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Abstract— Internet paths sharing the same bottleneck can be
identified using several shared congestion detection techniques.
However, all of these techniques have been designed to detect
shared congestion between a pair of paths. To cluster NV paths by
shared congestion, a straightforward approach of using pairwise
tests would require O(N 2) time complexity. In this paper, we
present a scalable approach to cluster Internet paths based on
DCW (Delay Correlation with Wavelet denoising) which does
not require a common end point between paths. We present a
function to map each path’s measurement data into a point in a
multidimensional space such that points are close to each other
if and only if the corresponding paths share congestion. Because
points in the space are indexed using a tree-like structure, the
computational complexity of clustering N paths can be reduced to
O(N log N). The indexing overhead can be further improved by
reducing dimensionality of the space through wavelet transform.
Computation cost is kept low by reusing for dimensionality
reduction the same wavelet coefficients obtained in DCW. Our
approach is evaluated by simulations and found to be effective for
a large N. The tradeoff between dimensionality and clustering
accuracy is shown empirically.

I. INTRODUCTION

Information on network congestion is critical to network
resource management. In particular, identifying paths sharing
the same bottleneck enables sharing control information by
multiple flows, and accordingly efficient and fair allocation
of resources among them [1], [2]. For example, Congestion
Manager [3] examines all flows of the host where it resides,
and clusters them into flow aggregates, each of which consists
of flows sharing the same bottleneck. By performing conges-
tion control over flow aggregates, rather than separately over
individual flows, Congestion Manager was shown to improve
both efficiency and fairness of bandwidth sharing among flows.

Clustering paths sharing the same bottleneck also benefits
overlay networks. Overlay networks have proliferated as an
approach to circumvent limitations of the Internet and provide
additional features. An overlay network consists of a number
of participating end hosts and selected connections between
pairs of such hosts. Because routing in an overlay network is
performed through these connections, their selection is critical
to the overlay network’s performance. However, most overlay
networks are unaware of the underlying network topology and
they use simple heuristics to choose connections. As a result,
some physical links may be shared by many connections,
and these links become bottlenecks in bandwidth-demanding
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overlay applications, such as, end system multicast [4], file
download from multiple servers, and overlay QoS (Quality
of Service) routing. Such bottlenecks in an overlay network
are avoidable if the overlay performs measurements, clusters
connections that share the same bottleneck link, and replaces
a subset of connections in each cluster with other connections
not sharing the cluster’s bottleneck.

Paths sharing the same bottleneck can be identified using
shared congestion detection techniques [5]-[8]. However, all
of these techniques, except DCW (Delay Correlation with
Wavelet denoising) [8], require that paths share a common
end point to be effective. This requirement limits their ap-
plication to overlay networks, which need to cluster paths
with different sources and different destinations. Moreover, all
the techniques including DCW have been designed to detect
shared congestion between two paths only. To cluster N paths,
the straightforward approach of using pairwise tests would
require O(N?) time complexity. There are other approaches
proposed to reduce time complexity by performing per-cluster
tests instead of per-path tests [6], [9]. In these approaches, one
representative per cluster is maintained, and shared congestion
detection is performed between a new path and each cluster
representative to determine which cluster the new path should
belong to. However, for reasons discussed in Section II, these
approaches are not applicable to large-scale overlay networks.

In this paper, we present a scalable approach to cluster
paths by shared congestion based on DCW [8], which does
not require a common end point between paths. In our ap-
proach, measurement data are stored into a multidimensional
space, where each data set collected from a network path is
represented as a point. The most important characteristic of
this space is that points are located closely if and only if their
corresponding network paths are sharing congestion. Due to
this characteristic, finding all paths sharing congestion with
a given path can be replaced with neighbor search in the
space. Because points in the space are indexed using a tree-like
structure, adding paths and searching neighbors takes sublinear
time. As a result, the computational complexity of clustering
N paths can be improved to O(N log N). The indexing over-
head can be further improved by reducing the dimensionality
of the space through wavelet transform. Computation time
is kept low because we can use the same wavelet transform
for both wavelet denoising and dimensionality reduction. The
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tradeoff between dimensionality and clustering accuracy is
investigated.

The remainder of this paper is organized as follows. Sec-
tion II summarizes other approaches for path clustering. Sec-
tion III presents the theory of our clustering approach includ-
ing the data structure we use to store measurement data sets
for paths. Section IV presents the basic implementation steps
and our path clustering algorithm. A performance evaluation
of our approach is presented in Section V, and we conclude
in Section VI.

II. RELATED WORK ON PATH CLUSTERING

Among studies on identifying bottlenecks, FlowMate [9]
and the entropy-based approach [6] have objectives that are
most like our objective in this paper.

FlowMate is based on the technique proposed by Rubenstein
et al. [7] for shared congestion detection. Given two paths,
a sequence of delay samples is obtained for each path. If
correlation between successive packets in the first sequence
is higher than correlation between the two sequences, it is
inferred that the two paths are sharing a congested point. When
clustering paths, FlowMate maintains a “representative” path
in each cluster, and applies the shared congestion detection
technique to a new path and the representative of each cluster,
instead of every path in the cluster, to reduce computational
complexity.

The entropy-based approach was designed to cluster flows
from a large number of sources to a common destination.
Thus the paths used by the flows form a tree rooted at the
destination. It is assumed that each path contains exactly
one bottleneck. For each path, inter-packet arrival times are
measured at the destination. For each path, it calculates the
average entropy for every cluster assuming the path is in
that cluster. Then the path is moved to the cluster with the
minimum average entropy.

Both approaches [6], [9] are inappropriate for large over-
lay networks for the following reasons. First, while overlay
networks consist of a large number of paths with different
sources and destinations, these approaches can only cluster
paths that share a common end point, FlowMate at the source
and the entropy-based approach at the destination. Moreover,
the latter requires the amount of cross traffic to be low. More
specifically, for the entropy-based approach to be robust, more
than 20% of the traffic at the bottleneck should arrive at the
common destination.

Shared congestion detection procedure of DCW

Second, suppose the N paths to be clustered share a
common end point. The worst-case computational complexity
of these two approaches is still O(N?) because both of them
use a clustering algorithm similar to K-Means clustering [10]
with a low complexity only when the number of clusters is
small. In a large-scale overlay network, however, there exist
many independent paths (each of which is a cluster) in addition
to multi-path clusters. Therefore, the number of clusters is
likely to be large.

III. OUR APPROACH

In our approach to cluster paths, we use DCW [8] to detect
shared congestion. In DCW, a sequence of one-way delay
samples, called a delay sequence, is measured for each path.
The DCW procedure for detecting shared congestion between
two paths is shown in Figure 1.

As shown in Figure 1, the measured delay sequences,
denoted by x( and yq', are denoised using wavelet transform.
Let the denoised delay sequences be x and y. Then the cross-
correlation coefficient XCORy, between them is computed.
DCW decides that the two paths share congestion if XCORyy,
is larger than a specified threshold value, XCORhreshold-

A major disadvantage of DCW when applied to a large
number of paths is that the cross-correlation coefficient must
be computed for every pair of paths, which does not scale
well. To avoid pairwise computation, we make use of a data
structure, where delay sequences are stored in such a way
that given a path, all other paths sharing congestion with the
path are found and retrieved easily. For this purpose, we use
a multidimensional space.

Suppose that delay samples were collected from three
different paths: X, Y, and Z. Then we denoise them to obtain
X, y, and z, respectively. According to the DCW procedure
in Figure 1, we should compute XCORy,, XCOR,,, and
XCOR,x. For better scalability, however, we instead map
each denoised delay sequence to a point in a multidimensional
space. A critical condition that the multidimensional space
must satisfy is that points corresponding to strongly-correlated
sequences should be located closely. For example, as shown
in Figure 2, if x and y are strongly-correlated (because X and
Y share congestion) and z is not, x and y should be mapped
into points close to each other while z should be mapped
to a point far from them. Then, in this space, all sequences

'We use a lower-case bold letter to represent a delay sequence, and an
upper-case bold letter to represent a sequence of wavelet coefficients.
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that have strong correlation with a given sequence (in other
words, all paths that share congestion with a given path) can be
identified by searching neighbors of the point corresponding
to the given sequence (or path). More specifically, we need
a mapping such that the distance between two points in the
multidimensional space is a monotonically decreasing function
of the cross-correlation coefficient between the denoised delay
sequences mapped to those points. With such a mapping, all
the points within the radius corresponding to XCORhreshold
in the multidimensional space must represent delay sequences
of the paths sharing congestion.

Challenges of this approach are to find a multidimensional
space with the desired property and to support efficient inser-
tion and neighbor search operations in that space.

A. Mapping delay sequences into a multidimensional space
Given two paths, X and Y, let their delay sequences after

denoising be the following:

X = 5 Im)
5 ym)

Then the cross-correlation coefficient between them is com-
puted as
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where = and y are the mean values of the elements of x and
y, respectively. The goal is to map the delay sequences x and
y into two points X and y in an m-dimensional Euclidean
space? so that the distance between X and y is a monotonically
decreasing function of XCORx,. This is achieved with the
following mapping.
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2The Euclidean space is necessary because multidimensional indexing
schemes we will discuss in Section III-B require such a space.
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by Eq. 2 and 3, the distance Dy between x and y is derived
as follows.
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This is simplified using Eq. 1 to be

Dgy =1/2(1 — XCORyy) . 4

Therefore, given two delay sequences x and y, the distance
between their mappings X and y is a monotonically decreasing
function of the cross-correlation coefficient between x and y.

The paths sharing congestion (or having the cross-
correlation coefficient greater than XCORyresholq) With a
given path can be found by searching for neighbors of the
path within the following radius.

Dthreshold = \/2 (1 - XOORthreshold) (5)

The impact of this radius on clustering accuracy is investigated
in Section V-A.

B. Choice of an indexing scheme

By mapping delay sequences into a multidimensional space,
pairwise computation of cross-correlation coefficients becomes
unnecessary; inserting delay sequences into the multidimen-
sional space and searching for neighbors within a radius
replace the pairwise computations. This means that the com-
plexity of those two operations, insertion and neighbor search,
is critical to the overall performance. In this section, we
introduce an index structure to facilitate them.

It is known that a well-designed multidimensional indexing
scheme can insert NV points in O(NN log N) time and perform
neighbor search within a sphere in O(log N) time [11]. Many
indexing schemes have been proposed to store and manage
multidimensional data in the Euclidean space, including the
R-tree [12], R+-tree [13], R*-tree [14], SS-tree [15], and SR-
tree [16]. As their names suggest, they are all based on a
tree-like index structure with a similar insertion algorithm.
However, each has a different search performance mainly
because they employ different bounding shapes, which en-
compass the data in a subtree. The R-tree and its successors
use rectangles as bounding shapes, and the SS-tree uses
bounding spheres instead. The SR-tree integrates bounding
rectangles and spheres to enhance the performance of neighbor
search, especially for high-dimensional data. Since the SR-tree
outperforms other schemes in neighbor search [16], it is used
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as the multidimensional indexing structure in the experiments
presented in this paper.

Note that the clustering algorithm we propose does not
depend on a specific indexing scheme; any multidimensional
indexing scheme that efficiently performs insertion and neigh-
bor search can be used.

C. Dimensionality reduction

To achieve high accuracy in detecting shared congestion,
delay samples need to be collected for more than 10 seconds
at a sampling rate of 10Hz [8]. This means that the number
of elements in a delay sequence is over 100, and so is the
dimensionality of the multidimensional space. However, such
high dimensionality increases the overhead of path clustering
based on the multidimensional space, because the performance
of multidimensional indexing deteriorates as the dimensional-
ity of the data sets increases [16].

In our mapping between delay sequences and points in the
multidimensional space, each delay sample corresponds to one
coordinate of a point. This means that reducing dimensionality
is equivalent to discarding delay samples, which immediately
results in lower accuracy. Since all delay samples are con-
sidered to be “equally important,” discarding any of them is
equally harmful to accuracy. However, wavelet coefficients
can break this symmetry. Using wavelet coefficients instead
of time series enables efficient proximity search with lower
dimensionality than that of using all delay samples. This is
possible by utilizing wavelet coefficients at only large scales
which bear information for slow-varying pattern of delay
sequences [17].

Let the discrete wavelet transform® of X be

X = (%), %o,

aXm) = DWT(SC) : (6)
One problem in mapping X instead of X to a multidimensional
space is that the relationship between the distance in the mul-
tidimensional space and the corresponding cross-correlation
coefficient shown in Eq. 4 may not hold any more. Fortunately,
if we choose DWT in Eq. 6 to be an orthonormal wavelet
transform, the Euclidean distance between two time series is
equal to the distance between their wavelet coefficients [18].

Figure 3 shows the energy (i.e. information) distribution
of delay time series obtained from a congested link using
ns-2 [19]. Most of the energy is concentrated on large-scale
wavelet coefficients and any remaining energy is distributed
sparsely over small-scale wavelet coefficients. Therefore, using
wavelet coefficients only at large scales can achieve perfor-
mance comparable to using all coefficients, while effectively
reducing dimensionality. We will show empirically in Sec-
tion V-B how many dimensions are needed to achieve good
performance.

D. Reusing results of wavelet denoising
DCW uses discrete wavelet transform based on the
Daubechies wavelet [8], which is orthonormal [20]. Therefore,

3Depending on the wavelet transform, the number of wavelet coefficients
may be slightly different from the number of elements in X.
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we may use in DWT(X) the same discrete wavelet transform
that is used for denoising in Figure 1 to keep the computation
cost low. In fact, X = DWT(X) can be obtained directly from
X = DWT(x) without any need to compute X.

Let X = DWT(z1 — Z,%9 — %, ..., 2y — Z). Then

X = DWT(X) 7)

. DWT (r1 —Z, 0 — Ty .. Ty — T) ®)
Doy (xi — )2

 DWT(xy — 2,22 —Z,..., 2T — T) ©)
> e (@ — )2

- X (10)

Since the discrete wavelet transform is a linear operation,

EE

X = DWT(x1—Z,09 —Zy...,Tm —T)
= DWT(x1,x9,...,%m)— DWT(Z,Z,...,T)
= X -zDWT()

where I = (1,1,...,1).

For indexing with wavelet coefficients at the K largest
scales, we use only their corresponding coefficients from the
above calculation. Thus, the final sequence to be stored in the
multidimensional space is
X (1n
where k is the number of wavelet coefficients corresponding
to the K largest scales.

X' = (%1, %o, ...

IV. BASIC IMPLEMENTATION STEPS

An actual implementation of path clustering consists of the
following steps:

1) Select network paths to measure delay.
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2) Measure delay samples to get x( for each path.

3) Process x to obtain a wavelet coefficient vector with
reduced dimensionality, X'

4) Collect X’ for each selected path.

5) Cluster paths.

The first and fourth steps are application-dependent. For
example, in the case of overlay multicast, delay is measured
at every congested edge of a multicast tree, and each internal
node of the tree collects data from its child nodes.

In this section, we will only describe the application-
independent steps, i.e., what a node measuring delay should
do (the second and third steps), and how a node collecting
data performs clustering (the last step).

A. Measuring and processing delay samples

Either a source or destination of a path measures one-way
delay with sampling frequency of 10 Hz as recommended by
DCW [8]. Delay samples (x( in Figure 1) are collected for
12.8 seconds to make the number of samples a power of 2
for calculation convenience. Then x is converted into X’ by
(1) using the wavelet transform, (ii) performing denoising, and
(iii) applying Eq. 10-11. Only X’ for the path is submitted to
the node that clusters paths.

B. Path clustering

In general, a clustering problem is NP-hard [21]. However,
since we know Dipreshold, the maximum radius of a cluster
defined in Eq. 5, we can design a simple and efficient
algorithm for path clustering. The pseudo code is presented
in Figure 4.

PATH-CLUSTERING(P)
1 > P is a set of X' for all paths.
2 S—g
3 for each p € P

4 s <« NEAREST-NEIGHBOR-IN-SPHERE(S, p)
5 if s =mnil

6 INSERT(S, p)

7 Cp — {p}

8 P «— P —{p}

9 for each p € P

10 s < NEAREST-NEIGHBOR-IN-SPHERE(S, p)
11 Cs — Cs U{p}

12 return {Cy|s € S}

Fig. 4. Clustering algorithm

The algorithm begins with two sets: P, a set of X' for
all paths, and S, initially empty and implemented with a
multidimensional space indexed as described in Section III.
For notational simplicity, we use p to denote a member of
P. We assume that the multidimensional indexing scheme
being used (SR-tree [16] in our experiments) supports two
operations: INSERT(.S, p) which adds a point p to the space S,
and NEAREST-NEIGHBOR-IN-SPHERE(.S, p) which searches
in S for the nearest neighbor of p among points in the sphere

centered at p with radius Dypreshold- The latter returns one of
them if there are multiple nearest neighbors, and nil if there
is no neighbor in the sphere.

For each member p in P, the algorithm tests if any
point stored in the multidimensional space is closer than the
threshold from p. If none, the path represented by p does not
share congestion with any of the paths corresponding to the
previously inserted points, and thus it is added to S to create
a new cluster. If there is a point closer than Dipyeshold, ignore
p because p should belong to an existing cluster. In this way,
after the first loop (Lines 3-8), .S contains a set of points such
that every point in P shares congestion with at lease one point
in S while the points in .S do not share congestion with one
another. Each point inserted into S represents the center of a
cluster. For each cluster, a set (C}, in Line 7) containing its
center point is created to store points belonging to the cluster.

The second loop (Lines 9-11) identifies the members of
each cluster. For each member p in P, the cluster of the closest
center s in S is selected, and p is added to the selected cluster,
Cs.

Finally, a set of all clusters is returned (Line 12).

For performance reason, our implementation always keeps
the entire SR-tree in memory, although the original proposal
for the SR-tree assumes that the tree is maintained on disk.

Note that the algorithm selects only one cluster for each
path, whereas a path may belong to multiple clusters. If finding
all clusters is more desirable, Lines 10 and 11 should be
modified so that p is added to every cluster of which the center
is in the sphere.

V. PERFORMANCE EVALUATION

In evaluating the proposed path clustering approach, we fo-
cus on the performance of clustering and various tradeoffs with
different parameter values. Because the shared congestion de-
tection technique (DCW) itself was extensively evaluated [8],
we do not repeat it in this paper.

S

T1 T2 T3 T4 Ts Te T7 T8 T9 Ti0 T11 Ti2 T13 Ti4 Ti5 T16
Fig. 5. Network topology

We analyze the performance of the proposed approach using
simulation data from ns-2 with the topology shown in Figure 5.
The bandwidth of each link is 1.5 Mbps. To create background
traffic, a different amount of short-lived TCP traffic is added
to each link. TCP flows are created by ns-2’s web traffic
generator.
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One-way delay samples are measured on 16 paths, from
node s to node r; for 1 < ¢ < 16. Along the path from
node s to each r;, at most one link is selected as a congested
link, which is used by a large number of web sessions
simultaneously, resulting in a loss rate between 5 and 10%.
The number of web sessions is chosen uniformly between 180
and 250. The other links have less than 70 web sessions and
no packet is lost. Every experiment was repeated 500 times to
get an average.

Given N paths, we use the following as performance metrics
for accuracy.

« False positive rate The number of path pairs such
that the two paths in a pair do not share congestion with
each other but belong to the same cluster, divided by the
number of path pairs that do not share congestion.

« False negative rate The number of path pairs such
that the two paths in a pair share congestion with each
other but belong to different clusters, divided by the
number of path pairs that actually share congestion.

¢ Clustering accuracy The fraction of path pairs that
are neither false positives nor false negatives among all
(N(N —1)/2) pairs of paths.

In this section, we use these metrics to study the impact of
the threshold on neighbor search and the required dimensional-
ity to maintain a reasonable accuracy. We also investigate the
scalability of our clustering approach by comparing against
clustering with pairwise operations.

A. Shared congestion threshold

The cross-correlation coefficient threshold (XCORhreshold)
affects both false positive and false negative rates directly,
because the threshold determines the radius of neighbor search
in clustering. A smaller radius (larger threshold) means more
clusters with finer granularity, and accordingly it is less
likely to get false positives. This observation is demonstrated
in Figure 6(a), which shows the false positive rate versus
threshold for a range of dimensionality between 18 and 170.
The false positive rate decreases as the threshold increases
for every dimensionality. It is especially prominent with the
lowest dimensionality, 18.

Similarly, in Figure 6(b), the false negative rate increases as
the threshold increases because a smaller radius leads to more
clusters than needed. Therefore, there is clearly a tradeoff to be
made between the false positive and false negative rates. The
clustering accuracy is also affected by the threshold as shown
in Figure 6(c). Depending on the dimensionality, a threshold
between 0.75 and 0.9 maximizes the clustering accuracy.

Results in Figure 6 were obtained on the topology where all
paths share the source node s. In large-scale overlay networks,
however, most paths have different sources. Therefore, when
those sources send probe packets to measure one-way delay,
packets from different sources arrive at the point of shared
congestion at different times. This time difference is what we
call synchronization offset [8]. Since the synchronization offset
also affects clustering accuracy, the interaction with the shared
congestion threshold in clustering needs to be investigated.

False Positive

False Negative

Clustering Accuracy

0.08
1 —+— Dim=18
—&— Dim=36
0.07 —=— Dim=61
—%— Dim=101
—— Dim=170
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0.01F ———
Ai’,’::
0 e
0.75 0.85 0.9
Threshold
(a) False positive rate
0.8
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1
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0.82 —%— Dim=101
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(c) Clustering accuracy

Fig. 6. Impact of threshold
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Impact of threshold with synchronization offset

In Figure 7, we repeat the experiments used in Figure 6, with
non-zero synchronization offsets between paths. To simulate
paths with different sources, we added a random offset to each
delay sequence obtained on the topology in Figure 5. The
offset was chosen uniformly between 0 and 600 ms.

The false positive rate is little affected by the synchroniza-
tion offset, while the false negative rate is increased notice-
ably. As a result, the overall clustering accuracy gets lower,
especially with high dimensionality. Nevertheless, with a low
threshold value, we can still achieve the accuracy higher than
90%. We will show more results for different synchronization
offsets when we discuss dimensionality in Section V-B.

From the results presented in this section, the shared con-
gestion threshold of 0.8 seems to be a good choice. However,
note that false positives are tolerable for some applications,
but they may be completely intolerable for others [22]. So are
false negatives. Therefore, an appropriate choice of threshold
will vary from application to application.

B. Dimensionality

Dimensionality is another important parameter that affects
performance. Because using fewer dimensions means that
ignored dimensions cannot contribute to separating paths any
more, the false positive rate increases as dimensionality de-
creases, while the false negative rate decreases.

Figure 6 shows that, with a low threshold (below 0.85), the
decrease in the false positive rate as dimensionality increases is
larger than the increase in the false negative rate. Therefore,
the overall clustering accuracy is usually better with higher
dimensionality as shown in Figure 8. With a high threshold
(above 0.9), however, it is the opposite; the clustering accuracy
gets worse with more dimensions. The reason is as follows.

—F
0.98+ — —
0.96 - 1
0.94r- B

>
Qo
€ 092r B
3
8
<
o 09 b
£
g
% 0.88f 1
O —— Th=0.75
L —&— Th=0.80 |
0.86 —&- Th=0.85
Th=0.90
0.84+ —4— Th=0.95 1
0.82- i
0.8 . L . L . . L L
0 20 40 60 80 100 120 140 160

Dimensionality

Fig. 8. Tradeoff between accuracy and dimensionality

More dimensions often contribute to separating paths. How-
ever, if a threshold is high (meaning a small radius), the false
positive rate is negligible, which means that the separations
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caused by additional dimensions are more likely to become
false negatives than to correct false positives.

900 T
—— # of paths = 16 7
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Dimensionality

Fig. 9. Overhead of high dimensionality

Even with a low threshold, increasing dimensionality is
not the best choice. The overhead of maintaining the in-
dex structure must be taken into account; it is well-known
that high dimensionality often incurs significant overhead in
multidimensional indexing. To demonstrate this, we plot in
Figure 9 the CPU time required for clustering as a function of
dimensionality. Since the actual CPU time depends on many
factors, we normalize it so that the CPU time of the fastest
case (16 paths with 18 dimensions) is equal to one unit of time.
With a C++ implementation on a Pentium 2GHz machine, one
unit of time is about 5 milliseconds.

Figure 9 shows that the CPU time increases rapidly as
the number of dimensions increases, especially with a large
number of paths. Hence, the dimensionality should be kept
minimal as long as the false positive and negative rates are
acceptable. Considering the results in Figures 6 and 8, we
believe that 36 dimensions are more than sufficient in most
applications, and that 18 dimensions are reasonable if used
with a high threshold.

The impact of synchronization offset for different dimen-
sionalities is shown in Figure 10. As in the experiments for
Figure 7, a random offset selected uniformly between O and
the maximum offset was added to each delay sequence. The
maximum offset varied from 0 to 600 ms. The threshold of 0.8
was used in all experiments.

The change in the false positive rate is negligible; regardless
of dimensionality, the false positive rate remains stable. In
contrast, the false negative rate increases rapidly as the syn-
chronization offset increases. The increase is more prominent
with higher dimensionality, because high dimensions store
information on small-scale delay variations, which are more
sensitive to a small synchronization offset in calculating cross-
correlation than large-scale variations. However, a reasonable
degree of accuracy is still achievable even with the maximum
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Fig. 10. Impact of synchronization offset

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



synchronization offset of 600 ms, by having low dimensional-
ity at the cost of slightly more false positives.

As in selecting the threshold, the dimensionality needs to
be tuned for each application, depending on how tolerable the
application is to false positives and false negatives. In the case
when high accuracy is required, a hybrid approach combining
multidimensional indexing and pairwise tests may be used.
For example, two threshold values may be chosen, one below
which most points share congestion and therefore are in the
same cluster with very few false positives, and the other above
which most points do not belong to this cluster. Then for
points between two thresholds, cross-correlation values with a
representative point in the cluster are calculated to find those
points that should be members of the cluster.

C. Scalability

The main goal of the clustering approach proposed in
this paper is to achieve better scalability than the use of
pairwise comparisons. While the multidimensional indexing
improves the theoretical bound on time complexity, it would
be more interesting to study when and how much the proposed
approach outperforms the use of pairwise comparisons.

In Figure 11, we compare the proposed multidimensional
indexing approach against the pairwise approach. Both ap-
proaches use DCW as a shared congestion detection technique.
We plot the CPU time required for clustering versus the
number of paths for different dimensionalities. Two different
scales, less than 70 paths in Figure 11(a) and up to 1024 paths
in Figure 11(b), are considered. The CPU time is normalized
so that the case with 18 dimensions and 16 paths takes 1 unit
of time.

The comparison for a small number of paths presented in
Figure 11(a) shows the overhead caused by multidimensional
indexing. The multidimensional indexing approach takes non-
trivial time to maintain a complicated data structure. Therefore,
the pairwise approach is faster if 61 or more dimensions
are used to cluster less than about 30 paths. However, due
to its better time complexity, our approach exhibits better
performance when the number of paths gets larger. Notice that
the difference in slope between curves due to different time
complexity.

This better CPU time performance is clearer when the
curves are extended in Figure 11(b). Because of its O(N?)
complexity, the pairwise approach curve diverges from the
other curves as the number of paths increases. The CPU time
increase with dimensionality is significant, and low dimen-
sionalities incur a fairly small overhead. Since the difference
between 18 and 36 dimensions in terms of accuracy is rather
large as observed in Figure 6, 36 dimensions would be a
reasonable choice in practice.

VI. CONCLUSION AND FUTURE WORK

For large-scale distributed systems such as overlay net-
works, it is crucial to identify bottlenecks in the network so as
to allocate network resources efficiently. However, previously
proposed techniques to detect network bottlenecks shared by
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multiple paths do not scale well because they handle only
two paths at a time. We proposed a scalable approach to
cluster paths sharing congestion by employing multidimen-
sional indexing and wavelet transform. It outperforms previous
approaches when dealing with more than tens of paths. The
granularity of clustering is controllable by adjusting the neigh-
bor search radius. We also investigated tradeoffs between time-
space complexity and accuracy with different dimensionalities.

Our future work involves applying the proposed clustering
approach to large-scale overlay networks. Because a full
implementation of path clustering in the context of an overlay
network requires application-specific knowledge, we presented
application-independent steps only in this paper. We will
first extend them to overlay multicast, for which application-
specific steps were already investigated and presented [4]. Fur-
ther extension to a general overlay topology is also planned.
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As in the case of overlay multicast, other overlay networks will
benefit from scalable path clustering by using the clustering
information to improve its topology and, in turn, overall
throughput.
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