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ABSTRACT

Approximate MVA algorithms for separable queueing
networks are based upon an iterative solution of a set of
modified MVA formulas. Although each iteration has a
computational time requirement of O(MK?) or less, many
iterations are typically needed for convergence to a solu-
tion. (M denotes the number of queues and K the number
of closed chains or customer classes.) We present some
faster approximate solution algorithms that are
noniterative. They are suitable for the analysis and design
of communication networks which may require tens to
hundreds, perhaps thousands, of closed chains to model
flow-controlled virtual channels. Three PAM algorithms
of increasing accuracy are presented. Two of them have
time and space requirements of O(MK). The third algo-
rithm has a time requirement of O(MK?) and a space re-
quirement of O(MK).

1. Introduction

We are interested in fast solution algorithms for
separable queueing networks with a large number of
closed chains (also called customer classes), such as
models of communication networks where each closed
chain represents a flow-controlled virtual channel [1 1, 12].
Tens to hundreds, perhaps thousands, of such flow-
controlled virtual channels between source-destination
node pairs may be active at a time in a practical network.
Exact solution algorithms, such as the convolution and
MVA algorithms, are obviously not applicable since their
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computational time and space requirements grow ex-
ponentially with the number of chains [13, 15]. In fact,
they cannot be used for most networks with more than 6
or 7 chains. The tree convolution algorithm [10] as well
as the tree MVA algorithms [6, 20] are more computation-
ally efficient for the solution of networks with chains
whose routes are sparse, by exploiting routing infor-
mation. Nevertheless, the largest networks solved by the
tree convolution algorithm have 32-50 chains, which are
not sufficient for modeling many real networks. Further-
more, most algorithms for network design problems (e.g.,
optimal routing, topology optimization, etc.) involve a
heuristic search for solutions that are optimum according
to various network performance measures. A very fast al-
gorithm is needed to evaluate these network performance
measures at each of the numerous intermediate steps of
such a heuristic search.

For the same reason, the approximate solution methods
which have been shown empirically to have good ac-
curacy [1, 3, 4, 14, 16, 17, 22] are deemed to be still too
slow for communication network design problems. All of
these methods are based upon an iterative solution of a set
of modified MVA formulas. A single iteration of the
Schweitzer algorithm has a computation time of O(MK)
while a single iteration of Linearizer or AQL has a com-
putation time of O(MK?) where M denotes the number of
queues and K the number of closed chains in the network
[4, 16, 22]. (It was shown recently by de Souza ¢ Silva
and Muntz [18] that a single iteration of Linearizer can be
implemented with a computation time of O(MK?) instead
of O(MK3) as indicated by Chandy and Neuse [4].) Typi-
cally many iterations are needed for convergence to a
solution, and it has been shown that for some networks
convergence occurs extremely slowly [22]. Lastly, the ac-
curacy of these methods has been examined only for net-
works with a small number of chains, i.e., those that can
be solved exactly by the MVA algorithm.

Various methods for computing performance bounds
are available [S, 7, 21]. However, for networks with a
large number of chains, these bounds are generally too
loose to be useful for communication network design.

The above considerations led us to investigate a class
of faster approximation solution algorithms for closed
multichain queueing networks. In particular, all of our al-
gorithms are noniterative. We consider separable queue-



ing networks of fixed-rate servers (also called queue-
independent servers) and delay servers (also called
infinite-server centers). Like all of the approximate solu-
tion methods referenced, our method is also based upon
the MVA recursion formula. In our study of proportional
throughput upper bounds for single-chain queueing net-
works, we found that they are very accurate for networks
with small to medium population sizes [7]. These
throughput upper bounds are obtained by distributing the
population of a chain over the servers it visits proportional
to server loads. In a multichain network, such a propor-
tional distribution leads to approximations rather than up-
per bounds of chain throughputs. We found that these ap-
proximate solutions provide chain throughputs, mean end-
to-end delays, and server utilizations that are sufficiently
accurate for the analysis and design of communication
networks [8, 11] and possibly various other distributed
systems that have a large number of customer classes (see
Sections 3 and 5); an iterative solution to improve ac-
curacy is not necessary.

We shall refer to our method as the Proportional Ap-
proximation Method (PAM). We present three algorithms
of increasing accuracy that are based upon the distribution
of a chain’s population proportional to loads to get initial
estimates of mean queue lengths: PAM_BASIC,
PAM_IMPROVED, and PAM_TWO. The accuracy im-
provement of PAM_IMPROVED over PAM_BASIC is
obtained by a simple scaling operation to ensure that the
utilization of each server does not exceed one. The ad-
ditional accuracy of PAM_TWO is obtained by executing
the final two steps of the MVA recursion instead of just
the last step. The computational time requirements are
O(MK) for PAM_BASIC and PAM_IMPROVED, and
O(MK?) for PAM_TWO. Since PAM algorithms do not
iterate, these are their total time requirements. All three
PAM algorithms have space requirements of O(MK).

The rest of this paper is organized as follows. Al-
gorithms PAM_BASIC and PAM_IMPROVED are
presented in Section 2. In Section 3, we study their ac-
curacy by comparing their predictions with exact solutions
given by the tree convolution algorithm (TCA) for a net-
work example and also for 100 randomly generated net-
works. These networks have fixed-rate servers only and
possess characteristics of models of communication net-
works. We also show a correlation between the ap-
proximation errors for a chain and the utilization of any
bottleneck server the chain visits. (It is important to under-
stand such a correlation because most network optimiza-
tion algorithms are concerned with, in one way or another,
eliminating bottlenecks). Algorithm PAM_TWO is
presented in Section 4. In Section 5, we study the ac-
curacy of PAM_TWO and PAM_IMPROVED by com-
paring their predictions with exact solutions given by the
MVA algorithm for 500 networks generated randomly as
specified by Zahorjan et al. [22]. These networks have
both fixed-rate and delay servers and possess characteris-
tics of models of computer systems.
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2. Two PAM Algorithms with O(MK)
Computation Time

Consider a closed queueing network with K routing
chains (also called customer classes by other authors). Let
N, be the customer population of the k* chain. We refer to
the vector N=(N|,N,, ... ,N,) as the population vector of
the queueing network. If N, in N is greater than or equal to
1, then N-1, refers to the population vector N with a
chain £ customer removed. Let T, denote the load, or
traffic intensity, of chain k customers at server m. (In
models of communication networks, we also refer to T
as the mean service time of chain k£ customers at server m
with the assumption that visit ratios are the same for all
servers visited by chain k customers.) We use D, (n) to
denote the approximate mean delay of chain & customers
at server m, ¢’,(n) to denote the approximate mean queue
length of chain k customers at server m, and T(n) to
denote the approximate throughput of chain k customers,
in a network whose population vector is .

PAM algorithms are based upon MVA formulas [15].
However, the iterations from population vector 0 to
population vector N—1, in the MVA algorithm are
skipped. Instead, mean queue length approximations
¢ (N—1,) at population vector N—1, are obtained by dis-
tributing the population N, of chain & over the servers it
visits, proportional to t,,. This approach was the basis of
proportional throughput upper bounds for single-chain
networks in [7]. In multichain networks, this approach
leads to approximations rather than upper bounds, as we
shall see.

We present below two algorithms with time and space
requirements of O(MK). The first algorithm,
PAM_BASIC, calculates throughputs of individual chains.
The second algorithm, PAM_IMPROVED, calculates
throughputs of chains and the utilizations of servers. The
algorithm then checks server utilizations to see if any
utilization exceeds 1. (This is possible because the chain
throughputs are approximations.) The throughputs of
those chains that visit a server whose utilization exceeds 1
are then scaled down.

Algorithm PAM_BASIC

Step 1: Calculate proportional approximations of mean
queue lengths from

Yok = ka/zgl Ta

form=12,.. M k=12,...,.K
G ) = Y N,

7, if h#k

q!mh@‘ym/.

q/mh@_lk) =
if h=k

form=12,... M,h=12,... K,andk=1,2, ...



Step 2: Calculate approximate mean delay of chain k at
server m and approximate throughput of chain k from the
following MVA formulas:

X
Tl +Y ¢ E0N-1))
h=1
if m is a fixed-rate server
D mk(l-y) =

1, if m is adelay server

form=12,... Mandk=12,... K, and

N,
TN = —2— fork=12,... K

21 D,

Total throughput of the network, if needed, is equal to
the summation of the chain throughputs.

Note that PAM_BASIC requires (3M+1)K multiplica-
tions and divisions. The number of additions and subtrac-
tions is also O(MK) if the sums Y./, 7, in Step 1 and the
sums Y&, ¢, (N-1) in Step 2 are computed prior to
looping overm = 1,2, ... Mand k = 1,2,....K.

Algorithm PAM_IMPROVED

The first two steps of this algorithm are the same as
those of Algorithm PAM_BASIC.

Step 3: Calculate server utilizations from the following
formula:

U = i T TV
=

form = 1,2, ... M, where U, (N) is the utilization of serv-
er m at population vector N.

Step 4: Find the largest utilization S, among the fixed-rate
servers visited by chain £,

S, = max U,
min
chain k£ and
m is a fixed-rate server
for k=1,2,...,K.

Step 5: (Scale down throughputs of individual chains if
necessary.)
IfS, > 1 then T(N) = T(N)/ §,.

Step 6: Calculate total throughput, and recalculate server
utilizations if the throughput of any chain has been scaled
down,

™ =3 M
k=1
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and

K
Um@=21:kaklj), form=12,... M.
: =1

3. Experimental Results

We study in this section the accuracy of PAM_BASIC
and PAM_IMPROVED using queueing networks that
have characteristics of models of communication net-
works. Errors in the approximate chain throughputs, end-
to-end delays, and server utilizations predicted by the
PAM algorithms are obtained by comparing them with ex-
act results calculated by TCA.

A communication network is specified by a set of
nodes interconnected by full-duplex communication links.
In our queueing network model, each link is modeled by
two fixed-rate servers, one for each direction of the link;
nodes are not modeled. Each flow-controlled virtual
channel is modeled by a closed chain; the chain popula-
tion corresponds to the flow-control window size [8, 11,
12, 14]. The route of a virtual channel is specified by the
sequence of nodes it visits, which uniquely determines the
sequence of fixed-rate servers visited by the correspond-
ing chain. An additional fixed-rate server is inserted be-
tween the destination node and the source node of the
route to form a closed chain. This is referred to as the
source server and its service rate represents the packet
generation rate of the user process that provides input to
the virtual channel.

We examine the accuracy of the PAM algorithms by
first studying a network example. We then present statis-
tical results from a 100-network experiment. (The net-
works considered in this section have fixed-rate servers
only.) We also examine carefully a correlation between
the approximation errors for a chain and the maximum
server utilization among those servers visited by the chain.
Understanding such a correlation is important in applying
PAM algorithms to communication network design
problems because most network optimization algorithms
are concerned with rerouting or reconfiguring a network
to alleviate congestion at bottlenecks.

Network example

The network has 12 nodes, 15 links, and 20 chains. The
set of links specified by node pairs and their capacities are
shown in Table 1. The average packet length is 240 bits.
The mean service time at the source server of each chain
is 0.3 second. The populations and routes for all chains are
shown in Table 2.

The throughputs calculated by TCA, PAM_BASIC,
and PAM_IMPROVED, and percentage errors of the two
approximation algorithms, relative to TCA’s exact results,
are listed in Table 3. Note that the throughputs calculated
by PAM_IMPROVED and PAM_BASIC are the same for
those chains that do not visit a "bottleneck” queue, ie.,
those that do not require execution of Step 5 in



PAM_IMPROVED. For those chains that do visit bot-
tleneck queues, PAM_IMPROVED has smaller ap- Cha TCA PAM_BASIC PAM_IMPROVED
proximation errors than PAM_BASIC. The throughputs of ain
individual chains calculated by PAM_BAS'IC and Value Value Error(%) | Value Error(%)
PAM_IMPROVED are also plotted together with exact
values in Figures 1 and 2 respectively. The server loads
are fairly heavy and unbalanced. The maximum server ; g:g;g g%; f g:gg; f
utilization, calculated by TCA, is 0.990. The average 3 1.3954 1.764 26 1437 3
utilization over servers with nonzero utilizations is 0.398. 4 1.8674 1.923 3 1.923 3
5 2.7153 2.784 3 2.784 3
6 3.0215 2974 2 2974 2
7 1.0678 1307 22 1.065 0
Link Capacity (bits/second) 8 20149 | 207 3 2.070 3
9 3.0655 2.989 2 2.989 2
10 2.2768 2.148 6 2.148 6
11 3.2901 3.258 1 3.258 1
g’ ‘11())) 5% 12 3.1181 3.058 2 3.058 2
’ 9600 13 1.6333 1.607 2 1.607 2
1,11) 14 13055 | 163 25 1327 2
(8,35) 4800 15 3.0215 | 2974 2 2974 2
1,5) 2400 16 2.197 2254 3 2254 3
2, 6) 2400 17 3.3054 3.279 1 3.279 1
18 1.1794 1431 21 1.166 1
8 213?) ig% 19 3.3054 3.279 1 3.279 1
( o1 D 2400 20 1.8674 1.923 3 1.923 3
(12, 2) 4800
(1,8) 1200 Total
(3, 6) 9600 throughput(47.8417 | 48.744 2 47.606 0
4, 11) 9600
g }gg ‘ g% Table 3. Exact throughputs, approximate throughputs,
’ and approximation errors for the network example.
Table 1. Links and their capacities in the I - TCA o PAM BASIC ]
network example. i
357
36=¢
2.5
Route Throughput 2
Chain Population (in node sequence) B s SN )
1
0.5
: 2 287 L T S S S A I I
% g g g 10 Index of chain
4 3 62129114 ) )
5 4 9122 Figure 1. Throughputs of chains calculated by TCA
6 3 85111 and PAM_BASIC.
7 2 631081
8 2 91118
9 2 785
10 2 1081114
1 3 122 + TCA -+ PAMIMPROVED |
12 3 1226 35
13 2 1119122 3dmq . ~ 8
14 2 631087 2s /
15 3 85111 )
16 3 9111581036 'ﬂlfoughpmls
17 2 810 1
18 2 2631087 05
19 2 810 N '
20 3 62129114 1 3 5 7 9 11 13 15 17 19
Index of chain

Table 2. Populations and routes of chains in the

network example. Figure 2. Throughputs of chains calculated by TCA
and PAM_IMPROVED.
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The approximation errors of PAM_BASIC for chains
3, 7, 14, and 18 are significantly larger than errors for
other chains. Table 1 shows that those four chains are the
ones that visit the server (communication channel) from
node 3 to node 10. This server has the maximum utiliza-
tion, calculated by TCA to be 0.990, in the network. An
explanation of these large errors is the following: Propor-
tional approximation, as the basis for throughput upper
bounds in [7] and PAM algorithms herein, underestimates
the mean queue lengths of a chain at servers that are
highly utilized relative to other servers visited by the
chain. While PAM_BASIC has large errors for such
chains, Table 3 and Figure 2 show that
PAM_IMPROVED do not have large errors in its
throughputs for chains 3, 7, 14, and 18, suggesting that its
throughput scaling operation in Step 5 is quite effective.

Despite the relatively large errors of PAM_BASIC in
predicting the throughputs of chains visiting a bottleneck
sever, it is still quite useful in network design algorithms.
For example, it is used in the optimal routing algorithm
presented in [11] because it is the fastest of the PAM al-
gorithms. Also, in choosing the best route for a chain
among various candidates, a route that visits a highly util-
ized server will not likely be chosen; thus the accuracy of
PAM_BASIC’s throughput prediction for such a route is
irrelevant.

Most network optimization algorithms are concerned,
in one way or another, with the alleviation of traffic at
highly utilized servers. In such applications, the accuracy
of PAM_BASIC at an intermediate step of the optimiza-
tion algorithm is not very important. - For example, in
designing the link capacities of a network, identifying the
communication channel from node 3 to node 10 to be a
bottleneck will probably lead to an increase in its capacity.
Suppose the communication channel capacity is increased
from 1200 bits/second to 4800 bits/second and
PAM_BASIC is again applied to calculate chain through-
puts. Figure 3 shows the approximation errors of
PAM_BASIC for the two cases of the network example,
where "No bottleneck” denotes the network with a 4800
bits/second communication channel from node 3 to node
10. Note that after such a capacity increase, approximation
errors of PAM_BASIC for all chains fall below 5%. The
largest server utilization in the so-called "No bottleneck”
network is 0.870, which is still quite high. The correlation
between errors of PAM_BASIC and maximum server
utilizations is illustrated again in Figure 7 for the 100 ran-
domly generated networks to be presented below. Ad-
ditional experimental results are presented in [9].

[-0- Bottleneck present in metwork *O- No bottleneck I

SN, Z"Xﬁ _0

6!

30

25
) /\ \
Error (%) 15
10
5 9,
8-S e ~o—d_ =0 \'.’"°‘°’°\°‘
1 3 5 15

7 9 1 13
Index of chain

[

17 19

Figure 3. Approximation errors of PAM_BASIC with
and without a bottleneck in the network example.
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Statistical results from 100 networks

We next present some statistical results from applying
PAM_IMPROVED and TCA to 100 models of com-
munication networks generated randomly as described in
[8, 9, 19]. Statistics of parameters of the 100 networks
generated are summarized in Table 4, where #packets is
the summation of all chain populations in a network, and
the average queue utilization is computed over those ser-
vers with nonzero utilizations.

Percentage errors of total throughputs, chain through-
puts, and server utilizations of PAM_IMPROVED, rela-
tive to TCA exact results, are shown in Figures 4, 5, and
6. The maximum percentage error in the total throughput
calculated by PAM_IMPROVED is 3.55% (see Figure 4).
Figures 5 and 6 show that the chain throughputs and serv-
er utilizations calculated by PAM_IMPROVED are also
very accurate with only a small number of exceptions.
The maxima, means, and variances of the percentage er-
rors of PAM_IMPROVED for the three performance
measures are shown in Table 5.

Max. | Min. | Ave.
1. #nodes 25 7 15
2. #links 37 9 20
3. #queues 74 18 40
4, #chains 43 8 23
5. #packets 107 19 57
6. Ave. queue util. |  0.546| 0.291] 0.419

Table 4. Statistics of 100 test networks.

Number of networks = 100

Frequency

1 2 3 4
Approximation error (%)

Figure 4. Distribution of approximation errors of total
throughputs calculated by PAM_IMPROVED
for the 100 networks.

Figure 7 shows a strong correlation between the ap-
proximation error of PAM_BASIC in predicting a chain’s
throughput and the maximum utilization among servers
visited by the chain. The points plotted in Figure 7 were
obtained by selecting one chain from each of the 100 ran-
domly generated networks and applying PAM_BASIC
and TCA to calculate its approximate and exact through-
puts. Note that PAM_BASIC is quite accurate if the max-
imum utilization is less than about 0.9.
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Approximation error (%)

Figure 5. Distribution of approximation errors of
throughputs of individual chains calculated by
PAM_IMPROVED for the 100 networks.
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800
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600
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Number of queues = 3105
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123 456 7 8 9 101112131415
Approximation error (%)

Figure 6. Distribution of approximation errors of server
utilizations calculated by PAM_IMPROVED
for the 100 networks.

Statistics of percentage errors

#samples| Minimum | Maximum | Mean | Variance
Total 100 0.009 3.554 | 0.824 0.002
throughput
Throughput | 2255 0.000 20.503 | 2.667 7.167
of chain
Utilization 3104 0.000 14.769 | 2.064 4.263
of queue

Table 5. Statistics of approximation errors of total
throughput, chain throughputs, and server utilizations
calculated by PAM_IMPROVED for the 100 networks.
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Figure 7. Correlation between percentage error of
chain throughput calculated by PAM_BASIC and
the maximum utilization of the servers
visited by the chain.

4. ¥AM Algorithm with O(MK?) Computation
ime

A simple approach to improve the accuracy of the
PAM algorithms presented in the previous section, with-
out resorting to an iterative solution, is to execute the last
two steps of the MVA recursion instead of just the last
step, again using the proportional approximation to get in-
itial mean queue length estimates. Qur algorithm,
presented below, will be referred to as PAM_TWO. Such
an approach to trade computation time for accuracy is not
unlike the approach of Linearizer which improves the ac-
curacy of Schweitzer’s algorithm [4, 16] and the approach
of bound hierarchies [5, 7]. The time requirement of
PAM_TWO is O(MK2). The space requirement is O(MK).

Algorithm PAM_TWO

Step 1: Calculate proportional approximations of mean
queue lengths from

Yok = Tie! i1 Tt

form=12,.. M,k=12,...,K
G ) = YN



7 N

if I#k and I#h
G D)~V

if (I=k or I=h) and h#k
g ) =2,y

if I=k=h
form=12,... . M1=12,... K, h=12,... K, and k
=1.2,...,K. Note that ¢, (N—-1,—1,) may have a nega-
tive value if N,<2. In this case, ¢/, (N—1,—1,) is assigned
the value of zero.

g N-1-1)=

Step 2: Fork = 1,2,. .. K, repeat Step 2.1 and Step 2.2

Step 2.1: For k=12, ... K, repeat the following calcula-
tions:

K
Tl + ; q N-1-1))

if m is a fixed-rate server
D, N-1)=

t,, if misadelay server

form=1.2,...,M,

N
M____" — ifh#k
Yy DN -1)
m=1
T,N-1p=
N, -1
k if h=k,

ﬁ Dmh@ - lk)
m=1

qlmh(ﬂ_lk)=Dmh(ﬂ_l*)XTh(N—lk)

form=1.2,... M.
Step 2.2: Calculate the following,
K
Tl + 3 ¢ m=1)

if m is a fixed-rate server

D, N)=
T, if misadelay server
form=1.2,...,M,and
N,

T(N) = M__"_
Zl D,

Step 3: Execute Steps 3-6 of PAM_IMPROVED.

5. More Experimental Results

The 100 networks used in Section 3 have characteris-
tics of communication networks: large number of chains
with sparse routes and small chain populations. In this
section, we examine the accuracy of PAM_TWOQO and
PAM_IMPROVED using 500 networks generated ran-
domly according to the specification used in the study of
errors of iterative AMVA algorithms by Zahorjan et al.
[22, Table 2]. (There is one difference: We set the min-
imum number of servers at 5 instead of 2.) The network
generation parameters are shown in Table 6, where U in-
dicates the uniform distribution. Networks generated by
these parameters possess characteristics of computer sys-
tems rather than communication networks. Note that
every network generated has four chains and each chain
visits every server in the network. Compared to the 100
networks in Section 3, these 500 networks have larger
chain populations and much larger service time variations;
there are also delay servers in addition to fixed-rate ser-
vers.

Scheduling Discipline | Prob{Infinite Server] = 0.05

Prob[Load Independent] = 0.95

Population Size | Class 1:U(l, 10)
Class 2 : U(1, 5)
Class 3: U(1, 5)

Class 4 : U(1, 5)

Loadings | U(0.1, 50.0)

Number of Centers | U(5, 50)

Table 6. Network generation parameters.

We used PAM_TWO and PAM_IMPROVED to cal-
culate approximate chain throughputs and the MVA algo-
rithm to calculate exact chain throughputs for the 500 net-
works generated. The average and maximum percentage
errors in the approximate chain throughputs, relative to
exact MVA solutions, are shown in Table 7 for
PAM_IMPROVED and PAM_TWO. Both PAM al-
gorithms have small average errors but fairly large max-
imum errors. Table 7 also shows that PAM_TWO is more
accurate than PAM_IMPROVED.

Although the maximum percentage €rrors are large,
Figure 8 shows that only a very small fraction of the
chains have percentage errors larger than 10% while more
than three-fourths of the chains have less than 1% error
for PAM_TWO and less than 3% error for
PAM_IMPROVED.

In Section 3, we found a strong correlation between the
approximation error of a chain’s throughput calculated by
PAM_BASIC and the maximum utilization among servers
visited by the chain. Table 8 shows that such a correlation



also exists for PAM_IMPROVED and PAM_TWO. For
those chains which do not visit servers with utilizations
between 0.95 and 1, both the average and maximum ap-
proximation errors become substantially smaller for both
PAM algorithms (see row 2 of Table 8).

Technique Measure | Error(%)| #Networks
Average 23
PAM_IMPROVED 500
Maximum | 40.3
Average 0.8
PAM_TWO 500
Maximum|{ 30.8

Table 7. Relative errors in chain throughputs calculated
by PAM_IMPROVED and PAM_TWO

for 500 networks.
Max. Approximation errors of chain throughputs
util. < PAM_IMPROVED PAM_TWO
Max. Ave. #Chains | Max. Ave. #Chains

1.0 40.3 2.3 2000 30.8 0.8 2000
0.95 114 1.6 1784 9.6 05 1860
09 94 1.5 1732 54 0.5 1784
0.8 84 1.2 1556 3.1 0.3 1612
0.7 4.8 1.0 1392 1.7 02 1416
0.6 38 0.8 1136 14 0.2 1164
0.5 2.1 0.6 744 14 0.1 788

Table 8. Correlation between percentage errors in
approximate chain throughputs and maximum
server utilizations for PAM_IMPROVED
and PAM_TWO.

W rav_veroved il pav_TwO

1300 4
1200
1100
1000
900
800
700
600
500
400
300
200
100

Number of chains = 2000

<05 0.5-11-1,51.5-2 2-3 3-4 4-5 5-6 6.7 7-8 89 9-10 >10
Approximation error (%)

Figure 8. Distribution of approximation errors of
throughputs of individual chains caiculated by
PAM_IMPROVED and PAM_TWO
for 500 networks.
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Although we generated the 500 networks similar to
what Zahorjan et al. did in their study of three iterative
AMVA algorithms, a direct comparison of the accuracy of
PAM and the iterative AMVA algorithms cannot be made.
There are two reasons. First, we evaluated approximation
errors in chain throughputs and server utilizations (we are
also interested in mean end-to-end delays of virtual chan-
nels as a performance measure but these can be obtained
from chain throughputs and Little’s formula). The itera-
tive AMVA algorithms were evaluated by the maximum
approximation error in mean queue lengths g,,(N) in [22]
and also mean delays D, (N) and server utilizations
U,N) in [4] for all m and k. The performance measures
of AMVA have finer granularity than ours. On the other
hand, the AMVA studies used a specially defined measure
of error called "tolerance error" instead of the usual rela-
tive error which we use. The tolerance error used by
Zahorjan et al. [22] is the following:

max [¢(N) — g, * (N)}/N,

mk

where g, ,(N) is the approximate value and g, *(N) is the
exact value. Note that N, is used in the denominator in-
stead of g, *(N). It was argued that tolerance error was
used in place of relative error because the latter measure is
very sensitive to small (absolute) errors in small values.
(That is exactly how we got most of the large percentage
errors for PAM algorithms since we use relative error as
our measure. )

The tolerance errors in mean queue lengths of the three
iterative AMVA algorithms from the last column of Table
4 in [22] are reproduced in Table 9. However, it is not
possible to make a direct comparison between the relative
errors in Table 7 for PAM and the tolerance errors in
Table 9 for AMVA. On the one hand, for the same
numerical values of approximate and exact solutions,
tolerance errors are much smaller than relative errors. On
the other hand, ¢,(N) is a measure having finer
granularity than chain throughput (which is obtained from
a summation of mean delays) and is expected to have
larger approximation errors.

Technique Measure Tolerance | #Networks
Error (%)

Schweitzer’s Average 25 2000
method Maximum 30.5

Linearizer Average 0.5 2000
Maximum 24

AQL Average 0.3 2000
Maximum 33

Table 9. Tolerance errors in mean queue lengths
calculated by 3 iterative AMVA algorithms
from Zahorjan et al. [22].



To carry out a direct comparison of AMVA and PAM,’

we will have to implement the AMVA algorithms or
modify our PAM algorithms (which we have not done). In
fact, the comparison can only be made for networks with a
small number of closed chains, which is the domain of ap-
plications of iterative AMVA algorithms. For such net-
works, we conjecture that Linearizer and AQL are more
accurate than PAM algorithms (at the expense of substan-
tially more computation time for both Linearizer and AQL
and more space for Linearizer). For networks with a large
number of closed chains, however, the convergence be-
havior of iterative AMVA algorithms is still unknown. In
fact, Zahorjan et al. [20] show that the accuracy of itera-
tive AMVA algorithms gets worse as the number of
closed chains increases from 1 to 4.

6. Conclusion

PAM algorithms have been designed for the ap-
proximate solution of queueing networks with a large
number of closed chains and relatively small chain
populations. For this class of networks, PAM is the only
available technique whose accuracy has been studied and
whose time and space requirements can be met. Because
they are noniterative, they are suitable for many com-
munication network design and optimization problems
that are typically based upon a heuristic search for an op-
timum; a very fast evaluation of network performance is
needed at each step of such a heuristic search.
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