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Abstract 

Many emerging applications (e.g., teleconference, real-time 
information services, pay per view, distributed interactive 
simulation, and collaborative work) are based upon a group 
communications model, i.e., they require packet delivery 
from one or more authorized senders to a very large number 
of authorized receivers. As a result, securing group commu- 
nications (i.e., providing confidentiality, integrity, and au- 
thenticity of messages delivered between group members) 
will become a critical networking issue. 

In this paper, we present a novel solution to the scal- 
ability problem of group/multicast key management. We 
formalize the notion of a secure group as a triple (U, K, R) 
where U denotes a set of users, K a set of keys held by the 
users, and R a user-key relation. We then introduce key 
graphs to specify secure groups. For a special class of key 
graphs, we present three strategies for securely distribut- 
ing rekey messages after a join/leave, and specify protocols 
for joining and leaving a secure group. The rekeying strate- 
gies and join/leave protocols are implemented in a prototype 
group key server we have built. We present measurement 
results from experiments and discuss performance compar- 
isons. We show that our group key management service, us- 
ing any of the three rekeying strategies, is scalable to large 
groups with frequent joins and leaves. In particular, the 
average measured processing time per join/leave increases 
linearly with the logarithm of group size. 

1 introduction 

Most network applications are based upon the client-server 
paradigm and make use of unicast (or point-to-point) packet 
delivery. Many emerging applications (e.g., teleconference, 
real-time information services, pay per view, distributed in- 
teractive simulation, and collaborative work), on the other 
hand, are based upon a group communications model. That 
is, they require packet delivery from one or more authorized 
sender(s) to a large number of authorized receivers. In the 
Internet, multicast has been used successfully to provide an 
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efficient, best-effort delivery service to large groups [6]. We 
envision that deployment of network applications requiring 
group communications will accelerate in coming years. 

While the technical issues of securing unicast commu- 
nications for client-server computing are fairly well under- 
stood, the technical issues of securing group communications 
are not. Yet group communications have a much greater ex- 
posure to security breaches than unicast communications. In 
particular, copies of a group communication packet traverse 
many more links than those of a unicast packet, thereby cre- 
ating more opportunity for traffic interception. We believe 
that securing group communications (i.e., providing confi- 
dentiality, integrity, and authenticity of messages delivered 
between group members) will become a critical issue of net- 
working in the near future. 

Conceptually, since every point-to-multipoint communi- 
cation can be represented as a set of point-to-point commu- 
nications, the current technology base for securing unicast 
communications can be extended in a straightforward man- 
ner to secure group communications [9, lo]. However, such 
an extension is not scalable to large groups. 

For a more concrete illustration of this point, we outline a 
typical procedure for securing unicast communications be- 
tween a client and and a server. Initially, the client and 
server mutually authenticate each other using an authenti- 
cation protocol or service; subsequently, a symmetric key is 
created and shared by them to be used for pairwise confi- 
dential communications [4, 17, 19, 221. This procedure can 
be extended to a group as follows: Let there be a trusted 
group server which is given membership information to ex- 
ercise group access control. When a client wants to join the 
group, the client and group server mutually authenticate us- 
ing an authentication protocol. Having been authenticated 
and accepted into the group, each member shares with the 
group server a key,’ to be called the member’s individual key. 
For group communications, the group server distributes to 
each member a group lcey to be shared by all members of 
the group.2 

For a group of n members, distributing the group key 
securely to all members requires n messages encrypted with 
individual keys (a computation cost proportional to group 
size n). Each such message may be sent separately via uni- 
cast. Alternatively, the n messages may be sent as a com- 
bined message to all group members via multicast. Either 
way, there is a communication cost proportional to group 

‘In this papa, lxy means a key from a symmetric cryptosystem, 
such as DES, unless explicitly stated otherwise. 

*It is easy to see that sharing a group key enables confidential 
group communications. In addition to confidentiality, authenticity 
and integrity can be provided in group communications using stan- 
dard techniques such as digital signature and message digest. We will 
not elaborate upon these techniques since the focus of this paper is 
key management. 
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size n (measured in terms of the number of messages or the 
size of the combined message). 

Observe that for a point-to-point session, the costs of 
session establishment aud key distribution are incurred just 
once, at the beginning of the session. A group session, on 
the other hand, may persist for a relatively long time with 
members joining and leaving the session. Consequently, the 
group key should be changed frequently. To achieve a high 
level of security, the group key should be changed after every 
join and leave so that a former group member has no access 
to current communications and a new member has no access 
to previous communications. 

Consider a group server that creates a new group key 
after every join and leave. After a join, the new group key 
can be sent via unicast to the new member (encrypted with 
its individual key) and via multicast to existing group mem- 
bers (encrypted with the previous group key). l’hus, chang- 
ing the group key securely after a join is not too much work. 
After a leave, however, the previous group key can no longer 
be used and the new group key must be encrypted for each 
remaining group member using its individual key. Thus we 
see that changing the group key securely after a leave in- 
curs computation and communication costs proportional to 
n, the same as initial group key distribution. That is, large 
groups whose members join and leave frequently pose a scal- 
ability problem. 

The topic of secure group communications has been in- 
vestigated [l, 2, 8, 151. Also the problem of how to dis- 
tribut,e a secret to a group of users has been addressed in 
the cryptography literature [3, 5, 7, 181. However, with the 
exception of [15], no one has addressed the need for frequent 
key changes and the associated scalability problem for a very 
large group. The approach proposed in 101~s [15] to improve 
scalability is to decompose a large group of clients into many 
subgroups and employ a hierarchy of group security agents. 

1.1 Our approach 

We present in this paper a different hierarchical approach to 
improve scalability. Instead of a hierarchy of group security 
agents, we employ a hierarchy of keys. A detailed compari- 
son of our approach and the 101~s approach [15] is given in 
Section 6. 

We begin by formalizing the notion of a secure group as 
a triple (V, K, R) where U denotes a set of users, K a set 
of keys, and R c U x K a user-key relation which specifies 
keys held by each user in U. In particular, each user is given 
a subset of keys which includes the user’s individual key and 
a group key. We next illustrate how scalability of group key 
management can be improved by organizing the keys in K 
into a hierarchy and giving users additional keys. 

Let there be a trusted group server responsible for group 
access control and key management. In particular, the server 
securely distributes keys to group members and maintains 
the user-key relation.3 To illustrate our approach, con- 
sider the following simple example of a secure group with 
nine members partitioned into three subgroups, {u,, ~2, us}, 
{u~,u~,uG}, and {u~,us,ug}. Each member is given three 
keys, its individual key, a key for the entire group, and a 
key for its subgroup. Suppose that u1 leaves the group, the 
remaining eight members form a new secure group and re- 
quire a new group key; also, 1~2 and us form a new subgroup 
and require a new subgroup key. To send the new subgroup 

key securely to u2 (us), the server encrypts it with the indi- 
vidual key of ILZ (us). Subsequently, the server can send the 
new group key securely to members of each subgroup by en- 
crypting it with the subgroup key. Thus by giving each user 
three keys instead of two, the server performs five encryp- 
tions instead of eight. As a more general example, suppose 
the number n of users is a power of d, and the keys in K 
are organized as the nodes of a f’~~ll and balanced d-ary tree. 
When a user leaves the secure group, to distribute new keys, 
the server needs to perform approximately d logd(7t) encryp- 
tions (rather than n - 1 encryptions).’ For a large group, 
say 100,000, the savings can be very substantial. 

1.2 Contributions of this paper 

With a hierarchy of keys, there are many different ways 
to construct rekey messages and securely distribute them 
to users. We investigatfe three rekeying strategies, user- 
oriented, key-oriented and group-oriented. We design and 
specify join/leave protocols based upon these rekeying stra- 
tegies. For key-oriented and user-oriented rekeying, which 
use multiple rekey messages per join/leave, we present a 
t.echnique for signing multiple messages with a single digital 
signature operation. Compared to using one digital signa- 
ture per rekey message, the technique provides a tenfold re- 
duction in the average server processing time of a join/leave. 

The rekeying strategies and protocols are implement,ed in 
a prototype group key server we have built. We performed 
experiments on two lightly loaded SGI Origin 200 machines, 
wit,h the server running on one and up to 8,192 clients on the 
other. From measurement results, we show that our group 
key management service, using any of the rekeying strategies 
with a key tree, is scalable; in particular, the average server 
processing time per join/leave increases linearly with the 
logarithm of group size. We found that the optimal key tree 
degree is around four. Gtoup-oriented rekeying provides the 
best performance of the three strategies on the server side, 
bllt is worst, of the three on the client side. User-oriented 
rekeying has the best performance on t,he client side, but 
worst on the server sicle. 

The balance of this paper is organized as follows. In 
Section 2, we introduce key graphs as a method for speci- 
fying secure groups. In Section 3, we present protocols for 
users to join and leave a secure group as well as the three 
rekeying strategies. In Section 4, we present a technique for 
signing multiple rekey messages using a single digital sig- 
nature operation. Experiments and performance results are 
presented in Section 5. A comparison of our approach and 
the 101~s approach is given in Section 6. Our conclusions 
are in Section 7. 

2 Secure Groups 

A secure Qroup is a triple (U, K, R) where 

l U is a finite and nonempty set of users, 

l K is a finite and nonempty set of keys, and 

l R is a binary relation between U and K, that, 
is, R C U x K, called the user-key relation of 
the secure group. User u has key k if and only if 
(u, k) is in R. 
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Each secure group has a trusted group server responsible for 
generating and securely distributing keys in K to users in 
the group.5 Specifically, the group server knows the user set 
U and the key set K, and maintains the user-key relation 
R. Every user in U has a key in K, called its individual key, 
which is shared only with the group server, and is used for 
pairwise confidential communication with the group server. 
There is a group key in K, shared by the group server and 
all users in U. The group key can be used by each user to 
send messages to the entire group confidentially. 

2.1 Key graphs 

A key graph is a directed acyclic graph G with two types 
of nodes, u-nodes representing users and k-nodes represent- 
ing keys. Each u-node has one or more outgoing edges but 
no incoming edge. Each k-node has one or more incoming 
edges. If a k-node has incoming edges only and no outgoing 
edge, then this k-node is called a root. (A key graph can 
have multiple roots.) 

Given a key graph G, it specifies a secure group (U, K, R) 
as follows: 

i. There is a one-to-one correspondence between U 
and the set of u-nodes in G. 

ii. There is a one-to-one correspondence between K 
and the set of k-nodes in G. 

iii. (u, Jc) is in R if and only if G has a directed path 
from the u-node that corresponds to u to the k- 
node that corresponds to k. 

u-nodes 

Figure 1: A key graph 

As an example, the key graph in Figure 1 specifies the 
following secure group: 

u = {UlrW,7L3,U4} 

K = {kl,kz,k3,k4,k,z,kz34,klz34} 
R = { (211, kl), (‘ul,klz), (ul, hz34), 

(uz, ks), (uz, h), (uz, kx4), (,uL~, kw), 
(~3, h), (~3, km), (~3, km), 
(~4, h), (~4, h4), (~4, km) 1 0 

Associated with each secure group (U, K, R) are two func- 
tions, Iceyset() and vserset(), defined as follows: 

keyset(u) = { k 1 (u,k) E R } 
userset = { u 1 (u, k) E R } 

Intuitively, keyset is the set of keys that are held by user 

‘Note that individual keys may have been generated and securely 
distributed by an authenticatiorl servim and do not have to be gen- 
erat ed by tho group server. 

u in U, and userset is the set of users that hold key k 
in K. For examples, referring to the key graph in Figure 1, 
we have keyset(u4) = (k4, kz34, k1234) and userset(k234) = 
{m,u3,u4). 

We generalize the definition of function keyset() to any 
subset U’ of U, and function userset to any subset K’ of 
K, in a straighforward manner, i.e., keyset is the set of 
keys each of which is held by at least one user in U’, and 
userset is the set of users each of which holds at least 
one key in K’. 

When a user u leaves a secure group (U, K, R), every 
key that has been held by u and shared by other users 
in U should be changed. Let k be such a key. To re- 
place k, the server randomly generates a new key k,,,, and 
sends it to every user in userset except u. To do so se- 
curely, the server needs to find a subset K’ of keys such 
that userset = userset - {u}, and use keys in K’ 
to encrypt k,,,,. To minimize the work of rekeying, the 
server would like to find a minimal size set K’. This sug- 
gests the following key-covering problem: Given a secure 
group (U, K, R), and a subset S of U, find a minimum size 
subset K’ of K such that userset = 5’. Unfortunately, 
the key-covering problem in general is NP-hard [al]. 

2.2 Special classes of key graphs 

We next consider key graphs with special structures for 
which the key covering problem can be easily solved. 

Star: This is the special class of a secure group (U, K, R) 
where each user in U has two keys: its individual key and a 
group key that is shared by every user in U.G 

Tree: This is the special class of a secure group (U, K, R) 
whose key graph G is a single-root tree. A tree key graph 
(or key tree) is specified by two parameters. 

. The height /I of the tree is the length (in number 
of edges) of the longest directed path in the tree. 

l The degree d of the tree is the maximum number 
of incoming edges of a node in the tree. 

Note that since the leaf node of each path is a u-node, each 
user in U has at most h keys. Also the key at the root of the 
tree is shared by every user in U, and serves as the group 
key. Lastly, it is easy to see that star is a special case of 
tree. 

Complete: This is the special class of a secure group 
(U, K, R), where for every nonempty subset S of U, there 
is a key k in K such that userset = S. Let n be the 
number of users in U. There are 2’” - 1 keys in K, one for 
each of the 2” - 1 nonempty subsets of U. Moreover, each 
user u in U has 2’“-1 keys, one for each of the 27’-’ subsets 
of U that contains u. Since U is a subset of U, there is a key 
shared by every user in U which serves as the group key. 

The total number of keys held by the server and the 
number of keys held by a user are presented in Table 1 where 
n is the size of U. In particular, in the case of a complete key 
graph, each user needs to hold 21L-’ keys which is practical 
only for small n. Note that the number of keys in a key 

tree is $$ Z -& n when the tree is full and balanced (i.e. 

n = d’“-‘). 
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Class of key graph Star Tree Complete 

Total number of keys n,+l 1 
+1 2”-1 

Number of keys per user 2 h 2”-1 

Table 1: Number of keys held by the server and by each 
user. 

3 Rekeying Strategies and Protocols 

A user u who wants to join (leave) a secure group sends a join 
(leave) request to the group server, denoted by s. For a join 
request from user u, we assume that group access control is 
performed by server s using an access control list provided by 
the initiator of the secure group.7 A join request initiates an 
authentication exchange between u and s, possibly with the 
help of an authentication server. If user u is not authorized 
to join the group, server s sends a join-denied reply to u. 
If the join request is granted, we assume that the session 
key distributed as a result of the authentication exchange 
[17, 221 will be used as the individual key Ic, of u. To simplify 
protocol specifications below, we use the following notation 

s e u : authenticate u and distribute k,, 

to represent the authentication exchange between server s 
and user u, and secure distribution of key k,, to be shared 
by u and s. 

After each join or leave, a new secure group is formed. 
Server s has to update the group’s key graph by replacing 
the keys of some existing k-nodes, deleting some k-nodes (in 
the case of a leave), and adding some k-nodes (in the case 
of a join). It then securely sends rekey messages containing 
new group/subgroup keys to users of the new secure group. 
(A reliable message delivery system, for both unicast and 
multicast, is <assumed.) In protocol specifications below, we 
also use the following notation 

x-&y : z 

to denote 

. if y is a single user, the sending of message z from 
2 to y; 

. if y is a set of users, the sending of message z from 
z to every user in y (via multicast or unicast). 

In the following subsections, we first present protocols for 
joining and leaving a secure group specified by a star key 
graph. These protocols correspond to conventional rekey- 
ing procedures informally described in the Introduction [9, 
lo]. We then consider secure groups specified by tree key 
graphs. With a hierarchy of group and subgroup keys, rekey- 
ing after a join/leave can be carried out in a variety of 
ways. We present three rekeying strategies, user-oriented, 
key-oriented, and group-oriented, as well as protocols for 
joining and leaving a secure group. 

3.1 Joining a star key graph 

After granting a join request from user u, server s updates 
the key graph by creating a new u-node for u and a new 
k-node for k,, and attaching them to the root node. Server 

7Tl~e authorization function may be offloaded to an autlmnzation 
server. In this case, the authorization server provides an authorized 
user with a ticket to ,join the mxre group [lG, 231. The user submits 
the ticket togrthrr with Its jolrr request to 8ervrr s. 

s also generates a new group key ku, for the root node, 
encrypts it with the individual key k,, of user u, and sends 
the encrypted new group key to u. To notify other users 
of the new group key, server s encrypts the new group key 
ku, with the old group key ku, and then multicasts the 
encrypted new group key to every user in the group. (See 
Figure 2.) 

Figure 2: Join protocol for a star key graph. 

ki 234 

Figure 3: Star key graphs before and after a join (leave). 

For example, as shown in Figure 3, suppose user u4 wants 
to join the left secure group in the figure, and it is allowed 
to join. After server s changes the group key from ICI23 to a 
new key k1234, server s needs to send out the following two 
rekey messages. 

s + {UlrU2,u3} : {km}~m 
s -+ uq : {km.i}r;~ 

For clarity of presentation, we have assumed that rekey 
messages contain new keys only and secure distribution 
means that the new keys are encrypted just for confiden- 
tiality. In our prototype implementation, rekey messages 
have additional fields, such as, subgroup labels for new keys, 
server digital signature, message integrity check, timestamp, 
etc. (See [21] for rekey message format.) 

3.2 Leaving a star key graph 

(2) s + u : { leave-granted }A:,, 
s : randomly generate a new group key kut 

(4) for each user z1 in U except user ‘1~ do 

Figure 4: Leave protocol for a star key graph. 

After granting a leave request from user u, server s up- 
dates the key graph by deleting the u-node for user u and 
the k-node for its individual key k,, from the key graph. 
Server s generates a new group key kut for the new secure 
group without u, encrypts it with the individual key of each 
remaining user, and unicasts the encrypted new group key 
to the user. (See Figure 4.) 
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ug leaves ug joins 

ki-9 

(3 -- - - k-node x 0 

Figure 5: Key trees before and after a join (leave). 

3.3 Joining a tree key graph 

After granting a join request from u, server s creates a new 
IL-node for user u and a new k-node for its individual key k,, 
Server s finds an existing k-node (called the ,joininy point for 
this join request) in the key tree and attaches k-node I;,, to 

the joining point as its child. 
To prevent the joining user from accessing past commu- 

nications, all keys along the path from the joining point to 
the root node need to be changed. After generating new 
keys for these nodes, server s needs to securely distribute 
them to t,he exist,ing users as well as the ,joining user. For 
example, as shown in Figure 5, suppose ?LD is granted to 
join t,he upper key graph in the figure. The joining point is 
k-node Ic~8 in the key graph, and the key of this k-node is 
changed to !+RD in the new key graph below. Moreover, the 
group key at the root is changed from kl~-a t,o ICI-0. Users 
IL,,...,?& only need the new group key X-l 0, while users 
U’i, ‘Il8, and 1~9 need the new group key kl-.o as well as the 
new key k789 to be shared by them. 

To securely distribute the new keys to the users, the 
server constructs and sends rekey messages to the users. A 
rc+ey messnge contains one or more encrypted new key(s), 
and a user needs to decrypt it with appropriate keys in or- 
der to get, the new keys. We next present three different 
approaches to construct and send rekey messages. 

User-oriented rekeying. Consider each llser and the subset 
of’ new keys it needs. The idea of user-oriented rekeying 
is that for each user, the server construct,s a rekey message 
that contains precisely the new keys needed by the user, and 
encrypts them using a key held by the llsrr. 

For example, as shown in Figure 5: for user ILL to join 
the upper secllre group in the figure, server s needs to send 

the following t,hree rekey messages. 
s -+ {Ul, , ILO} : {kl-9}r:,-s 
s + { 117, U8) : {kx-o, kmg}k,8 
s --+ Ib9 : {Lo, kmg}~g 

Note that users 2~1,. . , ug need to get the new group key 
kl-9. There is no single key that is shared only by ~1,. . , UCI. 
However, key ICI-8 can be used to encrypt the new key /c-.9 
for ul,. ,‘,L(~ without security breach since users 2~7 and 2~s 
will also get, t,his new group key from another rekey message. 

User-oriented rekey messages can be constructed as fol- 
lows. For each k-node 2 whose key has been changed, say 
from k to I;‘, the server constructs a rekey message by en- 
crypt,ing the new keys of k-node z and all its ancestors (upto 
the root) by the old key k. This rekey message is then sent 
to the subset of users that need precisely these new keys. Ei- 
ther unicast or subgroup m&icast may be used.’ Moreover, 
one rekey message is sent to the joining user which contains 
all of the new keys encrypted by the individual key of the 
joining user. 

This approach needs h rekey messages. Counting the 
number of keys encrypted, the encryption cost for the server 
is given by 

Key-oriented rekeying. In this approach, each new key is 
encrypted individually (except keys for the joining user). 
For each k-node z whose key has been changed, say from k 
1.0 k’, the server constructs two rekey messages. First, the 
server encrypts the new key k’ with the old key k, and sends 
it t,o nsersrf,(k) which is the set of users that share k. All of 
the original users that need the new key k’ can get it from 
this rekey message. The other rekey message contains the 
new key k’ encrypted by the individual key of the joining 
Ilser, and is sent to the joining user. 

As described, a llser may have to get multiple rekey mes- 
sages in order to get all the new keys it needs. For example, 
as shown in Figure 5, for user 2~9 to join the upper secure 
group in the figure, server s needs to send the following four 
rekey messages. Note that users ~7, ~8, and 2~9 need to get 
t,wo rekey messages each. 

s t {I/,1, ) ug} : {kx-g}~.,-, 
s + ug 
s 4 {u,,, us} 

; pjy 

‘7x9 A,* 

s i ILO : {km)in 

Compared to user-oriented rekeying, the above approach 
reduces the encryption cost. of the server from 1 to My 

2(/~-l), but it, requires 2(h-1) rekey messages instead of h. 
To reduce the number of rekey messages, all of the rekey 

messages for a particular user can be combined and sent as 
one message. Thus, server s can send the following three 
rekey messages instead of the four rekey messages shown 
above. 

s + {UI, , .ilG} : {kl-<)}6~,_8 
s + { ,717, %l,s} : {kx-n}~~,_,, (knwl1;m 
s --f 113 : {he, kmg}~cj 

The join protocol based upon this rekeying strategy is 
presented in Figure 6. Steps (4) and (5) in Figure 6 spec- 
ify how the combined rekey 
d&ribut,etl by server s. 

messages are constructed and 

ITsing combined rekey messages, the number of rekey 
messages for key-oriented rekeying is 11. (same as user- 
- 
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oriented rekeying) while the encryption cost is 2(h - 1). 
From this analysis, key-oriented rekeying is clearly better 
for the server than user-oriented rekeying. (This conclusion 
is confirmed by measurement resuits presented in Section 5.) 

‘1) u + s : join request 
‘2) s (j u : authenticate u and distribute k,, 
13) s : find a joining point and attach k,,, 

let x,? denote the joining point, 20 the root, 
and z;-i the parent of X? for ,1 = 1,. ,j, 

let K3+i denote k,, , 
and Ku,. , h’i the old keys of za, ,x3, 

randomly generate new keys K:,, , K: 
14) for i = 0 upto j do 

let M = {K~}K,, , {K}K, 
s + (userset - userset(K,+l)) : A4 

(5) s -+ u : {K; ,..., K;}li,, 

Figure 6: Join protocol for a t,ree key graph (key-oriented 
rekeying). 

Group-oriented rekeying. In key-oriented rekeying, each 
new key is encrypted individually (except keys for the join- 
ing user). The server constructs multiple rekey messages, 
each tailored to the needs of a subgroup. Specifically, the 
users of a subgroup receive a rekey message containing pre- 
cisely the new keys each needs. 

An alternative approach, called group-oriented, is for the 
server to construct a single rekey message containing all new 
keys. This rekey message is then multicasted to the en- 
tire group. Clearly such a rekey message is relatively large 
and contains information not needed by individual users. 
However, scalability is not a concern because the message 
size is O(log,(n)) for group size n and key tree degree d. 
The group-oriented approach has several advantages over 
key-oriented and user-oriented rekeying. First, there is no 
need for subgroup multicast. Second, with fewer rekey mes- 
sages, the server’s per rekey message overheads are reduced. 
Third, the total number of bytes transmitted by the server 
per join/leave request is less than those of key-oriented and 
user-oriented rekeying which duplicate informat,ion in rekey 
messages. (See Section 5 and Section 7 for a more thorough 
discussion on performance comparisons.) 

For example, as shown in Figure 5, for user 21~ to join 
the upper secure group in the figure, server s needs to send 
the following two rekey messages; one is multicasted to the 
group, and the other is unicasted to the joining user. 

S+{Ul,...,U~} : {kl-Q}k~-~,{k789}k~~ 

s -+ UQ : (b-0, k789}ke 

The join protocol based upon group-oriented rekeying is 
presented in Figure 7. This approach reduces the number 
of rekey messages to one multicast message and one unicast 
message, while-maintaining the encryption cost at 2(h - 1) 
(same as key-oriented rekeying). 

(1) - (3) (same as Figure 6) 
(4) s -+ userset : {K~}Ic,, ,{K~}K~ 

(5) s -i u : {Kb,. ,K;}A,,‘ 

Figure 7: Join protocol for a tree key graph (group-oriented 
rekeying). 

3.4 Leaving a tree key graph 

After granting a leave request from user u, server s updates 
the key graph by deleting the u-node for user u and the k- 
node for its individual key from the key graph. The parent 
of the k-node for its individual key is called the leaving point. 

To prevent the leaving user from accessing future com- 
munications, all keys along the path from the leaving point 
to the root node need to be changed. After generating new 
keys for these k-nodes, server s needs to securely distribute 
them to the remaining users. For example, as shown in Fig- 
ure 5, suppose 2~9 is granted to leave the lower key graph in 
the figure. The leaving point is the k-node for krsa in the 
key graph, and the key of this k-node is changed to kn in 
t,he new key graph above. Moreover, the group key is also 
changed from kl-9 to kl-8. Users PLY,. ,UG only need to 
know the new group key Icr-s. Users ur and 1~s need to 
know the new group key ICI-8 and the new key km shared 
by them. 

To securely distribute the new keys to users after a leave, 
we revisit the three rekeying strategies. 

User-oriented rekeying In this approach, each user gets a 
rekey message in which all the new keys it needs are en- 
crypted using a key it holds. For example, as shown in 
Figure 5, for user 1~9 to leave the lower secure group in the 
figure, server s needs to send the following four rekey mes- 
sages. 

s -+ {Wr2L2,U3} : 
s-h {uq,ug,ug} : 

~~‘~6;p” 
1 8 J,ass 

s -+ u7 : {k1--8,hs}k7 
s -+ ‘il.8 : (h-8, k7s}kg 

User-oriented rekey messages for a leave can be con- 
structed as follows. For each k-node 3: whose key has been 
changed, say from k to k’, and for each unchanged child y 
of 2, the server constructs a rekey message by encrypting 
the new keys of k-node 5 and all its ancestors (upto the 
root) by the key K of k-node y. This rekey message is then 
multicasted to userset (K). 

This approach requires (d - l)(h - 1) rekey messages. 
The encryption cost for the server is given by 

(d - 1)(1 + 2 + + h - 1) = (d-1);(“-1). 

Key-oriented rekeying In this approach, each new key is 
encrypted individually. For example, as shown in Figure 5, 
for user 2~0 to leave the lower secure group in the figure, 
server s needs to send the following four rekey messages. 

s -+ {7Ll,UZ,U3) : 
s -+ {PL4,U5,U6} : 

melody 
1 8 km 

s -+ 117 : {k1--8}b,8, {km}A.7 
s -+ us : {kl--8}k7R, {km}ks 

The leave protocol based upon key-oriented rekeying is 
presented in Figure 8. Step (4) in Figure 8 specifies how the 
rekey messages are constructed and distributed to users. 

Note that by storing encrypted new keys for use in dif- 
ferent rekey messages, the encryption cost of this approach 
is d(h - l), which is much less than that of user-oriented 
rekeying. The number of rekey messages is (d - l)(h - l), 
same as user-oriented rekeying. 

Group-oriented rekeying. A single rekey message is con- 
structed containing all new keys. For example, as shown in 
Figure 5, for user ua to leave the lower secure group in the 
figure, server s needs to send the following rekey message: 
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(1) u -+ s : { leave-request }k,, 
(2) s -+ u : { leave-granted }J+, 

(3) s : find the leaving point (the parent of lcU), 
remove k, from the tree, 
let Z~+I denote the deleted k-node for k,, 

~j the leaving point, 20 the root, 
andzi-1 theparentofz;fori=l,...,j, 

randomly generate keys Kb, , K,: 
as the new keys of 50, , xc3 

(4) for i = 0 upto j do 
for each child y of xi do 

let K denote the key at k-node y 
if y # xi+1 then do 

let M = {Ki}lc, {Ki-,}K;, , {K;)}K; 
s -+ men-et(K) : A4 

Figure 8: Leave protocol for a tree key graph (key-oriented 
rekeying). 

let LO denote {kl--8}k123, {k1--8}k456, {h-8)h8 

let LI denote {km}.+, {k78}kg 

s-+{u1,...,u*} : LO,Ll 

Note that for a leave, this single rekey message is about 
d times bigger than the rekey message for a join, where d is 
the average degree of a k-node. 

The leave protocol based upon group-oriented rekeying 
is presented in Figure 9. This approach uses only one rekey 
message which is multicasted to the entire group, and the 
encryption cost is d(h - l), same as key-oriented rekeying. 

let (~1,. . . z,.} be the set of the children of Xi 
~- 

Figure 9: Leave protocol for a tree key graph (group-oriented 
rekeying). 

3.5 Cost of encryptions and decryptions 

An approximate measure of the computational costs of the 
server and users is the number of key encryptions and de- 
cryptions required by a join/leave operation. Let n be the 
number of users in a secure group. For each join/leave op- 
eration, the user that requests the operation is called the 
requesting user, and the other users in the group are non- 
requesting users. For a join/leave operation, we tabulate the 
cost of a requesting user in Table 2(a), the cost of a non- 
requesting user in Table 2(b), and the cost of the server in 
Table 2(c). These costs are from the protocols described 
above for star and tree key graphs, and from [21] for com- 
plete key graphs. (Key-oriented or group-oriented rekeying 
is assumed for tree key graphs.) 

For a key tree, recall that d and h denote the degree 
and height of the tree respectively. In this case, for a non- 
requesting user u, the average cost of 1~ for a join or a leave 
is less than -& which is independent of the size of the tree 

(derivation in [21]). 
Assuming that the number of join operations is the same 

<as the number of leave operations, the average costs per 
operation are tabulated in Table 3 for the server and a user 
in the group. 

: 

a the requesting user 
Star Tree Complete 

join n 

leave 

1 

11 

I 

(c) the server 
. , ( Star ( Tree 1 Complete 
join 2 
ieave 

1 1 2(&l) 1 2 rLt-l 
n-l 1 d(h-1) 1 0 

Table 2: Cost of a join/leave operation. 

cost Star Tree Complete 
cost of the server n 2 (d+ 2)(h - 1)/2 2" 

cost of a user 1 d/Cd - 1) 2" 

Table 3: Average cost per operation. 

From Table 3, it is obvious that complete key graphs 
should not be used. On the other hand, scalable group key 
management can be achieved by using tree key graphs. Note 
that for a full and balanced d-ary tree, the average server 
cost is (d + 2)(h - 1)/2 = (d+ 2)(logd(n))/2. However, each 
user has to do slightly more work (from 1 to A). For d = 4, 
a user needs to do 1.33 decryptions on the average instead 
of one. (It can be shown that the server cost is minimized 
for d = 4, i.e., the optimal degree of key trees is four.) 

4 Technique for Signing Rekey Messages 

In our join/leave protocols, each rekey message contains one 
or more new keys. Each new key, destined for a set of users, 
is encrypted by a key known only to these users and the 
server. It is possible for a user to masquerade as the server 
and send out rekey messages to other users. Thus if users 
cannot be trusted, then each rekey message should be digi- 
tally signed by the server. 

We note that a digital signature operation is around two 
orders of magnitude slower than a key encryption using DES. 
For this reason, it is highly desirable to reduce the number of 
digital signature operations required per join/leave. If each 
rekey message is signed individually, then group-oriented 
rekeying, using just one rekey message per join/leave, would 
be far superior to key-oriented (user-oriented) rekeying, 
which uses many rekey messages per join/leave. 

Consider m rekey messages, i\/ll, , A4,,, , with message 
digests, di = h(M,) for i = 1,. . . , m, where h() is a secure 
message digest function such as MD5. The standard way to 
provide authenticity is for the server to sign each message 
digest (with its private key) and send the signed message 
digest together with the message. This would require m 
digital signature operations for m messages. 

We next describe a technique, implemented in our pro- 
totype key server, for signing a set of messages using just 
a single digital signature operation. The technique is based 
upon a scheme proposed by Merkle [14]. 

Suppose there are four messages with message digests 
dl,dz,ds, and d4. Construct message D12 containing dl 
and dz, and compute message digest dlz = h(Dlz). Simi- 
larly, construct message 034 containing da and dd, and com- 
pute message digest d34 = h(D34). Then construct message 
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key tree one signature per rekey msg one signature for all rekey msgs 
degree 4 msg size (byte) proc time (msec) msg size (byte) proc time (msec) 

join leave join leave ave join leave join leave ave 
user 263.1 233.8 76.7 204.6 140.6 312.8 306.9 13.6 17.1 15.3 
key 303.0 270.9 76.3 203.8 140.1 352.8 344.0 13.1 15.9 14.5 
grow 525.5 1005.7 11.9 12.0 11.9 525.5 1005.7 11.9 12.0 11.9 

Table 4: Average rekey message size and server processing time (n=8192, DES, MD5, RSA) 
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Figure 10: Server processing time per request vs group size (key tree degree 4). 

D1-4 containing dl2 and d34, and compute message digest 
dl-J = h(&-4). The server signs message digest dl--4 with 
its private key. The server then sends the signed message 
digest, sign(dl-a), together with 01-4, 034, and M4 to a 
user that needs Ma. 

The user verifies, by first decrypting sign(dl-4), that 
dl--4 = h(Dl-4). Subsequently, the user verifies that ds4 
in 01-4 is equal to h(Dz~), and also d4 in 034 is equal to 
h(M4), which assures that M4 was indeed sent by the server. 
The above example can be easily extended to m messages 
in general. 

The benefits of this technique for signing rekey messages 
are demonstrated in Table 4 for both key-oriented and user- 
oriented rekeying. (Note that it is not needed by group- 
oriented rekeying which uses one rekey message per join/ 
leave.) The average rekey message size per join/leave is 
shown, as well as the server’s processing time per join/leave 
(ave denotes the average of average join and leave process- 
ing times). The experiments were performed for an initial 
group size of 8192, with DES-CBC encryption, MD5 mes- 
sage digest, and RSA digital signature (512-bit modulus). 
Additional details of our experimental setup can be found 
in Section 5. With the technique for signing rekey mes- 
sages, the processing time reduction for key-oriented and 
user-oriented rekeying is about a factor of ten (for exam- 
ple, 14.5 msec versus 140.1 msec in the case of key-oriented 
rekeying). There is however a small increase (around 50-70 
bytes) in the average rekey message size. 

5 Experiments and Performance Comparisons 

We have designed and constructed a prototype group key 
server, as well as a client layer, which implement join/leave 
protocols for all three rekeying strategies in Section 3 and 
the technique for signing rekey messages in Section 4. 

We performed a large number of experiments to evaluate 

the performance of the rekeying strategies and the technique 
for signing rekey messages. The experiments were carried 
out on two lightly loaded SGI Origin 200 machines running 
IRIX 6.4. The machines were connected by a 100 Mbps 
Ethernet. The group key server process runs on one SGI 
machine. The server is initialized from a specification file 
which determines the inital group size, the rekeying strat- 
egy, the key tree degree, the encryption algorithm, the mes- 
sage digest algorithm, the digital signature algorithm, etc. 
A client-simulator runs on the other SGI simulating a large 
number of clients. Actual rekey messages, as well as join, 
join-ack, leave, leave-ack messages, are sent between indi- 
vidual clients and the server using UDP over the 100 Mbps 
Ethernet. Cryptographic routines from the publicly avail- 
able CrytoLib library are used [II]. 

For each experiment with an initial group size n, the 
client-simulator first sent n join requests, and the server 
built a key tree. Then the client-simulator sent 1000 join/ 
leave requests. The sequence of 1000 join/leave requests was 
generated randomly according to a given ratio (the ratio was 
1:l in all our experiments to be presented). Each experi- 
ment was performed with three different sequences of 1000 
join/leave requests. For fair comparisons (between different 
rekeying strategies, key trees of different degrees, etc.), the 
same three sequences were used for a given group size. The 
server employs a heuristic that attempts to build and main- 
tain a key tree that is full and balanced. However, since the 
sequence of join/leave requests is randomly generated, it is 
unlikely that the tree is truly full and balanced at any time. 

To evaluate the performance of different rekeying strate- 
gies as well as the technique for signing rekey messages, we 
measured rekey message sizes (in bytes) and processing time 
(in msec) used by the server per join/leave request. Specif- 
ically, the processing time per join/leave request consists of 
the following components. First, the server parses a request, 
t,raverses the key graph to determine which keys are to be 
updated, generates new keys, and updates the key graph. 
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1 kev tree 1 rekev msg size (byte) no. of rekey msgs 

degree 4 1 per join I 1 per ‘leave I per join I per leave 

ave min max ave min max ave min max ave min max 
I 372.8 196 552 1 306.9 228 412 I 7.00 6 7 I 19.02 18 20 

key 352.8 212 616 344.0 244 476 7.00 6 7 19.02 18 20 
grow 525.5 356 564 1005.7 968 1076 1.00 1 1 1.00 1 1 

key tree rekey msg size byte) no. of rekey msgs 

degree 8 per join per leave per join per leave 
we min Illax ave min max ave min max ave min max 

user 287.3 196 496 285.9 228 356 5.00 4 5 29.01 28 30 
key 319.3 212 544 314.3 244 404 5.00 4 5 29.01 28 30 
group j 464.5 284 492 1 1293.1 1256 1364 1 1.00 1 1 1 1.00 1 1 

key tree 1 rekey msg size byte no. of rekey msgs 
degree 16 per join per leave per join per leave 

ave min max ave min max ave min max ave min max 
user 274.0 180 452 282.4 244 344 4.00 3 4 46.01 45 47 
key 302.0 196 492 306.6 260 384 4.00 3 4 46.01 45 47 
group 427.8 248 456 1869.1 1832 1940 1.00 1 1 1.00 1 1 

‘Table 5: Number and size of rekey messages, with encryption and signature, sent by the server (initial group size 8192) 

Second, the server performs encryption of new keys and con- 
structs rekey messages. Third, if message digest is specified, 
the server computes message digests of the rekey messages. 
Fourth, if digital signature is specified, the server computes 
message digests and a digital signature as described in Sec- 
tion 4. Lastly, the server sends out rekey messages as UDP 
packets using socket system calls.” 

The server processing time per request (averaged over 
joins and leaves) versus group size (from 32 to 8192) is shown 
in Figure 10. Note that the horizontal axis is in log scale. 
The left figure is for rekey messages with DES-CBC encryp- 
tion only (no message digest and no digital signature). The 
right figure is for rekey messages with DES-CBC encryption, 
MD5 message digest, and RSA-512 digital signature. The 
key tree degree was four in all experiments. We conclude 
from the experimental results that our group key manage- 
ment service is scalable to very large groups since the pro- 
cessing time per request increases (approximately) linearly 
with the logarithm of group size for all three rekeying strate- 
gies. Other experiments support the same conclusion for key 
tree degrees of 8 and 16. 

The average server processing time versus key tree de- 
gree is shown in Figure 11. These experimental results illus- 
trate three observations. First, the optimal degree for key 
trees is around four. Second, with respect to server process- 
ing time, group-oriented rekeying has the best performance, 
with key-oriented rekeying in second place. Third, signing 
rekey messages increases the server processing time by an 
order of magnitude (it would be another order of magnitude 
more for key-oriented and user-oriented rekeying without a 
special technique for signing multiple messages). The left 
hand side of the figure is for rekey messages with DES-CBC 
encryption only (no message digest and no digital signature). 
The right hand side of the figure is for rekey messages with 
DES-CBC encryption, MD5 message digest, and RSA-512 
digital signature. The initial group size was 8192 in these 
experiments. 

‘The processing time is measured using tlrv IJNIX system call 
getrutage() whirb rcturrls processing time (lnclllding time of sys- 
tem calls) used by a proc+x3s. In the results presented herein, the 
processing time for a join request dots not include any time used to 
authenticate the requesting user (i.e., step (2) 111 the join protocols 
of Figure G and Figure 7). We feel that any aut.llnuticntiotl overhr;td 
should be accounted for scparntely. 

key tree 1 rekey msg size byte no. of rekey 
degree 4 1 per join ( per leave 1 msgs per 1 

user 
ave ave 1 join/leave 

I 209.3 I 237.4 I 1 
key 227.9 256.0 1 
group 525.5 1005.7 1 

key tree rekey msg size byte no. of rekey 
degree 8 per join per leave msgs per 

ave ave join/leave 
user 200.0 242.0 1 
key 217.2 259.2 1 
group 464.5 1293.1 1 

key tree rekey msg size (byte) no. of rekey 
degree 16 per join 1 per leave msgs per 

ave ave 1 join/leave 
user 197.8 1 246.7 1 1 
key 214.3 263.2 1 
group 427.8 1869.1 1 

Table 6: Number and size of rekey messages, with encryp- 
tion and signature, received by a client (initial group size 
8192) 

Table 5 presents the size and number of rekey messages 
sent by the server. Note that group-oriented rekeying uses a 
single large rekey message per request (sent via group mul- 
ticast), while key-oriented and user-oriented rekeying use 
multiple smaller rekey messa 
group multicast or unicast). IiT 

es per request (sent via sub- 
Note that the total number 

of bytes per join/leave transmitted by the server is much 
higher in key-oriented and user-oriented rekeying than in 
group-oriented rekeying. 

Table 6 presents the size and number of rekey messages 
received by a client. Only the average message sizes are 
shown, because the minimum and maximum sizes are the 
same as those in Table 5. Note that each client gets exactly 
one rekey message for all three rekeying strategies. For key- 
oriented and user-oriented rekeying, the average message 
size is smaller than the corresponding average message size 
in Table 5. The is because the average message size here 

“‘The experiments reported her&u were performed with each rekey 
message sent, ,jrist onw by the sewer via mlbgroup multicast,. 
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Figure 11: Server processing time vs key tree degree (initial group size 8192). 

was calculated over all clients, and many more clients re- 
ceived small rekey messages than clients that received large 
rekey messages. The results in this table show that group- 
oriented rekeying, which has the best performance on the 
server side, requires more work on the client side to process 
a larger message than key-oriented and user-oriented rekey- 
ing. The avera,ge rekey message size on the client side is the 
smallest in user-oriented rekeying. 

per join/leave request, which is shown in Figure 12. The 
top figure shows the average number of key changes versus 
the key tree degree, and the bottom figure shows the average 
number of key changes versus the initial group size of each 
experiment. Note that the average number of key changes by 
a client is relatively small, and is very close to the analytical 
result, d/(d - 1) shown in Table 3 in Section 3. 

From the contents of rekey messages, we counted and 
computed the average number of key changes by a client 
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Figure 12: Number of key changes by a client per request. 

6 Related Work 

The scalability problem of group key management for a 
large group with frequent joins and leaves was previously ad- 
dressed by Mittra with his 101~s system [15]. Both 101~s and 
our approach solve the scalability problem by making use of 
a hierarchy. The similarity, however, ends here. The system 
architectures are very different in the two approaches. We 
next compare them by considering a tree hierarchy with a 
single root (i.e., a single secure group). 

Iolus’s tree hierarchy consists of clients at the leaves with 
multiple levels of group security agents (agents, in short) 
above. For each tree node, the tree node (an agent) and its 
children (clients or lower-level agents) form a subgroup and 
share a subgroup key. There is no globally shared group key. 
Thus a join and leave in a subgroup does not affect other 
subgroups; only the local subgroup key needs to be changed. 

Our tree hierarchy consists of keys, with individual keys 
at leaves, the group key at the root, and subgroup keys 
elsewhere. There is a single key server for all the clients. 
There are no agents, but each client is given multiple keys 
(its individual key, the group key, and some subgroup keys). 

In comparing the two approaches, there are several issues 
to consider: performance, trust, and reliability. 

Performance. Roughly speaking, since both approaches 
make use of a hierarchy, both attempt to change a O(n) 
problem into a O(log(n)) problem where n denotes group 
size. They differ however in where and when work is per- 
formed to achieve secure rekeying when a client joins/leaves 
the secure group. 

Secure rekeying after a leave requires more work than 
after a join because, unlike a join, the previous group key 

cannot used and n rekey messages are required (this is re- 
ferred to in [15] as a 1 does not equal n type problem). 
This is precisely the problem solved by using a hierarchy in 
both approaches. 

The main difference between 101~s and our approach is in 
how the 1 affects n type problem [15] is addressed. In our 
approach, every time a client joins/leaves the secure group a 
rekeying operation is required which affects the entire group. 
Note that this is not a scalability concern in our approach 
F;se the server cost is O(log(n)) and the client cost is 

In Iolus, there is no globally shared group key with the 
apparent advantage that whenever a client joins/leaves a 
subgroup only the subgroup needs to be rekeyed. However, 
for a client to send a message confidentially to the entire 
group, the client needs to generate a message key for en- 
crypting the message and the message key has to be securely 
distributed to the entire group via agents. Each agent de- 
crypts using one subgroup key to retrieve the message key 
and reencrypts it with another subgroup key for forwarding 

[151. 
That is, most of the work in handling the 1 affects n 

type problem is performed in 101~s when a client sends a 
message confidentially to the entire group (rather than when 
a client joins/leaves the group). In our approach, most of 
the work in handling the 1 affects n type problem is per- 
formed when a client joins/leaves the secure group (rather 
than when a client sends messages confidentially to the en- 
tire group). 

Trust. Our architecture requires a single trusted entity, 
namely, the key server. The key server may be replicated 
for reliability/performance enhancement, in which case, sev- 
eral trusted entities are needed. Each trusted entity should 
be protected using strong security measures (e.g. physical 
security, kernel security, etc.). In Iolus, however, there are 
many agents and all of the agents are trusted entities. Thus 
the level of trust required of the system components is much 
greater in 101~s than in our approach. 

Reliability. In Iolus, agents are needed to securely forward 
message keys. When an agent fails, a backup is needed. 
It would appear that replicating a single key server (in our 
approach) to improve reliability is easier than backing up a 
large number of agents.” 

7 Conclusions 

We present three rekeying strategies, user-oriented, key- 
oriented and group-oriented and specify join/leave proto- 
cols based upon these strategies. For key-oriented and user- 
oriented rekeying, which use multiple rekey messages per 
join/leave, we present a technique for signing multiple mes- 
sages with a single digital signature operation. Compared to 
using one digital signature per rekey message, the technique 
provides a tenfold reduction in the average server processing 
time of a join/leave. 

The rekeying strategies and protocols are implemented 
in a prototype group key server we have built. From mea- 
surement results of a large number of experiments, we con- 
clude that our group key management service using any of 
the three rekeying strategies is scalable to large groups with 
frequent joins and leaves. In particular, the average server 
processing time per join/leave increases linearly with the 

“Craig Partridge observed that agents can be implemented in ex- 
Ming firewalls and derive their reliability and trustworthiness from 
those of firewalls. 
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logarithm of group size. We found that the optimal key tree 
degree is around four. 

On the server side, group-oriented rekeying provides the 
best performance, with key-oriented rekeying in second 
place, and user-oriented rekeying in third place. On the 
client side, user-oriented rekeying provides the best per- 
formance, with key-oriented rekeying in second place, and 
group-oriented rekeying in third place. In particular, for a 
very large group whose clients are connected to the network 
via low-speed connections (modems), key-orient,ed or user- 
oriented rekeying would be more appropriate than group- 
oriented rekeying. 

We next consider the amount of network traffic gener- 
ated by the three rekeying strategies. With group-oriented 
rekeying, a single rekey message is sent per join/leave via 
multicast to the entire group, the network load generated 
would depend upon the network configuration (local area 
network, campus network, wide area Internet, etc.) and 
the group’s geographic distribution. With key-oriented and 
user-oriented rekeying, many smaller rekey messages are sent 
per join/leave to subgroups. If the rekey messages are sent 
via unicast (because the network provides no support for 
subgroup multicast), the network load generated would be 
much greater than that of group-oriented rekeying. 

It is possible to support subgroup multicast by the 
method in [13] or by allocating a large number of multi- 
cast addresses, one for each subgroup that share a key in 
the key tree being used. A more practical approach, how- 
ever, is to allocate just a small number of multicast addresses 
(e.g., one for each child of the key tree’s root node) and use 
a rekeying strategy that is a hybrid of group-oriented and 
key-oriented rekeying. It is straightforward to design such 
a hybrid strategy and specify the join/leave protocols. Fur- 
thermore a hybrid approach, involving the use of some 101~s 
agents at certain locations, such as firewalls, may also be 
appropriate. 

Lastly, the reader may wonder why we use key graphs to 
specify a secure group even though key trees are sufficient 
for scalable management of a group key. This is because we 
are constructing a group key management service for appli- 
cations that require the formation of multiple secure groups 
over a population of users and a user can join several secure 
groups. For these applications, the key trees of different 
group keys are merged to form a key graph [la]. 
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