.
hurn with gra
eful leaves instead of failures. Sin
e any error 
aused by a failed node 
annot be re
overeduntil the maintenan
e proto
ol dete
ts it by a message timeout, the lower a

ura
y and routing su

essrate are to be expe
ted 
onsidering the high failure rate.Lastly, note that in all simulations the maintenan
e proto
ol 
onverged to a 
orre
t system state in afew rounds after 
hurning stopped.
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5 Related workThe �rst proto
ol to 
onstru
t DT was proposed by Liebeherr and Nahas [7℄. The proto
ol utilizesthe lo
ally equiangular property of DT in 2D spa
e. Nodes are assumed to have pre-assigned logi
al
oordinates in 2D spa
e. Ea
h node 
he
ks whether the equiangular property holds among itself andits neighbor nodes. Whenever a violation is dete
ted, the node 
ips triangles to maintain a 
orre
t DT.Their appli
ation was appli
ation-layer multi
ast, 
alled HyperCast. Sin
e 
ompass routing on DT isguaranteed to su

eed, a multi
ast tree 
an be impli
itly determined for a given sour
e using reversepath.Steiner and Biersa
k [8℄ proposed a distributed approa
h to 
onstru
t DT in 3D spa
e. In their work,the tetrahedron whi
h in
ludes a joining node is determined and split. Then the new tetrahedra are
he
ked whether they in
lude any nodes in their 
ir
umspheres and 
ipped if ne
essary.Simon et al. [9℄ proposed a similar approa
h in d-dimensional spa
e. They also addressed the 
ase ofnode departures as well as arrivals. They assume that no d + 1 nodes are on the same hyperplane andno d+ 2 nodes are on the same hypersphere. It is also assumed that a new node is in the interior of the
onvex hull of existing nodes.While DT has been extensively studied in 
omputational geometry, most work in the �eld fo
uses on
entralized algorithms. Ohnishi et al. [10℄ proposed an in
remental algorithm to 
onstru
t a distributedDT in 2D spa
e. Yoo et al. [11℄ proposed a distributed algorithm to maintain DT for moving nodes in2D spa
e.Lo
ating the 
losest node to a given point is a 
ommon problem in many appli
ations. Wong et al.[17℄ proposed a solution 
alled Meridian, whi
h uses multi-resolution rings. While Meridian is eÆ
ientsin
e it requires O(logN) steps, where N is number of nodes in the system, it does not guarantee to �ndthe 
losest node.6 Con
lusionsWhile DT has been known and used for a long time, the design of proto
ols for 
onstru
ting and main-taining a DT for a dynami
 system has not re
eived mu
h attention. In this paper, we investigate thedesign of join, leave and maintenan
e proto
ols for a set of nodes to 
onstru
t and maintain a distributedDT dynami
ally, as well as some appli
ation-level proto
ols to support DT appli
ations.We de�ne a distributed DT and present a ne
essary and suÆ
ient 
ondition for a distributed DT to29



be 
orre
t. This 
ondition was used as a guide to design our join, leave, and maintenan
e proto
ols. Ourjoin and leave proto
ols are proved 
orre
t for serial joins and leaves. For a system under 
hurn and withnode failures, we de�ne an a

ura
y metri
 for a distributed DT. Experimental results show that ourproto
ols are s
alable and they a
hieve high a

ura
y for systems under 
hurn and with node failures. Inevery one of our experiments 
ondu
ted to date, the system 
onverged to a 
orre
t distributed DT sometime after 
hurn and failures stopped. Typi
ally 
onvergen
e was a
hieved after running the maintenan
eproto
ol for a few rounds.To support appli
ations of distributed DT, we present appli
ation-level proto
ols for greedy routing,network node 
lustering, broad
ast, and multi
ast within a radius. Ea
h node in our greedy routing,broad
ast and multi
ast proto
ols does not maintain any per-session state. We also dis
uss and prove
orre
tness for the appli
ation proto
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