
Secure Group Communications Using Key Graphs*

Chung Kei Wong Mohamed Gouda Simon S. Lam
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712-1188

{ckwong,gouda,lam}@cs.utexas.edu

Abstract

Many emerging applications (e.g., teleconference, real-time
information services, pay per view, distributed interactive
simulation, and collaborative work) are based upon a group
communications model, i.e., they require packet delivery
from one or more authorized senders to a very large number
of authorized receivers. As a result, securing group commu-
nications (i.e., providing confidentiality, integrity, and au-
thenticity of messages delivered between group members)
will become a critical networking issue.

In this paper, we present a novel solution to the scal-
ability problem of group/multicast key management. We
formalize the notion of a secure group as a triple (U, K, R)
where U denotes a set of users, K a set of keys held by the
users, and R a user-key relation. We then introduce key
graphs to specify secure groups. For a special class of key
graphs, we present three strategies for securely distribut-
ing rekey messages after a join/leave, and specify protocols
for joining and leaving a secure group. The rekeying strate-
gies and join/leave protocols are implemented in a prototype
group key server we have built. We present measurement
results from experiments and discuss performance compar-
isons. We show that our group key management service, us-
ing any of the three rekeying strategies, is scalable to large
groups with frequent joins and leaves. In particular, the
average measured processing time per join/leave increases
linearly with the logarithm of group size.

1 introduction

Most network applications are based upon the client-server
paradigm and make use of unicast (or point-to-point) packet
delivery. Many emerging applications (e.g., teleconference,
real-time information services, pay per view, distributed in-
teractive simulation, and collaborative work), on the other
hand, are based upon a group communications model. That
is, they require packet delivery from one or more authorized
sender(s) to a large number of authorized receivers. In the
Internet, multicast has been used successfully to provide an

‘R.esearch sponsored in part by Texas Advanwd Research Pro-
gram grant no. 00365%OG3 and by NSA INFOSEC University Re-
search Program grant no. MDA 904-94-C-6106. Experiments were
performed on equipment procured with Natiorxd Science Foundation
grant no. CDA-9624082.

Permission tc make digltel or herd copies of ali or pen of tha6 work for
personal or c1888rccm use ia Srsnted without fee provided that
ccpaes are not made or distributed for profit or commercial advan-
tage and that copies beer thw nctice and the full citation on the fwst paSs
70 copy otharwi~e. to republish. to post on swvers or tc
rsdwtribute to lists, wquirw prior apedfrc pwmission snd/or a fee.
SIGCOMM ‘98 Vsncouver, B.C.
6 1998 ACM l-58113.003-1/98/ooO8...05.00

efficient, best-effort delivery service to large groups [6]. We
envision that deployment of network applications requiring
group communications will accelerate in coming years.

While the technical issues of securing unicast commu-
nications for client-server computing are fairly well under-
stood, the technical issues of securing group communications
are not. Yet group communications have a much greater ex-
posure to security breaches than unicast communications. In
particular, copies of a group communication packet traverse
many more links than those of a unicast packet, thereby cre-
ating more opportunity for traffic interception. We believe
that securing group communications (i.e., providing confi-
dentiality, integrity, and authenticity of messages delivered
between group members) will become a critical issue of net-
working in the near future.

Conceptually, since every point-to-multipoint communi-
cation can be represented as a set of point-to-point commu-
nications, the current technology base for securing unicast
communications can be extended in a straightforward man-
ner to secure group communications [9, lo]. However, such
an extension is not scalable to large groups.

For a more concrete illustration of this point, we outline a
typical procedure for securing unicast communications be-
tween a client and and a server. Initially, the client and
server mutually authenticate each other using an authenti-
cation protocol or service; subsequently, a symmetric key is
created and shared by them to be used for pairwise confi-
dential communications [4, 17, 19, 221. This procedure can
be extended to a group as follows: Let there be a trusted
group server which is given membership information to ex-
ercise group access control. When a client wants to join the
group, the client and group server mutually authenticate us-
ing an authentication protocol. Having been authenticated
and accepted into the group, each member shares with the
group server a key,’ to be called the member’s individual key.
For group communications, the group server distributes to
each member a group lcey to be shared by all members of
the group.2

For a group of n members, distributing the group key
securely to all members requires n messages encrypted with
individual keys (a computation cost proportional to group
size n). Each such message may be sent separately via uni-
cast. Alternatively, the n messages may be sent as a com-
bined message to all group members via multicast. Either
way, there is a communication cost proportional to group

‘In this papa, lxy means a key from a symmetric cryptosystem,
such as DES, unless explicitly stated otherwise.

*It is easy to see that sharing a group key enables confidential
group communications. In addition to confidentiality, authenticity
and integrity can be provided in group communications using stan-
dard techniques such as digital signature and message digest. We will
not elaborate upon these techniques since the focus of this paper is
key management.

68

size n (measured in terms of the number of messages or the
size of the combined message).

Observe that for a point-to-point session, the costs of
session establishment aud key distribution are incurred just
once, at the beginning of the session. A group session, on
the other hand, may persist for a relatively long time with
members joining and leaving the session. Consequently, the
group key should be changed frequently. To achieve a high
level of security, the group key should be changed after every
join and leave so that a former group member has no access
to current communications and a new member has no access
to previous communications.

Consider a group server that creates a new group key
after every join and leave. After a join, the new group key
can be sent via unicast to the new member (encrypted with
its individual key) and via multicast to existing group mem-
bers (encrypted with the previous group key). l’hus, chang-
ing the group key securely after a join is not too much work.
After a leave, however, the previous group key can no longer
be used and the new group key must be encrypted for each
remaining group member using its individual key. Thus we
see that changing the group key securely after a leave in-
curs computation and communication costs proportional to
n, the same as initial group key distribution. That is, large
groups whose members join and leave frequently pose a scal-
ability problem.

The topic of secure group communications has been in-
vestigated [l, 2, 8, 151. Also the problem of how to dis-
tribut,e a secret to a group of users has been addressed in
the cryptography literature [3, 5, 7, 181. However, with the
exception of [15], no one has addressed the need for frequent
key changes and the associated scalability problem for a very
large group. The approach proposed in 101~s [15] to improve
scalability is to decompose a large group of clients into many
subgroups and employ a hierarchy of group security agents.

1.1 Our approach

We present in this paper a different hierarchical approach to
improve scalability. Instead of a hierarchy of group security
agents, we employ a hierarchy of keys. A detailed compari-
son of our approach and the 101~s approach [15] is given in
Section 6.

We begin by formalizing the notion of a secure group as
a triple (V, K, R) where U denotes a set of users, K a set
of keys, and R c U x K a user-key relation which specifies
keys held by each user in U. In particular, each user is given
a subset of keys which includes the user’s individual key and
a group key. We next illustrate how scalability of group key
management can be improved by organizing the keys in K
into a hierarchy and giving users additional keys.

Let there be a trusted group server responsible for group
access control and key management. In particular, the server
securely distributes keys to group members and maintains
the user-key relation.3 To illustrate our approach, con-
sider the following simple example of a secure group with
nine members partitioned into three subgroups, {u,, ~2, us},
{u~,u~,uG}, and {u~,us,ug}. Each member is given three
keys, its individual key, a key for the entire group, and a
key for its subgroup. Suppose that u1 leaves the group, the
remaining eight members form a new secure group and re-
quire a new group key; also, 1~2 and us form a new subgroup
and require a new subgroup key. To send the new subgroup

key securely to u2 (us), the server encrypts it with the indi-
vidual key of ILZ (us). Subsequently, the server can send the
new group key securely to members of each subgroup by en-
crypting it with the subgroup key. Thus by giving each user
three keys instead of two, the server performs five encryp-
tions instead of eight. As a more general example, suppose
the number n of users is a power of d, and the keys in K
are organized as the nodes of a f’~~ll and balanced d-ary tree.
When a user leaves the secure group, to distribute new keys,
the server needs to perform approximately d logd(7t) encryp-
tions (rather than n - 1 encryptions).’ For a large group,
say 100,000, the savings can be very substantial.

1.2 Contributions of this paper

With a hierarchy of keys, there are many different ways
to construct rekey messages and securely distribute them
to users. We investigatfe three rekeying strategies, user-
oriented, key-oriented and group-oriented. We design and
specify join/leave protocols based upon these rekeying stra-
tegies. For key-oriented and user-oriented rekeying, which
use multiple rekey messages per join/leave, we present a
t.echnique for signing multiple messages with a single digital
signature operation. Compared to using one digital signa-
ture per rekey message, the technique provides a tenfold re-
duction in the average server processing time of a join/leave.

The rekeying strategies and protocols are implement,ed in
a prototype group key server we have built. We performed
experiments on two lightly loaded SGI Origin 200 machines,
wit,h the server running on one and up to 8,192 clients on the
other. From measurement results, we show that our group
key management service, using any of the rekeying strategies
with a key tree, is scalable; in particular, the average server
processing time per join/leave increases linearly with the
logarithm of group size. We found that the optimal key tree
degree is around four. Gtoup-oriented rekeying provides the
best performance of the three strategies on the server side,
bllt is worst, of the three on the client side. User-oriented
rekeying has the best performance on t,he client side, but
worst on the server sicle.

The balance of this paper is organized as follows. In
Section 2, we introduce key graphs as a method for speci-
fying secure groups. In Section 3, we present protocols for
users to join and leave a secure group as well as the three
rekeying strategies. In Section 4, we present a technique for
signing multiple rekey messages using a single digital sig-
nature operation. Experiments and performance results are
presented in Section 5. A comparison of our approach and
the 101~s approach is given in Section 6. Our conclusions
are in Section 7.

2 Secure Groups

A secure Qroup is a triple (U, K, R) where

l U is a finite and nonempty set of users,

l K is a finite and nonempty set of keys, and

l R is a binary relation between U and K, that,
is, R C U x K, called the user-key relation of
the secure group. User u has key k if and only if
(u, k) is in R.

69

Each secure group has a trusted group server responsible for
generating and securely distributing keys in K to users in
the group.5 Specifically, the group server knows the user set
U and the key set K, and maintains the user-key relation
R. Every user in U has a key in K, called its individual key,
which is shared only with the group server, and is used for
pairwise confidential communication with the group server.
There is a group key in K, shared by the group server and
all users in U. The group key can be used by each user to
send messages to the entire group confidentially.

2.1 Key graphs

A key graph is a directed acyclic graph G with two types
of nodes, u-nodes representing users and k-nodes represent-
ing keys. Each u-node has one or more outgoing edges but
no incoming edge. Each k-node has one or more incoming
edges. If a k-node has incoming edges only and no outgoing
edge, then this k-node is called a root. (A key graph can
have multiple roots.)

Given a key graph G, it specifies a secure group (U, K, R)
as follows:

i. There is a one-to-one correspondence between U
and the set of u-nodes in G.

ii. There is a one-to-one correspondence between K
and the set of k-nodes in G.

iii. (u, Jc) is in R if and only if G has a directed path
from the u-node that corresponds to u to the k-
node that corresponds to k.

u-nodes

Figure 1: A key graph

As an example, the key graph in Figure 1 specifies the
following secure group:

u = {UlrW,7L3,U4}

K = {kl,kz,k3,k4,k,z,kz34,klz34}
R = { (211, kl), (‘ul,klz), (ul, hz34),

(uz, ks), (uz, h), (uz, kx4), (,uL~, kw),
(~3, h), (~3, km), (~3, km),
(~4, h), (~4, h4), (~4, km) 1 0

Associated with each secure group (U, K, R) are two func-
tions, Iceyset() and vserset(), defined as follows:

keyset(u) = { k 1 (u,k) E R }
userset = { u 1 (u, k) E R }

Intuitively, keyset is the set of keys that are held by user

‘Note that individual keys may have been generated and securely
distributed by an authenticatiorl servim and do not have to be gen-
erat ed by tho group server.

u in U, and userset is the set of users that hold key k
in K. For examples, referring to the key graph in Figure 1,
we have keyset(u4) = (k4, kz34, k1234) and userset(k234) =
{m,u3,u4).

We generalize the definition of function keyset() to any
subset U’ of U, and function userset to any subset K’ of
K, in a straighforward manner, i.e., keyset is the set of
keys each of which is held by at least one user in U’, and
userset is the set of users each of which holds at least
one key in K’.

When a user u leaves a secure group (U, K, R), every
key that has been held by u and shared by other users
in U should be changed. Let k be such a key. To re-
place k, the server randomly generates a new key k,,,, and
sends it to every user in userset except u. To do so se-
curely, the server needs to find a subset K’ of keys such
that userset = userset - {u}, and use keys in K’
to encrypt k,,,,. To minimize the work of rekeying, the
server would like to find a minimal size set K’. This sug-
gests the following key-covering problem: Given a secure
group (U, K, R), and a subset S of U, find a minimum size
subset K’ of K such that userset = 5’. Unfortunately,
the key-covering problem in general is NP-hard [al].

2.2 Special classes of key graphs

We next consider key graphs with special structures for
which the key covering problem can be easily solved.

Star: This is the special class of a secure group (U, K, R)
where each user in U has two keys: its individual key and a
group key that is shared by every user in U.G

Tree: This is the special class of a secure group (U, K, R)
whose key graph G is a single-root tree. A tree key graph
(or key tree) is specified by two parameters.

. The height /I of the tree is the length (in number
of edges) of the longest directed path in the tree.

l The degree d of the tree is the maximum number
of incoming edges of a node in the tree.

Note that since the leaf node of each path is a u-node, each
user in U has at most h keys. Also the key at the root of the
tree is shared by every user in U, and serves as the group
key. Lastly, it is easy to see that star is a special case of
tree.

Complete: This is the special class of a secure group
(U, K, R), where for every nonempty subset S of U, there
is a key k in K such that userset = S. Let n be the
number of users in U. There are 2’” - 1 keys in K, one for
each of the 2” - 1 nonempty subsets of U. Moreover, each
user u in U has 2’“-1 keys, one for each of the 27’-’ subsets
of U that contains u. Since U is a subset of U, there is a key
shared by every user in U which serves as the group key.

The total number of keys held by the server and the
number of keys held by a user are presented in Table 1 where
n is the size of U. In particular, in the case of a complete key
graph, each user needs to hold 21L-’ keys which is practical
only for small n. Note that the number of keys in a key

tree is $$ Z -& n when the tree is full and balanced (i.e.

n = d’“-‘).

70

Class of key graph Star Tree Complete

Total number of keys n,+l 1
+1 2”-1

Number of keys per user 2 h 2”-1

Table 1: Number of keys held by the server and by each
user.

3 Rekeying Strategies and Protocols

A user u who wants to join (leave) a secure group sends a join
(leave) request to the group server, denoted by s. For a join
request from user u, we assume that group access control is
performed by server s using an access control list provided by
the initiator of the secure group.7 A join request initiates an
authentication exchange between u and s, possibly with the
help of an authentication server. If user u is not authorized
to join the group, server s sends a join-denied reply to u.
If the join request is granted, we assume that the session
key distributed as a result of the authentication exchange
[17, 221 will be used as the individual key Ic, of u. To simplify
protocol specifications below, we use the following notation

s e u : authenticate u and distribute k,,

to represent the authentication exchange between server s
and user u, and secure distribution of key k,, to be shared
by u and s.

After each join or leave, a new secure group is formed.
Server s has to update the group’s key graph by replacing
the keys of some existing k-nodes, deleting some k-nodes (in
the case of a leave), and adding some k-nodes (in the case
of a join). It then securely sends rekey messages containing
new group/subgroup keys to users of the new secure group.
(A reliable message delivery system, for both unicast and
multicast, is <assumed.) In protocol specifications below, we
also use the following notation

x-&y : z

to denote

. if y is a single user, the sending of message z from
2 to y;

. if y is a set of users, the sending of message z from
z to every user in y (via multicast or unicast).

In the following subsections, we first present protocols for
joining and leaving a secure group specified by a star key
graph. These protocols correspond to conventional rekey-
ing procedures informally described in the Introduction [9,
lo]. We then consider secure groups specified by tree key
graphs. With a hierarchy of group and subgroup keys, rekey-
ing after a join/leave can be carried out in a variety of
ways. We present three rekeying strategies, user-oriented,
key-oriented, and group-oriented, as well as protocols for
joining and leaving a secure group.

3.1 Joining a star key graph

After granting a join request from user u, server s updates
the key graph by creating a new u-node for u and a new
k-node for k,, and attaching them to the root node. Server

7Tl~e authorization function may be offloaded to an autlmnzation
server. In this case, the authorization server provides an authorized
user with a ticket to ,join the mxre group [lG, 231. The user submits
the ticket togrthrr with Its jolrr request to 8ervrr s.

s also generates a new group key ku, for the root node,
encrypts it with the individual key k,, of user u, and sends
the encrypted new group key to u. To notify other users
of the new group key, server s encrypts the new group key
ku, with the old group key ku, and then multicasts the
encrypted new group key to every user in the group. (See
Figure 2.)

Figure 2: Join protocol for a star key graph.

ki 234

Figure 3: Star key graphs before and after a join (leave).

For example, as shown in Figure 3, suppose user u4 wants
to join the left secure group in the figure, and it is allowed
to join. After server s changes the group key from ICI23 to a
new key k1234, server s needs to send out the following two
rekey messages.

s + {UlrU2,u3} : {km}~m
s -+ uq : {km.i}r;~

For clarity of presentation, we have assumed that rekey
messages contain new keys only and secure distribution
means that the new keys are encrypted just for confiden-
tiality. In our prototype implementation, rekey messages
have additional fields, such as, subgroup labels for new keys,
server digital signature, message integrity check, timestamp,
etc. (See [21] for rekey message format.)

3.2 Leaving a star key graph

(2) s + u : { leave-granted }A:,,
s : randomly generate a new group key kut

(4) for each user z1 in U except user ‘1~ do

Figure 4: Leave protocol for a star key graph.

After granting a leave request from user u, server s up-
dates the key graph by deleting the u-node for user u and
the k-node for its individual key k,, from the key graph.
Server s generates a new group key kut for the new secure
group without u, encrypts it with the individual key of each
remaining user, and unicasts the encrypted new group key
to the user. (See Figure 4.)

71

ug leaves ug joins

ki-9

(3 -- - - k-node x 0

Figure 5: Key trees before and after a join (leave).

3.3 Joining a tree key graph

After granting a join request from u, server s creates a new
IL-node for user u and a new k-node for its individual key k,,
Server s finds an existing k-node (called the ,joininy point for
this join request) in the key tree and attaches k-node I;,, to

the joining point as its child.
To prevent the joining user from accessing past commu-

nications, all keys along the path from the joining point to
the root node need to be changed. After generating new
keys for these nodes, server s needs to securely distribute
them to t,he exist,ing users as well as the ,joining user. For
example, as shown in Figure 5, suppose ?LD is granted to
join t,he upper key graph in the figure. The joining point is
k-node Ic~8 in the key graph, and the key of this k-node is
changed to !+RD in the new key graph below. Moreover, the
group key at the root is changed from kl~-a t,o ICI-0. Users
IL,,...,?& only need the new group key X-l 0, while users
U’i, ‘Il8, and 1~9 need the new group key kl-.o as well as the
new key k789 to be shared by them.

To securely distribute the new keys to the users, the
server constructs and sends rekey messages to the users. A
rc+ey messnge contains one or more encrypted new key(s),
and a user needs to decrypt it with appropriate keys in or-
der to get, the new keys. We next present three different
approaches to construct and send rekey messages.

User-oriented rekeying. Consider each llser and the subset
of’ new keys it needs. The idea of user-oriented rekeying
is that for each user, the server construct,s a rekey message
that contains precisely the new keys needed by the user, and
encrypts them using a key held by the llsrr.

For example, as shown in Figure 5: for user ILL to join
the upper secllre group in the figure, server s needs to send

the following t,hree rekey messages.
s -+ {Ul, , ILO} : {kl-9}r:,-s
s + { 117, U8) : {kx-o, kmg}k,8
s --+ Ib9 : {Lo, kmg}~g

Note that users 2~1,. . , ug need to get the new group key
kl-9. There is no single key that is shared only by ~1,. . , UCI.
However, key ICI-8 can be used to encrypt the new key /c-.9
for ul,. ,‘,L(~ without security breach since users 2~7 and 2~s
will also get, t,his new group key from another rekey message.

User-oriented rekey messages can be constructed as fol-
lows. For each k-node 2 whose key has been changed, say
from k to I;‘, the server constructs a rekey message by en-
crypt,ing the new keys of k-node z and all its ancestors (upto
the root) by the old key k. This rekey message is then sent
to the subset of users that need precisely these new keys. Ei-
ther unicast or subgroup m&icast may be used.’ Moreover,
one rekey message is sent to the joining user which contains
all of the new keys encrypted by the individual key of the
joining user.

This approach needs h rekey messages. Counting the
number of keys encrypted, the encryption cost for the server
is given by

Key-oriented rekeying. In this approach, each new key is
encrypted individually (except keys for the joining user).
For each k-node z whose key has been changed, say from k
1.0 k’, the server constructs two rekey messages. First, the
server encrypts the new key k’ with the old key k, and sends
it t,o nsersrf,(k) which is the set of users that share k. All of
the original users that need the new key k’ can get it from
this rekey message. The other rekey message contains the
new key k’ encrypted by the individual key of the joining
Ilser, and is sent to the joining user.

As described, a llser may have to get multiple rekey mes-
sages in order to get all the new keys it needs. For example,
as shown in Figure 5, for user 2~9 to join the upper secure
group in the figure, server s needs to send the following four
rekey messages. Note that users ~7, ~8, and 2~9 need to get
t,wo rekey messages each.

s t {I/,1,) ug} : {kx-g}~.,-,
s + ug
s 4 {u,,, us}

; pjy

‘7x9 A,*

s i ILO : {km)in

Compared to user-oriented rekeying, the above approach
reduces the encryption cost. of the server from 1 to My

2(/~-l), but it, requires 2(h-1) rekey messages instead of h.
To reduce the number of rekey messages, all of the rekey

messages for a particular user can be combined and sent as
one message. Thus, server s can send the following three
rekey messages instead of the four rekey messages shown
above.

s + {UI, , .ilG} : {kl-<)}6~,_8
s + { ,717, %l,s} : {kx-n}~~,_,, (knwl1;m
s --f 113 : {he, kmg}~cj

The join protocol based upon this rekeying strategy is
presented in Figure 6. Steps (4) and (5) in Figure 6 spec-
ify how the combined rekey
d&ribut,etl by server s.

messages are constructed and

ITsing combined rekey messages, the number of rekey
messages for key-oriented rekeying is 11. (same as user-
-

72

oriented rekeying) while the encryption cost is 2(h - 1).
From this analysis, key-oriented rekeying is clearly better
for the server than user-oriented rekeying. (This conclusion
is confirmed by measurement resuits presented in Section 5.)

‘1) u + s : join request
‘2) s (j u : authenticate u and distribute k,,
13) s : find a joining point and attach k,,,

let x,? denote the joining point, 20 the root,
and z;-i the parent of X? for ,1 = 1,. ,j,

let K3+i denote k,, ,
and Ku,. , h’i the old keys of za, ,x3,

randomly generate new keys K:,, , K:
14) for i = 0 upto j do

let M = {K~}K,, , {K}K,
s + (userset - userset(K,+l)) : A4

(5) s -+ u : {K; ,..., K;}li,,

Figure 6: Join protocol for a t,ree key graph (key-oriented
rekeying).

Group-oriented rekeying. In key-oriented rekeying, each
new key is encrypted individually (except keys for the join-
ing user). The server constructs multiple rekey messages,
each tailored to the needs of a subgroup. Specifically, the
users of a subgroup receive a rekey message containing pre-
cisely the new keys each needs.

An alternative approach, called group-oriented, is for the
server to construct a single rekey message containing all new
keys. This rekey message is then multicasted to the en-
tire group. Clearly such a rekey message is relatively large
and contains information not needed by individual users.
However, scalability is not a concern because the message
size is O(log,(n)) for group size n and key tree degree d.
The group-oriented approach has several advantages over
key-oriented and user-oriented rekeying. First, there is no
need for subgroup multicast. Second, with fewer rekey mes-
sages, the server’s per rekey message overheads are reduced.
Third, the total number of bytes transmitted by the server
per join/leave request is less than those of key-oriented and
user-oriented rekeying which duplicate informat,ion in rekey
messages. (See Section 5 and Section 7 for a more thorough
discussion on performance comparisons.)

For example, as shown in Figure 5, for user 21~ to join
the upper secure group in the figure, server s needs to send
the following two rekey messages; one is multicasted to the
group, and the other is unicasted to the joining user.

S+{Ul,...,U~} : {kl-Q}k~-~,{k789}k~~

s -+ UQ : (b-0, k789}ke

The join protocol based upon group-oriented rekeying is
presented in Figure 7. This approach reduces the number
of rekey messages to one multicast message and one unicast
message, while-maintaining the encryption cost at 2(h - 1)
(same as key-oriented rekeying).

(1) - (3) (same as Figure 6)
(4) s -+ userset : {K~}Ic,, ,{K~}K~

(5) s -i u : {Kb,. ,K;}A,,‘

Figure 7: Join protocol for a tree key graph (group-oriented
rekeying).

3.4 Leaving a tree key graph

After granting a leave request from user u, server s updates
the key graph by deleting the u-node for user u and the k-
node for its individual key from the key graph. The parent
of the k-node for its individual key is called the leaving point.

To prevent the leaving user from accessing future com-
munications, all keys along the path from the leaving point
to the root node need to be changed. After generating new
keys for these k-nodes, server s needs to securely distribute
them to the remaining users. For example, as shown in Fig-
ure 5, suppose 2~9 is granted to leave the lower key graph in
the figure. The leaving point is the k-node for krsa in the
key graph, and the key of this k-node is changed to kn in
t,he new key graph above. Moreover, the group key is also
changed from kl-9 to kl-8. Users PLY,. ,UG only need to
know the new group key Icr-s. Users ur and 1~s need to
know the new group key ICI-8 and the new key km shared
by them.

To securely distribute the new keys to users after a leave,
we revisit the three rekeying strategies.

User-oriented rekeying In this approach, each user gets a
rekey message in which all the new keys it needs are en-
crypted using a key it holds. For example, as shown in
Figure 5, for user 1~9 to leave the lower secure group in the
figure, server s needs to send the following four rekey mes-
sages.

s -+ {Wr2L2,U3} :
s-h {uq,ug,ug} :

~~‘~6;p”
1 8 J,ass

s -+ u7 : {k1--8,hs}k7
s -+ ‘il.8 : (h-8, k7s}kg

User-oriented rekey messages for a leave can be con-
structed as follows. For each k-node 3: whose key has been
changed, say from k to k’, and for each unchanged child y
of 2, the server constructs a rekey message by encrypting
the new keys of k-node 5 and all its ancestors (upto the
root) by the key K of k-node y. This rekey message is then
multicasted to userset (K).

This approach requires (d - l)(h - 1) rekey messages.
The encryption cost for the server is given by

(d - 1)(1 + 2 + + h - 1) = (d-1);(“-1).

Key-oriented rekeying In this approach, each new key is
encrypted individually. For example, as shown in Figure 5,
for user 2~0 to leave the lower secure group in the figure,
server s needs to send the following four rekey messages.

s -+ {7Ll,UZ,U3) :
s -+ {PL4,U5,U6} :

melody
1 8 km

s -+ 117 : {k1--8}b,8, {km}A.7
s -+ us : {kl--8}k7R, {km}ks

The leave protocol based upon key-oriented rekeying is
presented in Figure 8. Step (4) in Figure 8 specifies how the
rekey messages are constructed and distributed to users.

Note that by storing encrypted new keys for use in dif-
ferent rekey messages, the encryption cost of this approach
is d(h - l), which is much less than that of user-oriented
rekeying. The number of rekey messages is (d - l)(h - l),
same as user-oriented rekeying.

Group-oriented rekeying. A single rekey message is con-
structed containing all new keys. For example, as shown in
Figure 5, for user ua to leave the lower secure group in the
figure, server s needs to send the following rekey message:

73

(1) u -+ s : { leave-request }k,,
(2) s -+ u : { leave-granted }J+,

(3) s : find the leaving point (the parent of lcU),
remove k, from the tree,
let Z~+I denote the deleted k-node for k,,

~j the leaving point, 20 the root,
andzi-1 theparentofz;fori=l,...,j,

randomly generate keys Kb, , K,:
as the new keys of 50, , xc3

(4) for i = 0 upto j do
for each child y of xi do

let K denote the key at k-node y
if y # xi+1 then do

let M = {Ki}lc, {Ki-,}K;, , {K;)}K;
s -+ men-et(K) : A4

Figure 8: Leave protocol for a tree key graph (key-oriented
rekeying).

let LO denote {kl--8}k123, {k1--8}k456, {h-8)h8

let LI denote {km}.+, {k78}kg

s-+{u1,...,u*} : LO,Ll

Note that for a leave, this single rekey message is about
d times bigger than the rekey message for a join, where d is
the average degree of a k-node.

The leave protocol based upon group-oriented rekeying
is presented in Figure 9. This approach uses only one rekey
message which is multicasted to the entire group, and the
encryption cost is d(h - l), same as key-oriented rekeying.

let (~1,. . . z,.} be the set of the children of Xi
~-

Figure 9: Leave protocol for a tree key graph (group-oriented
rekeying).

3.5 Cost of encryptions and decryptions

An approximate measure of the computational costs of the
server and users is the number of key encryptions and de-
cryptions required by a join/leave operation. Let n be the
number of users in a secure group. For each join/leave op-
eration, the user that requests the operation is called the
requesting user, and the other users in the group are non-
requesting users. For a join/leave operation, we tabulate the
cost of a requesting user in Table 2(a), the cost of a non-
requesting user in Table 2(b), and the cost of the server in
Table 2(c). These costs are from the protocols described
above for star and tree key graphs, and from [21] for com-
plete key graphs. (Key-oriented or group-oriented rekeying
is assumed for tree key graphs.)

For a key tree, recall that d and h denote the degree
and height of the tree respectively. In this case, for a non-
requesting user u, the average cost of 1~ for a join or a leave
is less than -& which is independent of the size of the tree

(derivation in [21]).
Assuming that the number of join operations is the same

<as the number of leave operations, the average costs per
operation are tabulated in Table 3 for the server and a user
in the group.

:

a the requesting user
Star Tree Complete

join n

leave

1

11

I

(c) the server
. , (Star (Tree 1 Complete
join 2
ieave

1 1 2(&l) 1 2 rLt-l
n-l 1 d(h-1) 1 0

Table 2: Cost of a join/leave operation.

cost Star Tree Complete
cost of the server n 2 (d+ 2)(h - 1)/2 2"

cost of a user 1 d/Cd - 1) 2"

Table 3: Average cost per operation.

From Table 3, it is obvious that complete key graphs
should not be used. On the other hand, scalable group key
management can be achieved by using tree key graphs. Note
that for a full and balanced d-ary tree, the average server
cost is (d + 2)(h - 1)/2 = (d+ 2)(logd(n))/2. However, each
user has to do slightly more work (from 1 to A). For d = 4,
a user needs to do 1.33 decryptions on the average instead
of one. (It can be shown that the server cost is minimized
for d = 4, i.e., the optimal degree of key trees is four.)

4 Technique for Signing Rekey Messages

In our join/leave protocols, each rekey message contains one
or more new keys. Each new key, destined for a set of users,
is encrypted by a key known only to these users and the
server. It is possible for a user to masquerade as the server
and send out rekey messages to other users. Thus if users
cannot be trusted, then each rekey message should be digi-
tally signed by the server.

We note that a digital signature operation is around two
orders of magnitude slower than a key encryption using DES.
For this reason, it is highly desirable to reduce the number of
digital signature operations required per join/leave. If each
rekey message is signed individually, then group-oriented
rekeying, using just one rekey message per join/leave, would
be far superior to key-oriented (user-oriented) rekeying,
which uses many rekey messages per join/leave.

Consider m rekey messages, i\/ll, , A4,,, , with message
digests, di = h(M,) for i = 1,. . . , m, where h() is a secure
message digest function such as MD5. The standard way to
provide authenticity is for the server to sign each message
digest (with its private key) and send the signed message
digest together with the message. This would require m
digital signature operations for m messages.

We next describe a technique, implemented in our pro-
totype key server, for signing a set of messages using just
a single digital signature operation. The technique is based
upon a scheme proposed by Merkle [14].

Suppose there are four messages with message digests
dl,dz,ds, and d4. Construct message D12 containing dl
and dz, and compute message digest dlz = h(Dlz). Simi-
larly, construct message 034 containing da and dd, and com-
pute message digest d34 = h(D34). Then construct message

74

key tree one signature per rekey msg one signature for all rekey msgs
degree 4 msg size (byte) proc time (msec) msg size (byte) proc time (msec)

join leave join leave ave join leave join leave ave
user 263.1 233.8 76.7 204.6 140.6 312.8 306.9 13.6 17.1 15.3
key 303.0 270.9 76.3 203.8 140.1 352.8 344.0 13.1 15.9 14.5
grow 525.5 1005.7 11.9 12.0 11.9 525.5 1005.7 11.9 12.0 11.9

Table 4: Average rekey message size and server processing time (n=8192, DES, MD5, RSA)

4 16

user-oriented - user-oriented -
3.5 - key-oriented + -.

group-oriented ... + ..
key-oriented ----a----

5. c
15 group-oriented ---I-----

3
- -

8 2
. .

E
2.5

-4’ /- g it
_.’

.s - 13 -
F

2 // ___,._ x...~...-“.,...“’
14. A:s- /~~“~~~ y

z ‘.5 /AM /..X... --

1

. . s---* I .K _____-...

:: a-. ~- -- -) ~~~x-.-- x
12:’ 7

, .c... * * .- ...’ * *
‘a 7e ‘a

. t --
.*,. ..I-

* l 11 -
0.5 _ *,..~ f *

0 10
32 64 128 256 512 1024 2048 4096 8192 32 64 128 256 512 1024 2048 4096 8192

group size group size
(a) with encryption only (b) with encryption and signature

Figure 10: Server processing time per request vs group size (key tree degree 4).

D1-4 containing dl2 and d34, and compute message digest
dl-J = h(&-4). The server signs message digest dl--4 with
its private key. The server then sends the signed message
digest, sign(dl-a), together with 01-4, 034, and M4 to a
user that needs Ma.

The user verifies, by first decrypting sign(dl-4), that
dl--4 = h(Dl-4). Subsequently, the user verifies that ds4
in 01-4 is equal to h(Dz~), and also d4 in 034 is equal to
h(M4), which assures that M4 was indeed sent by the server.
The above example can be easily extended to m messages
in general.

The benefits of this technique for signing rekey messages
are demonstrated in Table 4 for both key-oriented and user-
oriented rekeying. (Note that it is not needed by group-
oriented rekeying which uses one rekey message per join/
leave.) The average rekey message size per join/leave is
shown, as well as the server’s processing time per join/leave
(ave denotes the average of average join and leave process-
ing times). The experiments were performed for an initial
group size of 8192, with DES-CBC encryption, MD5 mes-
sage digest, and RSA digital signature (512-bit modulus).
Additional details of our experimental setup can be found
in Section 5. With the technique for signing rekey mes-
sages, the processing time reduction for key-oriented and
user-oriented rekeying is about a factor of ten (for exam-
ple, 14.5 msec versus 140.1 msec in the case of key-oriented
rekeying). There is however a small increase (around 50-70
bytes) in the average rekey message size.

5 Experiments and Performance Comparisons

We have designed and constructed a prototype group key
server, as well as a client layer, which implement join/leave
protocols for all three rekeying strategies in Section 3 and
the technique for signing rekey messages in Section 4.

We performed a large number of experiments to evaluate

the performance of the rekeying strategies and the technique
for signing rekey messages. The experiments were carried
out on two lightly loaded SGI Origin 200 machines running
IRIX 6.4. The machines were connected by a 100 Mbps
Ethernet. The group key server process runs on one SGI
machine. The server is initialized from a specification file
which determines the inital group size, the rekeying strat-
egy, the key tree degree, the encryption algorithm, the mes-
sage digest algorithm, the digital signature algorithm, etc.
A client-simulator runs on the other SGI simulating a large
number of clients. Actual rekey messages, as well as join,
join-ack, leave, leave-ack messages, are sent between indi-
vidual clients and the server using UDP over the 100 Mbps
Ethernet. Cryptographic routines from the publicly avail-
able CrytoLib library are used [II].

For each experiment with an initial group size n, the
client-simulator first sent n join requests, and the server
built a key tree. Then the client-simulator sent 1000 join/
leave requests. The sequence of 1000 join/leave requests was
generated randomly according to a given ratio (the ratio was
1:l in all our experiments to be presented). Each experi-
ment was performed with three different sequences of 1000
join/leave requests. For fair comparisons (between different
rekeying strategies, key trees of different degrees, etc.), the
same three sequences were used for a given group size. The
server employs a heuristic that attempts to build and main-
tain a key tree that is full and balanced. However, since the
sequence of join/leave requests is randomly generated, it is
unlikely that the tree is truly full and balanced at any time.

To evaluate the performance of different rekeying strate-
gies as well as the technique for signing rekey messages, we
measured rekey message sizes (in bytes) and processing time
(in msec) used by the server per join/leave request. Specif-
ically, the processing time per join/leave request consists of
the following components. First, the server parses a request,
t,raverses the key graph to determine which keys are to be
updated, generates new keys, and updates the key graph.

75

1 kev tree 1 rekev msg size (byte) no. of rekey msgs

degree 4 1 per join I 1 per ‘leave I per join I per leave

ave min max ave min max ave min max ave min max
I 372.8 196 552 1 306.9 228 412 I 7.00 6 7 I 19.02 18 20

key 352.8 212 616 344.0 244 476 7.00 6 7 19.02 18 20
grow 525.5 356 564 1005.7 968 1076 1.00 1 1 1.00 1 1

key tree rekey msg size byte) no. of rekey msgs

degree 8 per join per leave per join per leave
we min Illax ave min max ave min max ave min max

user 287.3 196 496 285.9 228 356 5.00 4 5 29.01 28 30
key 319.3 212 544 314.3 244 404 5.00 4 5 29.01 28 30
group j 464.5 284 492 1 1293.1 1256 1364 1 1.00 1 1 1 1.00 1 1

key tree 1 rekey msg size byte no. of rekey msgs
degree 16 per join per leave per join per leave

ave min max ave min max ave min max ave min max
user 274.0 180 452 282.4 244 344 4.00 3 4 46.01 45 47
key 302.0 196 492 306.6 260 384 4.00 3 4 46.01 45 47
group 427.8 248 456 1869.1 1832 1940 1.00 1 1 1.00 1 1

‘Table 5: Number and size of rekey messages, with encryption and signature, sent by the server (initial group size 8192)

Second, the server performs encryption of new keys and con-
structs rekey messages. Third, if message digest is specified,
the server computes message digests of the rekey messages.
Fourth, if digital signature is specified, the server computes
message digests and a digital signature as described in Sec-
tion 4. Lastly, the server sends out rekey messages as UDP
packets using socket system calls.”

The server processing time per request (averaged over
joins and leaves) versus group size (from 32 to 8192) is shown
in Figure 10. Note that the horizontal axis is in log scale.
The left figure is for rekey messages with DES-CBC encryp-
tion only (no message digest and no digital signature). The
right figure is for rekey messages with DES-CBC encryption,
MD5 message digest, and RSA-512 digital signature. The
key tree degree was four in all experiments. We conclude
from the experimental results that our group key manage-
ment service is scalable to very large groups since the pro-
cessing time per request increases (approximately) linearly
with the logarithm of group size for all three rekeying strate-
gies. Other experiments support the same conclusion for key
tree degrees of 8 and 16.

The average server processing time versus key tree de-
gree is shown in Figure 11. These experimental results illus-
trate three observations. First, the optimal degree for key
trees is around four. Second, with respect to server process-
ing time, group-oriented rekeying has the best performance,
with key-oriented rekeying in second place. Third, signing
rekey messages increases the server processing time by an
order of magnitude (it would be another order of magnitude
more for key-oriented and user-oriented rekeying without a
special technique for signing multiple messages). The left
hand side of the figure is for rekey messages with DES-CBC
encryption only (no message digest and no digital signature).
The right hand side of the figure is for rekey messages with
DES-CBC encryption, MD5 message digest, and RSA-512
digital signature. The initial group size was 8192 in these
experiments.

‘The processing time is measured using tlrv IJNIX system call
getrutage() whirb rcturrls processing time (lnclllding time of sys-
tem calls) used by a proc+x3s. In the results presented herein, the
processing time for a join request dots not include any time used to
authenticate the requesting user (i.e., step (2) 111 the join protocols
of Figure G and Figure 7). We feel that any aut.llnuticntiotl overhr;td
should be accounted for scparntely.

key tree 1 rekey msg size byte no. of rekey
degree 4 1 per join (per leave 1 msgs per 1

user
ave ave 1 join/leave

I 209.3 I 237.4 I 1
key 227.9 256.0 1
group 525.5 1005.7 1

key tree rekey msg size byte no. of rekey
degree 8 per join per leave msgs per

ave ave join/leave
user 200.0 242.0 1
key 217.2 259.2 1
group 464.5 1293.1 1

key tree rekey msg size (byte) no. of rekey
degree 16 per join 1 per leave msgs per

ave ave 1 join/leave
user 197.8 1 246.7 1 1
key 214.3 263.2 1
group 427.8 1869.1 1

Table 6: Number and size of rekey messages, with encryp-
tion and signature, received by a client (initial group size
8192)

Table 5 presents the size and number of rekey messages
sent by the server. Note that group-oriented rekeying uses a
single large rekey message per request (sent via group mul-
ticast), while key-oriented and user-oriented rekeying use
multiple smaller rekey messa
group multicast or unicast). IiT

es per request (sent via sub-
Note that the total number

of bytes per join/leave transmitted by the server is much
higher in key-oriented and user-oriented rekeying than in
group-oriented rekeying.

Table 6 presents the size and number of rekey messages
received by a client. Only the average message sizes are
shown, because the minimum and maximum sizes are the
same as those in Table 5. Note that each client gets exactly
one rekey message for all three rekeying strategies. For key-
oriented and user-oriented rekeying, the average message
size is smaller than the corresponding average message size
in Table 5. The is because the average message size here

“‘The experiments reported her&u were performed with each rekey
message sent, ,jrist onw by the sewer via mlbgroup multicast,.

76

8 24
user-oriented -- user-oriented -

7 _ key-oriented ----*---- ~~~ , 22 _ key-oriented *---~
group-oriented -.‘*..... group-oriented l ..

= - 5
x 6- I 20 -

E- 5- _ .k
2 E la-
‘= 4 - , _ ‘S

2
‘3
I
::
‘a ~ _..*. 3.

_*.. .~. ..* . ..L l

0 10

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

key tree degree key tree degree

(a) per join with encryption only (d) per join with encryption and signature

8 I
user-oriented -

7 - key-oriented m-x----
mom-oriented l / .I

01
2 4 6 0 10 12 14 16

key tree degree
(b) per leave with encryption only

0’ I 10
2 4 6 a 10 12 14 16 2 4 6 8 10 12 14 16

key tree degree key tree degree

(c) per request with encryption only (f) per request with encryption and signature

2 4 6 a 10 12 14 16

key tree degree
(e) per leave with encryption and signature

Figure 11: Server processing time vs key tree degree (initial group size 8192).

was calculated over all clients, and many more clients re-
ceived small rekey messages than clients that received large
rekey messages. The results in this table show that group-
oriented rekeying, which has the best performance on the
server side, requires more work on the client side to process
a larger message than key-oriented and user-oriented rekey-
ing. The avera,ge rekey message size on the client side is the
smallest in user-oriented rekeying.

per join/leave request, which is shown in Figure 12. The
top figure shows the average number of key changes versus
the key tree degree, and the bottom figure shows the average
number of key changes versus the initial group size of each
experiment. Note that the average number of key changes by
a client is relatively small, and is very close to the analytical
result, d/(d - 1) shown in Table 3 in Section 3.

From the contents of rekey messages, we counted and
computed the average number of key changes by a client

77

2

n=1024 -
n = 2046 .___x....

3 " = 4066
F II=8192

..I.. 0
2 analysis ---*--

:
2
B

E
E
2

-----At,_, _
d

1
2 4

1.5

1.45

3 1.4

F 1.35
r"
0 1.3

i2 1.25
B
6 1.2

E 1.15
2

1.1

1.05

1

6 8 10 12 14 16

key tree degree

32 64 128 256 512 1024 2046 4096 8192

group size

Figure 12: Number of key changes by a client per request.

6 Related Work

The scalability problem of group key management for a
large group with frequent joins and leaves was previously ad-
dressed by Mittra with his 101~s system [15]. Both 101~s and
our approach solve the scalability problem by making use of
a hierarchy. The similarity, however, ends here. The system
architectures are very different in the two approaches. We
next compare them by considering a tree hierarchy with a
single root (i.e., a single secure group).

Iolus’s tree hierarchy consists of clients at the leaves with
multiple levels of group security agents (agents, in short)
above. For each tree node, the tree node (an agent) and its
children (clients or lower-level agents) form a subgroup and
share a subgroup key. There is no globally shared group key.
Thus a join and leave in a subgroup does not affect other
subgroups; only the local subgroup key needs to be changed.

Our tree hierarchy consists of keys, with individual keys
at leaves, the group key at the root, and subgroup keys
elsewhere. There is a single key server for all the clients.
There are no agents, but each client is given multiple keys
(its individual key, the group key, and some subgroup keys).

In comparing the two approaches, there are several issues
to consider: performance, trust, and reliability.

Performance. Roughly speaking, since both approaches
make use of a hierarchy, both attempt to change a O(n)
problem into a O(log(n)) problem where n denotes group
size. They differ however in where and when work is per-
formed to achieve secure rekeying when a client joins/leaves
the secure group.

Secure rekeying after a leave requires more work than
after a join because, unlike a join, the previous group key

cannot used and n rekey messages are required (this is re-
ferred to in [15] as a 1 does not equal n type problem).
This is precisely the problem solved by using a hierarchy in
both approaches.

The main difference between 101~s and our approach is in
how the 1 affects n type problem [15] is addressed. In our
approach, every time a client joins/leaves the secure group a
rekeying operation is required which affects the entire group.
Note that this is not a scalability concern in our approach
F;se the server cost is O(log(n)) and the client cost is

In Iolus, there is no globally shared group key with the
apparent advantage that whenever a client joins/leaves a
subgroup only the subgroup needs to be rekeyed. However,
for a client to send a message confidentially to the entire
group, the client needs to generate a message key for en-
crypting the message and the message key has to be securely
distributed to the entire group via agents. Each agent de-
crypts using one subgroup key to retrieve the message key
and reencrypts it with another subgroup key for forwarding

[151.
That is, most of the work in handling the 1 affects n

type problem is performed in 101~s when a client sends a
message confidentially to the entire group (rather than when
a client joins/leaves the group). In our approach, most of
the work in handling the 1 affects n type problem is per-
formed when a client joins/leaves the secure group (rather
than when a client sends messages confidentially to the en-
tire group).

Trust. Our architecture requires a single trusted entity,
namely, the key server. The key server may be replicated
for reliability/performance enhancement, in which case, sev-
eral trusted entities are needed. Each trusted entity should
be protected using strong security measures (e.g. physical
security, kernel security, etc.). In Iolus, however, there are
many agents and all of the agents are trusted entities. Thus
the level of trust required of the system components is much
greater in 101~s than in our approach.

Reliability. In Iolus, agents are needed to securely forward
message keys. When an agent fails, a backup is needed.
It would appear that replicating a single key server (in our
approach) to improve reliability is easier than backing up a
large number of agents.”

7 Conclusions

We present three rekeying strategies, user-oriented, key-
oriented and group-oriented and specify join/leave proto-
cols based upon these strategies. For key-oriented and user-
oriented rekeying, which use multiple rekey messages per
join/leave, we present a technique for signing multiple mes-
sages with a single digital signature operation. Compared to
using one digital signature per rekey message, the technique
provides a tenfold reduction in the average server processing
time of a join/leave.

The rekeying strategies and protocols are implemented
in a prototype group key server we have built. From mea-
surement results of a large number of experiments, we con-
clude that our group key management service using any of
the three rekeying strategies is scalable to large groups with
frequent joins and leaves. In particular, the average server
processing time per join/leave increases linearly with the

“Craig Partridge observed that agents can be implemented in ex-
Ming firewalls and derive their reliability and trustworthiness from
those of firewalls.

78

logarithm of group size. We found that the optimal key tree
degree is around four.

On the server side, group-oriented rekeying provides the
best performance, with key-oriented rekeying in second
place, and user-oriented rekeying in third place. On the
client side, user-oriented rekeying provides the best per-
formance, with key-oriented rekeying in second place, and
group-oriented rekeying in third place. In particular, for a
very large group whose clients are connected to the network
via low-speed connections (modems), key-orient,ed or user-
oriented rekeying would be more appropriate than group-
oriented rekeying.

We next consider the amount of network traffic gener-
ated by the three rekeying strategies. With group-oriented
rekeying, a single rekey message is sent per join/leave via
multicast to the entire group, the network load generated
would depend upon the network configuration (local area
network, campus network, wide area Internet, etc.) and
the group’s geographic distribution. With key-oriented and
user-oriented rekeying, many smaller rekey messages are sent
per join/leave to subgroups. If the rekey messages are sent
via unicast (because the network provides no support for
subgroup multicast), the network load generated would be
much greater than that of group-oriented rekeying.

It is possible to support subgroup multicast by the
method in [13] or by allocating a large number of multi-
cast addresses, one for each subgroup that share a key in
the key tree being used. A more practical approach, how-
ever, is to allocate just a small number of multicast addresses
(e.g., one for each child of the key tree’s root node) and use
a rekeying strategy that is a hybrid of group-oriented and
key-oriented rekeying. It is straightforward to design such
a hybrid strategy and specify the join/leave protocols. Fur-
thermore a hybrid approach, involving the use of some 101~s
agents at certain locations, such as firewalls, may also be
appropriate.

Lastly, the reader may wonder why we use key graphs to
specify a secure group even though key trees are sufficient
for scalable management of a group key. This is because we
are constructing a group key management service for appli-
cations that require the formation of multiple secure groups
over a population of users and a user can join several secure
groups. For these applications, the key trees of different
group keys are merged to form a key graph [la].

Acknowledgement

We thank Craig Partridge for his constructive comments in
shepherding the final revision of this paper,

References

PI

PI

[31

I41

Tony Ballardie. Scalable Multicast Key Distribution,
RFC 1949, May 1996.
Tony Ballardie and Jon Crowcroft. Multicast-Specific
Security Threats and Counter-Measures. In Proceedings
Symposium on Network and Distributed System Secu-
rity, 1995.

Shimshon Berkovits. How to Broadcast a Secret. In
D.W. Davies, editor, Advances in cryptology, EURO-
CRYPT ‘91, volume 547 of Lecture Notes in Computer
Science, pages 535-541. Springer Verlag, 1991.

R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten,
It. Molva, and M. Yuug. The KryptoKnight family of
light-weight protocols for authentication and key distri-
bution. IEEE/ACM Transactions on Networking, 3(l),
February 1995.

[51

k-51

I71

PI

WI

P11

P21

1131

P41

P51

I161

1171

P81

WI

PO1

w

P‘4

1231

Guang-Huei Chiou and Wen-Tsuen Chen. Secure
Broadcasting Using the Secure Lock. IEEE Transac-
tions on Software Engineering, 15(8):929-934, August
1989.
Stephen E. Deering. Multicast Routing in Internet-
works and Extended LANs. In Proceedings of ACM
SIGCOMM ‘88, August 1988.
Amos Fiat and Moni Naor. Broadcast Encryption.
In Douglas R. Stinson, editor, Advances in cryptology,
CRYPT0 ‘93, volume 773 of Lecture Notes in Com-
puter Science, pages 480-491. Springer Verlag, 1994.
Li Gong. Enclaves: Enabling Secure Collaboration over
the Internet. IEEE Journal on Selected Areas in Com-
munications, pages 567-575, April 1997.
H. Harney and C. Muckenhirn. Group Key Management
Protocol (GKMP) Architecture, RFC 2094, July 1997.
H. Harney and C. Muckenhirn. Group Key Management
Protocol (GKMP) Specification, RFC 2093, July 1997.
J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib:
cryptography in software. In Proceedings of USENIX:
4th UNIX Security Symposium, October 1993.
Simon S. Lam and Chung Kei Wong. Keystone: A
Group Key Management Service. Work in progress,
Department of Computer Sciences, The University of
Texas at Austin.
Brian Neil Levine and J.J. Garcia-Luna-Aceves. Im-
proving Internet Multicast with Routing Labels. In
Proceedings of International Conference on Network
Protocols, 1997.
Ralph C. Merkle. A Certified Digital Signature. In
Advances in Cryptology - CRYPT0 ‘89, 1989.
Suvo Mittra. 101~s: A Framework for Scalable Secure
Multicasting. In Proceedings of ACM SIGCOMM ‘97,
1997.
B. Clifford Neuman. Proxy-Based Authorization and
Accounting for Distributed Systems. In Proceedings of
13th International Conference on Distributed Comput-
ing Systems, pages 283-291, May 1993.
Jennifer G. Steiner, Clifford Neuman, and Jeffrey I.
Schiller. Kerberos: An Authentication Service for Open
Network Systems. In USENIX Winter Conference,
pages 191-202, February 1988.
D.R. Stinson. On Some Methods for Unconditionally
Secure Key Distribution and Broadcast Encryption.
Designs, Codes and Cryptography, (12):215-243, 1997.
J.J. Tardo and K. Alagappan. SPX: Global authentica-
tion using public key certificates. In Proceedings of 12th
IEEE Symposium on Research in Security and Privacy,
pages 232-244, May 1991.
Debby M. Wallner, Eric J. Harder, and Ryan C. Agee.
Key Management for Multicast: Issues and Architec-
tures. Working draft, National Security Agency, July
1997.
Chung Kei Wong, Mohamed Gouda, and Simon S. Lam.
Secure Group Communications Using Key Graphs.
Technical Report TR 97-23, Department of Computer
Sciences, The University of Texas at Austin, July 1997.
Thomas Y.C. Woo, Raghuram Bindignavle, Shaowen
Su, and Simon S. Lam. SNP: An interface for secure
network programming. In Proceedings of USENIX’
Summ,er Technical Conference, June 1994.
Thomas Y.C. Woo and Simon S. Lam. Designing a Dis-
tributed Authorization Service. In Proceedings IEEE
INFOCOM ‘98, San Francisco, March 1998.

79

