
In Proceedings of the 23rd IEEE ICDCS, May 2003. .

Optimal Distribution Tree for Internet Streaming Media ∗

Min Sik Kim, Simon S. Lam, and Dong-Young Lee
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712–1188, USA

{minskim,lam,dylee}@cs.utexas.edu

Abstract

Internet radio and television stations require significant
bandwidth to support delivery of high quality audio and
video streams to a large number of receivers. IP multicast is
an appropriate delivery model for these applications. How-
ever, widespread deployment of IP multicast on the Inter-
net is unlikely in the near future. An alternative is to build
a multicast tree in the application layer. Previous studies
have addressed tree construction in the application layer.
However, most of them focus on reducing delay. Few sys-
tems have been designed to achieve a high throughput for
bandwidth-intensive applications. In this paper, we present
a distributed algorithm to build an application-layer tree.
We prove that our algorithm finds a tree such that the aver-
age incoming rate of receivers in the tree is maximized (un-
der certain network model assumptions). We also describe
protocols that implement the algorithm. For implementa-
tion on the Internet, there is a tradeoff between the overhead
of available bandwidth measurements and fast convergence
to the optimal tree. This tradeoff can be controlled by tun-
ing some parameters in our protocols. Our protocols are
also designed to maintain a small number,O(log n), of soft
states per node to adapt to network changes and node fail-
ures.

1. Introduction

Internet radio and television stations have, in the past,
been operated by companies with high-performance dedi-
cated servers. The availability of broadband access and in-
creasing computing performance of PCs have made it fea-
sible for individuals to run their own radio stations. As a
result, thousands of channels are serving multimedia on the
Internet.1 IP multicast would be a highly efficient delivery

∗Research sponsored by National Science Foundation grant no. ANI–
9977267 and Texas Advanced Research Program grant no. 003658–0439–
2001.

1See Icecast (http://yp.icecast.org/) and SHOUTcast
(http://www.shoutcast.com/).

model for these applications. However, in the absence of
widespread deployment of IP multicast, end-system multi-
cast has emerged as an attractive alternative.

Many end-system multicast systems have been proposed
for different target applications. Each of them has its own
way to create a distribution tree. Of the ones that try to op-
timize a tree, they generally fall into one of two categories
depending on which metric they emphasize in tree construc-
tion, i.e., reducing delay or increasing throughput.2

Consider a set of nodes (end systems) that form an over-
lay on the Internet. In systems with the goal of reducing
delay [1, 3, 4, 14], a mesh consisting of all nodes and a sub-
set of logical links connecting them are first constructed.
Then the nodes measure Internet delays of the logical links,
and run a routing algorithm, such as the distance vector al-
gorithm, to find best paths from each node to others.

In one system with the goal of increasing throughput
[10], logical links with high (available) bandwidth3 are first
chosen as edges of the distribution tree. Then the system
keeps trying to increase the bandwidth between each pair of
nodes by modifying the tree topology. Unlike systems with
the goal of reducing delay, for which the distance vector al-
gorithm is proved to lead to an optimal state, the proposal
in [10] lacks an algorithmic method to achieve an optimal
solution. In another proposal [5], a centralized algorithm
was presented to compute, for a given graph, a “maximal
bottleneck” spanning tree rooted at a given vertex.

Since increasing throughput is more important than re-
ducing delay in one-way multimedia delivery, it is desirable
to have a distributed algorithm that finds a tree with “maxi-
mal throughput.” However, this is not a straightforward task
due to the difficulties described below.

The first is the result of a fundamental limitation of to-
day’s Internet, namely: there is no simple mechanism to
measure the bandwidth available to a flow between two
nodes. Generally, many packets need to be sent to detect the

2The throughput of a distribution tree is a notion we will make more
precise later.

3For simplicity, we will usebandwidthandavailable bandwidthinter-
changeably.

congestion status of a path as well as how much bandwidth
a flow can use without adversely affecting other flows. In
other words, bandwidth measurement requires a lot more
traffic than delay measurement in the Internet. Therefore, in
designing a distributed algorithm, we should avoid measur-
ing the bandwidth of too many logical links. Thus, the first
difficulty we encounter is how to choose logical links that
need to be measured. If we choose too few, we may be un-
able to find an optimal tree due to insufficient information.
On the other hand, if we choose too many, there would be
substantial measurement overhead on the network.

Another difficulty is node failures. Because end-system
multicast depends on participating nodes, which are user
machines rather than routers, it is likely that many nodes
leave the multicast group during a session. Losing some
nodes would definitely change the optimal tree; thus the al-
gorithm should be designed to be adaptive, with the ability
to re-compute a new optimal tree without too much addi-
tional overhead.

In this paper, we present a distributed algorithm that
builds a tree in which the average receiving rate, computed
over all receivers in the tree, is maximized. Convergence
of the tree to an optimal tree is proved under certain net-
work model assumptions. Protocols that implement our dis-
tributed algorithm are then designed to address the difficul-
ties discussed above. In our protocols, the distribution tree
is continuously updated as it converges toward an optimal
tree. When there is a node failure, our protocols will adapt
and the distribution tree will start converging toward a new
optimal tree.

We evaluated our algorithm experimentally by simula-
tion. Our simulation results show that significant bandwidth
gain is obtained within a relatively short time duration. The
optimal tree derived achieves an average receiving rate (per
receiver) as much as 30 times that of a random tree depend-
ing on the network configuration. The simulation results
also demonstrate how the average receiving rate increases
as the distribution tree evolves. For a topology consisting
of 51 end hosts and 100 routers, it takes about eighty sec-
onds to get close to the maximum. Considering the usual
playback time of audio and video streams, we believe this
is reasonably fast.

The remainder of this paper is organized as follows. We
introduce our network model and assumptions in Section 2.
In Section 3, we first present a centralized algorithm to find
an optimal tree. We then present a distributed algorithm that
is guaranteed to converge to a tree as good as the one found
by the centralized algorithm. These results are stated as two
theorems. In Section 4, we present protocols implementing
the distributed algorithm and address various implementa-
tion issues in the Internet. An experimental evaluation of
our algorithm is presented in Section 5. We conclude in
Section 6.

bi
in

node i

b i
out

Internet

Figure 1. Network model

2. Network Model

Our goal in building a streaming media distribution tree
is to find a tree that provides the largest available band-
width. Available bandwidth is determined by many factors.
In particular, the available bandwidth between two nodes
is a function of the underlying Internet topology and exist-
ing traffic. To simplify our model, we use the following
observations to abstract away detailed topology and traffic
information in our network model.4

• Usually access links are bottlenecks causing conges-
tion while backbone links are loss-free [15].

• An access link has incoming and outgoing bandwidths
that do not affect each other.

An access link is a link that connects a host or its local area
network to its ISP. Since congestion occurs mainly on ac-
cess links, we assume that the bandwidth available to a flow
between two nodes is determined by the congestion status
of each node’s access link. The other links in between add
delay, but do not limit the bandwidth of the flow.

2.1. Abstract model

A visual representation of our model is shown in Fig-
ure 1. A node is connected to the Internet through an access
link, which has a pair of parameters: incoming and outgo-
ing bandwidths. The incoming bandwidth of a node is the
bandwidth from the ISP to the node, and the outgoing band-
width is the bandwidth from the node to its ISP. In Figure 1,
bin
i represents the incoming bandwidth of the access link of

nodei, andbout
i the outgoing bandwidth. A configuration of

our network model is defined to beM = (N,B), whereN
is a set of nodes andB is the set,{(bin

i , bout
i), i ∈ N}. N has

n + 1 elements: a sender andn receivers. For convenience
in presenting algorithms, we assumeN = {0, 1, 2, . . . , n},
where0 represents the sender, and{1, 2, . . . , n} receivers.

Consider a distribution tree consisting of the nodes inN .
The root of the tree is node0, the sender. An intermediate
node in the tree has one incoming connection from its par-
ent and one or more outgoing connections to its children.
We assume that the outgoing link bandwidth is allocated
equally to its children. Letci denote the number of chil-
dren of nodei. We make the following assumption onbi,j ,

4This abstraction is needed by our theorems in Section 3, but not by
our protocol implementation in Section 4.

2

Table 1. Variables
Variable Description

bin
i incoming access link bandwidth of nodei

bout
i outgoing access link bandwidth of nodei

bi,j edge bandwidth from nodei to nodej
rin

i incoming rate of nodei
rout

i outgoing rate of nodei
ci number of children of nodei

theedge bandwidthfrom nodei to a child nodej, for every
edge in the distribution tree.

Edge Bandwidth Assumption Each nodei is charac-
terized bybin

i and bout
i such that if nodej is a child of

node i in the tree, thenbi,j = min
(

1
ci

bout
i , bin

j

)
, where

i = 0, 1, . . . , n, j = 1, 2, . . . , n, andi 6= j.

If backbone links are not congested, then the bottleneck
between two nodes should be one of the access links at ei-
ther end. Therefore, we abstract away Internet topology
and traffic by this assumption, and consider only access link
bandwidths in our abstract model. (This abstraction is used
by our theorems in Section 3. In our protocol implementa-
tion, described in Section 4,bi,j is obtained by measuring
the available bandwidth from nodei to nodej.)

The incoming (receiving) rateof nodei is the minimum
of edge bandwidths on the path from the root node to node
i.

rin
i = min

k=1,...,l
bik−1,ik

(1)

where(0 = i0, i1, . . . , il = i) is a path from the root to
nodei. Theoutgoing (sending) rateof nodei is defined as
follows.

rout
i = min

(
rin
i ,

1
ci

bout
i

)
(2)

Table 1 summarizes the variables we have defined.

2.2. Fair Contribution Requirement

The centralized and distributed algorithms to be pre-
sented in Section 3 are “greedy” algorithms. For these al-
gorithms, in order for the distribution tree to converge to a
global optimum, rather than a local optimum, the following
condition is needed.5

Fair Contribution Requirement If bin
i > bin

j , then
1
ci

bout
i > 1

cj
bout
j , for i, j ∈ {1, 2, . . . , n}, i 6= j.

This requirement states that a node that receives more
should provide more to each of its children. Suppose this
requirement is not satisfied by a node that has a large incom-
ing access link bandwidth and, relatively, a very small out-
going access link bandwidth. (This is typical of an ADSL

5See proof of Theorem 1 in Appendix A.

access link.) If this node is placed high (close to the root) in
the distribution tree, selected by the greedy approach on the
basis of its large incoming bandwidth without regard to its
small outgoing bandwidth, then it is possible that the tree
would fail to converge to the global optimum. Thus, before
using one of the algorithms in Section 3 to find a distribu-
tion tree, the values ofbin

i and bout
i , for i = 1, 2, . . . , n,

should be chosen such that the Fair Contribution Require-
ment is satisfied. On the other hand, if a node, sayi, has
a very largebout

i relative tobin
i , it would be desirable to

choose a large value forci so long as the Fair Contribution
Requirement is not violated.

We name this requirement “Fair Contribution” because,
assuming thatci is the same, for alli, the requirement states
that a node that receives more from the system should pro-
vide more to the system. We consider this to be a basic
fairness principle for peer-to-peer networks.

2.3. Tree evaluation

The incoming rate of each receiver is a good measure
for evaluating a distribution tree, because it represents the
amount of data that can be delivered from the root to the
receiver per unit time. Given a network modelM = (N,B)
and a tree consisting of the nodes inN , we can computerin

i

for every receiver nodei. A list of these rates is called a
rate vector: R = (rin

1 , rin
2 , . . . , rin

n). Note that each tree has
an associated rate vector.

We can compare distribution trees by comparing their
rate vectors. However, it is difficult to determine which
vector is better. The best vector for one receiver is not nec-
essarily the best for another. We can define a partial or-
der as follows: For rate vectors,R1 = (r1

1, r
1
2, . . . , r

1
n) and

R2 = (r2
1, r

2
2, . . . , r

2
n), R1 ≥ R2 if and only if r1

i ≥ r2
i for

all i, 1 ≤ i ≤ n. With the partial order, although we do
not know in general which rate vector is “best,” it should be
clear that if there is a best vector, it must be a rate vector
that is not less than any other rate vector. However, for a
given network modelM , there are usually more than one
such “locally optimum” rate vectors. Trying to find one of
these is too conservative a strategy. If we stop after finding
a rate vector that is not less than any other, we may overlook
a chance to increase a large amount of rate for one receiver
by sacrificing a little for another. To take the overall rate
increase into account, we evaluate a distribution tree by its
average incoming rate1n

∑n
i=1 rin

i .

3. Optimal Algorithms

We define an optimal distribution tree to be a tree that
maximizes the average incoming rate of a receiver. In this
section, we first present an efficient centralized algorithm
and prove that it computes an optimal distribution tree. Next
we present a distributed version of the algorithm and prove

3

CENTRALIZED-OPTIMAL -TREE

1 T ← ∅, X ← {0}, Y ← N − {0}, rin
0 ←∞

2 while Y 6= ∅

3 do v ← a node inX such thatrout
v = maxi∈X rout

i

4 w ← a node inY such thatbin
w = maxi∈Y bin

i

5 T ← T ∪ {(v, w)}
6 X ← X ∪ {w}
7 Y ← Y − {w}
8 if |{x|(v, x) ∈ T}| = cv

9 X ← X − {v}
10 return T

Figure 2. Centralized algorithm

that it converges to a tree that has the same rate vector as the
optimal tree computed by the centralized algorithm.

3.1. Centralized algorithm

Figure 2 shows the centralized algorithm to find an opti-
mal distribution tree.X is a set of nodes that can accommo-
date more children, andY a set of nodes that are not added
to the tree yet. Initially, only the root node is inX, and the
others are inY . In each iteration, the algorithm selects a
node with the highest outgoing rate inX, and a node with
the highest incoming access link bandwidth inY . The edge
connecting them is then added to the treeT . Nodes that
cannot accept a child any more are deleted fromX.

This algorithm is similar to the centralized algorithm in
[5] in that both algorithms are based on the greedy method.
However, both our abstract model and objective function for
optimization are different from the ones in [5].

The following theorem is proved in Appendix A.
Theorem 1 With Edge Bandwidth Assumption and Fair
Contribution Requirement, CENTRALIZED-OPTIMAL -
TREE yields a treeT that maximizes the average incoming
rate 1

n

∑n
i=1 rin

i .

3.2. Distributed algorithm

In a distributed version of our algorithm, each node
maintainsO(log n) states about its ancestors in the tree.
The distributed algorithm is specified by the actions of each
node, presented in Figure 3, where nodex denotes some
node inN . State variables maintained by nodex are shown
in Table 2. Protocol messages sent and received between
nodes are shown in Table 3.

Initially, we assume that the state variables,p andC, in
each node have been assigned values such that the nodes in
N form an arbitrary tree rooted at node 0. The variables,p
andC, are updated as shown in Figure 3. In our abstract net-
work model,bin

i , bout
i , andci, are known constants, for all

i ∈ N , and they satisfy the Fair Contribution Requirement.
Also, bi,j , for all i, j ∈ N , are known constants, and they
satisfy the Edge Bandwidth Assumption. (In our protocol
implementation of the distributed algorithm, presented in

DISTRIBUTED-OPTIMAL -TREE

. Code for nodex (0 ≤ x ≤ n).
1 periodic probe:
2 choose a random ancestora ∈ A
3 if min(rin

a , ba,x) > rin
x

4 send〈probe;x, rin
x , bin

x , bout
x , cx〉 to a

5 upon receiving〈probe;y, rin
y , bin

y , bout
y , cy〉:

6 if y 6∈ C and rin
y < rout

x

7 if |C| < cx or minv∈C rout
v < min

(
rout

x , bin
y , 1

cy
bout
y

)
8 NewChild ← y
9 else ifminv∈C bx,v > rin

y

10 m← a random child
11 send〈probe;y, rin

y , bin
y , bout

y , cy〉 to nodem
12 elseignore the〈probe〉 message
13 elseignore the〈probe〉 message

14 upon receiving〈child, y〉 or NewChild 6= NIL :
15 if NewChild 6= NIL

16 y ← NewChild
17 NewChild ← NIL

18 C ← C ∪ {y}
19 if |C| > cx

20 findl such thatbx,l = minv∈C bx,v

21 C ← C − {l}
22 if y 6= l
23 send〈accept;x〉 to y
24 findi such thatbx,i = maxv∈C bx,v

25 send〈child; l〉 to nodei
26 else send〈accept;x〉 to y

27 upon receiving〈accept;y〉:
28 send〈leave;x〉 to nodep
29 p← y

30 upon receiving〈leave;y〉:
31 C ← C − {y}

Figure 3. Distributed algorithm

Section 4, we describe several protocols that provide node
x with up-to-date values of its variables.)

In Lines 1–4, nodex chooses an ancestor randomly.
Random choice does not compromise algorithm correctness
as long as the root node has nonzero probability to be cho-
sen. It only affects how fast a tree converges to an opti-
mal distribution tree. If the chosen ancestor can be a better
parent than its current one, nodex sends a〈probe〉 mes-
sage to the ancestor. Lines 5–13 describe the actions taken
when a node receives a〈probe〉 message. If the node cannot
provide a higher rate than the current incoming rate of the
probing node, the message is discarded. If it has room for
a new child or the probing node is able to provide a higher
rate to child nodes than one of the children ofx, it accepts
the probing node by settingNewChild to the probing node,
which activates the next part of the algorithm. Otherwise,

4

Table 3. Messages of DISTRIBUTED-OPTIMAL -TREE (0 ≤ i ≤ n)

Message Sender Meaning
〈probe;i, rin

i , bin
i , bout

i , cy〉 i or receiver’s parent The receiver is asked to be a new parent of nodei.
〈child; i〉 receiver’s parent The receiver is asked to accept nodei as a child.
〈accept;i〉 i Nodei has accepted the receiver as its child.
〈leave;i〉 i Nodei is no longer a child of the receiver.

Table 2. State variables of node x

Variable Description
p parent
C set of children
A set of ancestors
bin
x incoming access link bandwidth of nodex

bout
x outgoing access link bandwidth of nodex

bx,c bandwidth from nodex to a childc (c ∈ C)
cx maximum number of children
rin

x incoming rate of nodex
rout

x outgoing rate of nodex
ba,x bandwidth from an ancestora to nodex (a ∈ A)
rin

a incoming rate of an ancestora (a ∈ A)

the 〈probe〉 message is forwarded to a node chosen ran-
domly among its children. When Lines 14–26 are triggered
by NewChild or a〈child〉 message, the new node is added
to the children set and the worst (lowest edge bandwidth)
child is cut and forwarded to the best child with a〈child〉
message. Lines 27–29 handle the reception of an〈accept〉
message from a new parent, and Lines 30–31 handle the
reception of a〈leave〉 message from a child.

The following theorem is proved in Appendix B.
Theorem 2 With Edge Bandwidth Assumption and Fair
Contribution Requirement, DISTRIBUTED-OPTIMAL -
TREE makes the distribution tree converge to a tree
that has the same rate vector as the one obtained with
CENTRALIZED-OPTIMAL -TREE.

4. Protocol Implementation

To implement DISTRIBUTED-OPTIMAL -TREE, several
protocols are needed to initialize state variables in each
node and measure up-to-date values of these variables,
namely: the Join protocol, the Edge Bandwidth Measure-
ment protocol, the Bottleneck Discovery protocol, and the
Ancestor Token protocol.

4.1. Joins

Each joining node knows the root (sender) address
through an out-of-band channel, such as WWW. When the
root receives a join request from nodex, x 6= 0, the root
acceptsx as a child if the root has fewer children thanc0.
Otherwise, the root returns the address of one of its chil-
dren, say nodei. Thenx sends a join request toi. This pro-
cedure repeats untilx is accepted by some tree node. With

this protocol, the processing overhead of joins is distributed
over all nodes. Because every node in the tree is capable of
handling join requests, the sender’s load is further reduced
by announcing addresses of other tree nodes, in addition to
the sender, over the out-of-band channel.

When the join request ofx is accepted by nodey, y sends
to x a range of sequence numbers indicating the part of the
data stream available fromy. Nodex notifiesy of a chosen
starting sequence number, andy starts data transmission.
After joining the tree, the state variables ofx are initialized
as follows:p = y, cx = 2, C = ∅, A = ∅, bin

x = bout
x =

∞, andrin
x = rout

x = 0. The root node has the same initial
values exceptrin

0 = ∞.

4.2. Tree information update

Edge bandwidthbx,c The Edge Bandwidth Measurement
protocol measuresbx,c from actual data transmission to
avoid introducing extra traffic. Nodex forwards data pack-
ets toc using the congestion control mechanism of TCP.6

In the data stream, there are marker packets, ormarkers,
inserted by the root. In between two consecutive markers,
32 kB of data are transmitted. A marker has three fields:
seq from , seq to , andr in . The last field,r in , is the
incoming rate of the node who sends the marker; this field,
updated at every node, is used by the Bottleneck Discovery
protocol to be described below.seq from and seq to
are set by the root and do not change. They contain the se-
quence numbers of the data packet following this marker,
and the data packet preceding the next marker.

A marker initiates throughput measurement. Nodec
records the time when it receives a marker. When the data
packet whose sequence number isseq to arrives,c calcu-
lates throughput from the amount of received data and the
elapsed time since it received the marker. In a case when
the data packetseq to is lost in transmission,c calculates
throughput when the next marker or a data packet whose se-
quence number is larger thanseq to arrives. The smaller
of the measured throughput andbin

x is an estimate ofbx,c,
and sent tox. (Note that inx, until it receivesbx,c from
c for the first time,c is excluded wheneverx compares its
children to select one of them in the distributed algorithm.)

Throughput is a convenient metric for available band-
width, used in some previous studies [10, 8]. Other avail-

6Our data transport protocol does not use other features of TCP, such
as reliability.

5

able bandwidth estimation methods [7, 9] can also be used
instead. A disadvantage of using throughput to estimate
bandwidth is thatx must receive all of the data packets in
between two markers before it forwards the first marker to
c. Otherwise, data transmission rate may be limited by the
receiving rate ofx, rather than the bandwidth betweenx
andc. It certainly increases latency. Although we can avoid
this latency by using dummy data to measurebx,c, we letx
wait to use the actual data stream because our protocols are
designed for bandwidth-intensive applications.

Outgoing access link bandwidthbout
x bout

x is estimated
as cx

|C|
∑

c∈C bx,c if C 6= ∅, and∞ otherwise. When
|C| = cx, this is simply the total edge bandwidth and might
be inaccurate if the outgoing access link is not saturated.
However, an intermediate node in a distribution tree usually
has more outgoing traffic than incoming traffic because the
node has more than one child. Besides, an access link with
more outgoing bandwidth than incoming bandwidth is rare.
Therefore outgoing links are likely to be congested and the
total edge bandwidth would be a good estimate for the out-
going access link bandwidth. When|C| < cx, the above
formula tends to overestimatebout

x and accordingly gives an
advantage tox in finding its position in the tree. However,
in the case thatx is located higher in the tree than it should
be,x has a higher probability to get a new child. Eventually
C of x becomes full and the inaccuracy is corrected.

Number of children cx and incoming access link band-
width bin

x Initially cx is set to2. To satisfy the Fair Contri-
bution Requirement,bin

x is assigned to be1cx
bout
x . Although

this is a stronger condition than that in the Fair Contribution
Requirement, it is simple and easy to implement. In this
case, if nodex is willing to support more children without
reducing its current incoming rate, it can increasecx while
not violating the Fair Contribution Requirement so long as
the following condition is satisfied:bin

x = 1
cx

bout
x > rin

x .
The reason is as follows. Whenx increasescx, it should
decreasebin

x to the new value of1cx
bout
x to satisfy the Fair

Contribution Requirement. The reducedbin
x might causex

to be moved to a new optimal position by the algorithm.
However,rin

x remains unchanged, because otherwise there
must be a nodey on the path from the root tox that has
a smaller incoming bandwidth and it meansx is not at an
optimal position.

Incoming rate rin
x The Bottleneck Discovery protocol

providesrin
x . The root setsr in in each marker to “in-

finity.” When a nodei receives a marker from its parentp,
it comparesr in in the marker andbp,i. If bp,i is smaller,
i overwritesr in with bp,i. The marker is then forwarded
to i’s children. Thus, when the marker reaches nodex and
has been updated byx, r in contains the minimum edge
bandwidth on the path from the root to nodex.

Outgoing rate rout
x When nodex hasrin

x , bout
x , andcx,

rout
x is obtained directly from Eq. 2.

Ancestor information A, rin
a , ba,x Since Edge Band-

width Measurement protocol is run only between a parent
and a child,ba,x needs to be measured separately. A con-
cern is that measuringba,x may overwhelma if many de-
scendants ofa try to measure simultaneously. So, instead of
lettingx choosea arbitrarily, we design the Ancestor Token
protocol which takes care of Lines 2–3 in the algorithm.

In the Ancestor Token protocol, nodea issues a token
(packet) containingrin

a , whenevera has one or more chil-
dren. The token is passed to a randomly chosen child. When
nodex receives a token froma, it passes the token to a ran-
dom child if a is its parent. Otherwise, it either keeps the
token with probabilityp, or forwards the token to a random
child with probability1 − p. If x is a leaf node, it always
keeps the token. Keeping the token means thatx chooses
a in Line 2. While x has the token froma, it is entitled
to measureba,x. Note thatx retrievesrin

a from the token,
which is needed in Line 3.

The measurement procedure is similar to the Edge Band-
width Measurement protocol. Each node stores in its buffer
at least two consecutive marker packets and all data packets
in between them. Nodex sends a protocol message toa re-
questing measurement. Thena transmits two markers with
data between them.ba,x is estimated as in the Edge Band-
width Measurement protocol. One difference is that the end
of data transmission is detected by timeout in case the last
data packet and the second marker are lost.

After ba,x has been measured or the token is lost (de-
tected by timeout),a is ready to issue a new one. By ad-
justing how often tokens are issued, each node can control
the amount of traffic used for bandwidth measurement from
itself to descendants.

After getting rin
a and ba,x, x runs the remaining part

(Lines 3–4) of the algorithm. The Ancestor Token proto-
col removes the need for keeping information on ancestors.
A is no longer needed to run the algorithm. Therefore the
amount of information kept by nodex is O(cx).

4.3. Node leaves and failures

In end-system multicast, we should pay more attention
to node failures, because end systems are less reliable than
routers in IP multicast. Therefore, it is critical to have ad-
dress information about ancestor nodes. In our implemen-
tation, an important side effect of the Ancestor Token Pro-
tocol is propagating a node’s address to descendants. When
a node has lost its parent, it is desirable for the node to con-
tact its closest ancestor in the tree. We add a field called
distance into the token packet to enable each node to
construct a path from the root to itself.distance is ini-
tially set to0 by the node issuing a token, and incremented
by one by every node receiving it. Each node caches a list
of ancestors containing their addresses and distances. These
are soft states to help recovery from node failures. If a node

6

detects the loss of its parent by timeout, it sends a join mes-
sage to nodes in its ancestor cache starting from the closest
one. In the case of a voluntary leave, a leaving node sends
its parent’s address to all its children, so that they can send
join messages to their grandparent.

4.4. Rate adaptation

In an optimal distribution tree, a node may need to make
the data stream forwarded to its child have a lower rate than
the rate of the data stream it receives, if its outgoing rate
is smaller than the incoming rate. A straightforward way
to deal with this situation is to transcode the data stream
[13]. However, it may impose too much processing over-
head on nodes. A better solution is to use hierarchical (or
layered) encoding. A concern with this approach is that a
tree topology change may not lead to quality improvement
if the new incoming rate of a node is less than the cumula-
tive rate of the next layer. However, Yang et al. have shown
that 80% of the average incoming rate of an optimal tree
can be utilized with a few (4 or 5) layers if the rates of lay-
ers are chosen carefully [16]. This indicates that available
bandwidth increase is likely to improve quality for receivers
when hierarchical encoding is used.

5. Evaluation

We use the following access link bandwidth distributions
that include both slow (.05 Mbps) and fast (5 Mbps) links:
a uniform distribution over the interval[.05, 5), a normal
distribution with mean 2 and standard deviation 2, and a bi-
modal distribution consisting of two normal distributions,
of which the means are .05 and 2.5, and the standard devia-
tions are .02 and 2, respectively. In the bimodal distribution,
20% of the receivers are selected from the first normal dis-
tribution. Similar distributions have been used in previous
multicast studies [11, 16].

5.1. How good is the optimal tree?

To show that an optimal tree increases the average in-
coming rate significantly, optimal trees are compared with
random trees. A random tree is built with a given num-
ber of nodes, whose access link bandwidths are drawn from
one of the three distributions described above. An opti-
mal tree with the same set of nodes is computed using
CENTRALIZED-OPTIMAL -TREE. We plot the average in-
coming rates of both trees in Figure 4, with the number of
nodes varied from 100 to 800. Each point represents the
mean over ten simulations.

For all distributions, an optimal tree has a much higher
average incoming rate than a random tree. Note that ran-
dom trees with the bimodal distribution have lower average
incoming rates than those with the normal distribution, even

though the mean of the bimodal distribution is larger than
that of the normal distribution. The reason is that twenty
percent of the nodes drawn from the bimodal distribution
have very small bandwidths. It indicates that a small frac-
tion of low bandwidth users can significantly slow down a
large part of the tree. In such a case, tree improvement is
critical.

Another thing to notice is that the rate decreases (moves
toward the origin) as the number of nodes increases. It is
more noticeable for random trees. The decrease for optimal
trees is, however, relatively small. Therefore, a tree with
more nodes gets more benefit from our algorithm.

5.2. Convergence speed

In practice, how fast a random tree converges to an opti-
mal tree is also important. The convergence speed is heavily
dependent on how tokens are distributed, because they trig-
ger relocation of nodes. Figure 5 shows how long it takes to
achieve 80% of the maximum average incoming rate with
differentp, the probability to keep a token. Each point rep-
resents an average over ten runs. Elapsed time is measured
in rounds. A round is the period during which each node is-
sues a token once. We assume that every node issues tokens
periodically. One round should be long enough for token
propagation and edge bandwidth measurement. We also as-
sume that edge bandwidth measurements are accurate. The
effect of inaccurate measurements will be discussed in Sec-
tion 5.3.

As shown in Figure 5,p should be large for fast con-
vergence. With a smallp, most tokens are wasted by leaf
nodes. In simulations withp larger than0.9, the speed gain
becomes negligible, so we usep = 0.9 in later simulations.

Figure 6 demonstrates how the average incoming rate
changes over time. A tree has 500 nodes, and the average
incoming rate is normalized with respect to the maximum
average incoming rate. Though convergence to the maxi-
mum takes hundreds of rounds, most rate increase happens
within a short duration, about 50 rounds.

To show that convergence time is not sensitive to the
number of nodes, we plot the normalized average incoming
rates both at the beginning and after 50 rounds in Figure 7.
Each point is obtained by taking the average of 10 runs.
Though the average incoming rates after 50 rounds decrease
as the number of nodes increases from 100 to 800, the de-
crease speed is slow. Besides, the initial average incom-
ing rates decrease more as the number of nodes increases.
Therefore, the convergence speed is actually higher for a
larger group.

5.3. Bandwidth measurement errors

In Figure 8, we investigate the impact of inaccurate
bandwidth measurements on the average incoming rate.

7

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

O
pt

im
al

 T
re

e
A

ve
ra

ge
 In

co
m

in
g

R
at

e

Random Tree Average Incoming Rate

100 nodes

800 nodes

Uniform
Normal

Bimodal

Figure 4. Optimal trees
vs. random trees

 0

 100

 200

 300

 400

 500

 600

 700

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
on

ve
rg

en
ce

 T
im

e
(R

ou
nd

s)

p

100 nodes
200 nodes
400 nodes
800 nodes

Figure 5. Convergence time
vs. p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

N
or

m
al

iz
ed

 A
ve

ra
ge

 In
co

m
in

g
R

at
e

Time (rounds)

Uniform
Normal

Bimodal

Figure 6. Evolution of aver-
age incoming rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800

N
or

m
al

iz
ed

 A
ve

ra
ge

 In
co

m
in

g
R

at
e

Number of Nodes

at the beginning

after 50 rounds

Uniform
Normal

Bimodal

Figure 7. Average incom-
ing rates in 50 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
at

io
 o

f A
ve

ra
ge

 In
co

m
in

g
R

at
es

Coefficient of Variation of Measured Edge Bandwidth

Uniform
Normal

Bimodal

Figure 8. Effect of mea-
surement errors

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 In
co

m
in

g
R

at
es

 (
kb

ps
)

Time (Seconds)

Uniform
Normal

Bimodal

Figure 9. Evolution with
measured bandwidth

The tree has 500 nodes. Whenever a node measures an edge
bandwidth, the value is drawn from the normal distribution
with a mean value equal to the accurate edge bandwidth.
We change the coefficient of variation (CoV) of the normal
distribution to vary the degree of errors. The ratio of the
average incoming rates (after 50 rounds) for trees with in-
accurate and accurate measurement is plotted.

The ratio decreases linearly as CoV increases. In order
to achieve a ratio higher than 0.8, CoV should not exceed
0.3. Some congestion control protocols designed to avoid
sending rate fluctuations have sending rate CoV lower than
0.3 [17]; therefore, the throughput of one of these protocols
would be suitable for edge bandwidth estimation in our al-
gorithm implementation. Protocols with larger CoV such as
the AIMD (additive increase/multiplicative decrease) proto-
col of TCP can also be used by having a sufficiently large
measurement timescale to decrease CoV [6].

Figure 9 shows the average incoming rate traces using
AIMD throughput to estimate edge bandwidths. The simu-
lations are run using the ns–2.1b9 simulator,7 on a topology
generated with the Transit-Stub model of Georgia Tech In-
ternetwork Topology Models (GT-ITM) [2]. The topology
contains 75 stub and 25 transit routers. one sender node
and 50 receiver nodes are added to the topology. Access
link bandwidths are drawn from the three distributions de-
scribed at the beginning of this section. Due to large varia-
tion in throughput measurements, the average incoming rate
curves show large fluctuations. One thing to notice is that
the average incoming rate is much lower than the average
of the bandwidth distribution. The first reason is, as we

7http://www.isi.edu/nsnam/ns/

have mentioned before, that measurement errors result in a
low average incoming rate. The second is that throughput
measurements with 32 kB blocks give a significantly lower
value than the actual edge bandwidth, especially for those
with high bandwidth; a 32 kB block may fail to saturate
such a high bandwidth edge. Due to low link utilization, the
measured edge bandwidth becomes lower than the actual
value, and the average incoming rate is also lower than it
should be. However, the algorithm is still effective because
all it needs is relative comparison among edge bandwidths.

Even with the inaccurate bandwidth measurements, the
curves in Figure 9 look similar to those in Figure 6. In Fig-
ure 9, the average incoming rate increases for about eighty
seconds and stays at a relatively stable level. Since the usual
playback time of audio and video streams exceeds minutes
and even hours, we believe that this is acceptable for such
applications.

6. Conclusion

Finding a good tree topology is critical for the perfor-
mance of bandwidth-intensive multicast applications. We
have proposed a distributed algorithm to build a tree in the
application layer, and proved that it finds an optimal tree,
which maximizes the average incoming rate of receivers
under certain network model assumptions. Unlike other ap-
proaches using heuristics to find a local optimum, our al-
gorithm is always heading toward the global optimum. We
have described protocols to implement the algorithm on the
Internet. Since a node does not keep any hard state in our
implementation, it is resilient to membership changes and
failures.

8

Our protocol implementation has room for improvement,
especially in bandwidth measurement. The AIMD through-
put has large variations, caused in part by short-term unfair-
ness of the protocol and in part by interference from other
flows. The former is avoidable [17] by adopting a more fair
and smoother protocol such as TFRC [6]. Because a ba-
sic assumption of our algorithm is that a node can measure
the bandwidth from another node to itself, we expect that a
more accurate and stable estimation technique will lead to
better performance. This is a topic of our future study.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able application layer multicast. InProceedings of ACM
SIGCOMM 2002, Aug. 2002.

[2] K. L. Calvert, M. B. Doar, and E. W. Zegura. Model-
ing Internet Topology. IEEE Communications Magazine,
35(6):160–163, June 1997.

[3] Y. Chawathe and M. Seshadri. Broadcast Federation: an
application layer broadcast internetwork. InProceedings of
NOSSDAV 2002, May 2002.

[4] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
conferencing applications on the Internet using an overlay
multicast architecture. InProceedings of ACM SIGCOMM
2001, Aug. 2001.

[5] R. Cohen and G. Kaempfer. A unicast-based approach for
streaming multicast. InProceedings of IEEE INFOCOM
2001, Apr. 2001.

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. InPro-
ceedings of ACM SIGCOMM 2000, Aug. 2000.

[7] M. Goyal, R. Guerin, and R. Rajan. Predicting TCP through-
put from non-invasive network sampling. InProceedings of
IEEE INFOCOM 2002, June 2002.

[8] K. M. Hanna, N. Natarajan, and B. N. Levine. Evaluation of
a novel two-step server selection metric. InProceedings of
the 9th IEEE ICNP, Nov. 2001.

[9] M. Jain and C. Dovrolis. End-to-end available bandwidth:
measurement methodology, dynamics, and relation with
TCP throughput. InProceedings of ACM SIGCOMM 2002.

[10] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. James W. O’Toole. Overcast: reliable multicasting
with an overlay network. InProceedings of OSDI 2000.
USENIX, Oct. 2000.

[11] T. Jiang, M. H. Ammar, and E. W. Zegura. Inter-receiver
fairness: a novel performance measure for multicast ABR
sessions. InProceedings of ACM SIGMETRICS ’98.

[12] M. S. Kim, S. S. Lam, and D.-Y. Lee. Optimal dis-
tribution tree for Internet streaming media. Techni-
cal Report TR–02–48, Department of Computer Sciences,
University of Texas at Austin, Sept. 2002; available at
http://www.cs.utexas.edu/users/lam/NRL/.

[13] Z. Lei. Media transcoding for pervasive computing. InPro-
ceedings of the 9th ACM Multimedia, Sept. 2001.

[14] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI:
an application level multicast infrastructure. InProceedings
of USITS ’01. USENIX, Mar. 2001.

[15] M. Yajnik, J. Kurose, and D. Towsley. Packet loss corre-
lation in the MBone multicast network. InProceedings of
IEEE Global Internet 1996, Nov. 1996.

[16] Y. R. Yang, M. S. Kim, and S. S. Lam. Optimal partitioning
of multicast receivers. InProceedings of the 8th IEEE ICNP,
Nov. 2000.

[17] Y. R. Yang, M. S. Kim, and S. S. Lam. Transient behav-
iors of TCP-friendly congestion control protocols.Com-
puter Networks, 41(2):193–210, Feb. 2003; an abbreviated
version inProceedings of IEEE INFOCOM 2001, Apr. 2001.

A. Proof of Theorem 1

Proof Let T be the tree built with CENTRALIZED-
OPTIMAL -TREE andR = (rin

1 , rin
2 , . . . , rin

n) its rate vec-
tor. Suppose thatT ∗ is a tree that maximizes the av-
erage incoming rate and that its rate vector isR∗ =
(rin

1
∗
, rin

2
∗
, . . . , rin

n
∗). Without loss of generality, we as-

sume that(1, 2, . . . , n) is the order in which receiver nodes
are added to the treeT by the algorithm. We will show that
T ∗ can be transformed intoT without reducing the aver-
age incoming rate, which proves thatT also maximizes the
average incoming rate.

We use induction on the number of steps in transforming
T ∗ into T . Let Ti denote the transformed tree afteri steps.
Then we are to prove thatTi has the following properties
for all i, where0 ≤ i ≤ n.

1. The subgraph consisting of nodes0, 1, . . . , i and edges
between them inTi is a tree and equal to the corre-
sponding subgraph inT .

2. The average incoming rate ofTi is equal to that ofT ∗.

The base case is trivial, because after zeroth step, the
transformed treeT0 is T ∗ itself. Suppose as induction hy-
pothesis that both properties hold wheni = k−1. It suffices
to show that we can constructTk with both properties.

Let the rate vector ofTk−1 beR′ = (rin
1

′
, rin

2
′
, . . . , rin

n
′).

By the induction hypothesis,rin
i

′ = rin
i for all i, 1 ≤ i ≤

k − 1. The comparison ofrin
k andrin

k
′

gives two cases: (i)
rin
k < rin

k
′
and (ii) rin

k ≥ rin
k

′
. We first show that (i) leads to

a contradiction.
Assuming (i), let nodej be the first node on the path from

the root to nodek in Tk−1 that is not in{0, 1, 2, . . . , k−1}.
If j = k, k’s parent inTk−1 must be in{0, . . . , k − 1},
and have an outgoing rate larger thank’s parent inT to
satisfy (i). This is impossible because of Line 3. Ifj > k,
thenrin

j
′ ≥ rin

k
′
becausek is j’s descendant. From this and

(i), we concluderin
j

′
> rin

k , which meansj should have
been chosen instead ofk in building T . It contradicts the
assumption thatT is obtained by the algorithm.

Now (ii) should hold. Ifk’s position inT is empty in
Tk−1, then we transformTk−1 into Tk by movingk’s sub-
tree (a tree rooted atk) to that position. It does not decrease

9

l

m

k
q

m

0 0

k

p p

l
q

Figure 10. Converted Trees

any incoming rate of nodes ink’s subtree, becausek’s posi-
tion in T is chosen to maximizek’s incoming rate when the
Edge Bandwidth Assumption holds.

If k’s position inT is occupied by nodel in Tk−1, there
are two possibilities depending on whetherk is l’s descen-
dant or not. If it is,Tk is obtained by exchangingk andl.
By (ii), k’s incoming rate does not decrease. Sincek has
been chosen in Line 4, we know the following inequality
holds.

rin
k ≥ rin

l

′
(3)

Therefore, by Eq. 3 and the Fair Contribution Requirement,
the incoming rates of the nodes on the path froml to k in
Tk−1 do not decrease. There is also no change to the incom-
ing rates ofk’s descendants inTk−1 because their ancestors
remain same. The only concern is nodel.

To calculatel’s new incoming rate, suppose thatp andq
are parents ofl andk in Tk−1, respectively. The left tree
in Figure 10 representsTk−1, and the rightTk. The area
surrounded with a dotted line is the common part ofT and
Tk−1, and contains nodes1, 2, . . . , k − 1.

Thenrout
p = rout

p
′ ≥ rout

q
′ by the algorithm. Because

the new incoming rate ofl is min
(
rout
q

′
, bin

l

)
by the Edge

Bandwidth Assumption, there are two cases depending on
which value is the smaller. Ifrout

q
′ ≥ bin

l , l’s new incom-
ing rate after exchange will bebin

l , which is not less than
the previous value because it is the maximumq can get. If
rout
q

′
< bin

l , l’s new incoming rate will berout
q

′, which is

equal torin
k

′
, sincebin

l ≤ bin
k by Line 4. In this case the net

effect fork’s andl’s incoming rates is as follows.

(k’s rate change) + (l’s rate change)

= (rin
k − rin

k

′
) +

(
rin
k

′ − rin
l

′) ≥ 0 (by Eq. 3)

ThereforeTk satisfies both properties.
If k is not l’s descendant,Tk is obtained by exchanging

k’s subtree andl’s subtree. Since we have shown that nei-
therk’s incoming rate nor the sum ofk’s andl’s incoming
rates doesn’t decrease by exchange, it suffices to show that
the incoming rates ofl’s descendants do not decrease.

Before calculating the incoming rate changes ofl’s de-

scendants, we claimrout
q

′ ≥ min
(
bin
k , 1

ck
bout
k

)
. If not,

there exists a bottleneck nodem on the path from0 to q
such thatrout

m
′ is equal torout

q
′. It means we can achieve

a higher average incoming rate by exchanging nodem and
nodek, which contradicts thatTk−1 maximizes the average
incoming rate.

We knowbin
l ≤ bin

k by Line 4, and accordingly1cl
bout
l ≤

1
ck

bout
k by the Fair Contribution Requirement. By this and

the previous claim, we getrout
q

′ ≥ min
(
bin
l , 1

cl
bout
l

)
. Since

q provides a higher rate thanl can forward to its chil-
dren, the incoming rates ofl’s descendants do not decrease.
Therefore, we can obtainTk with both properties.

By induction,Tn maximizes the average incoming rate.
SinceTn = T by the first property,T is a tree that maxi-
mizes the average bandwidth. �

B. Proof of Theorem 2

Proof We first prove a stronger version of the theo-
rem under an assumption that all incoming and outgoing
bandwidths are distinct. The stronger version is that, by
DISTRIBUTED-OPTIMAL -TREE, a tree converges to the
one obtained by CENTRALIZED-OPTIMAL -TREE. With-
out loss of generality, we assume that(1, 2, . . . , n) is the
order in which receiver nodes are added to the treeT
by CENTRALIZED-OPTIMAL -TREE. We use induction on
nodes. The base case is trivial, because node0 is fixed.

Suppose as induction hypothesis that, while running
DISTRIBUTED-OPTIMAL -TREE, nodes 1, 2, . . . , k − 1
forms the same topology as they have inT . No node among
them will move because their〈probe〉 messages are dis-
carded in Lines 6–7 of the distributed algorithm.

Consider nodek. If k is already in the same position as
in T , we are done. Otherwise,k’s incoming rate must be
lower thank’s incoming rate inT becauseT is an optimal
tree and all bandwidths are distinct (no tie). Eventuallyk
sends a〈probe〉 message to0 because0 clearly satisfies the
condition in Line 3 ifk is not at an optimal position. (Send-
ing a〈probe〉 message to a non-root ancestor can accelerate
the convergence, without compromising this proof.)k can-
not receive more than it does inT because all such positions
are filled out by nodes1, 2, . . . , k − 1. However, it keeps
sending〈probe〉 messages until it reachesk’s parent inT .
Sincek is the best node among the remaining ones,k beats
any node in Line 7 and moves to its optimal position.

By induction, all nodes move into their optimal positions
and result in forming a tree equal toT .

If bandwidths are not distinct, we may encounter
ties, but they do not affect incoming rates. Therefore,
DISTRIBUTED-OPTIMAL -TREE converges to a tree with
the same rate vector asT . �

10

