INTERACTIVE VERIFICATION AND CONSTRUCTION OF
COMMUNICATION PROTOCOLS IN PROSPEC

Simon S. Lam*, Ching-Hua Chow*, Mohamed G. Gouda

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

and

A. Udaya Shankar*
University of Maryland
College Park, Maryland 20742

ABSTRACT

The PROSPEC system has been developed on a
SUN 2/120 workstation for interactive protocol verifica-
tion and construction. With the model of communicat-
ing finite state machines, it is most convenient and ef-
ficient for a human designer to specify protocols graphi-
cally and also to verify (or ’debug’) protocols by looking
at displays of reachability graphs. PROSPEC has a
graphical user interface. The graphical interface is not,
however, the most important element of PROSPEC.
The attractiveness of PROSPEC lies in the user’s
ability to access tools that implement techniques for
managing the complexity of protocol specification and
verification and for the modular construction of
protocols. In this paper, we give an overview of
PROSPEC and two of the techniques it implements
(method of projections and multiphase protocol
construction).

1. INTRODUCTION

A layered communications architecture facilitates
the construction of networking software in a modular
fashion. Nevertheless, each protocol layer consists of a
set of complex parallel programs with multiple func-
tions to perform. For example, a data link control
protocol typically has three functions: connection
management and one-way data transfers in opposite
directions. During the past several years, we have been
investigating various abstraction and composition tech-
niques for reducing the analysis/construction of a mul-
tifunction protocol to the analysis/construction of
smaller single-function protocols.

The resolution of a protocol system was proposed
by Lam and Shankar as the basis for developing
abstraction techniques to simplify the analysis and con-
struction of multifunction protocols [1). Roughly speak-
ing, for a protocol system modeled as a network of

*Work supported by National Science Foundation Grant No.
ECS 83-04734.

CH2284-8/86/0000/0067 $1.00 © 1986 IEEE

67

processes that interact by message-passing, its resolu-
tion is measured by the number of distinct process
states and distinct messages. To verify a particular
logical property of a protocol, however, the observable
resolution can be much lower than the actual resolution
of the protocol system. They developed the method of
projections for constructing image protocols. An image
protocol is specified just like any real protocol but is

smaller than the original protocol. It must be con-
structed in such a way that it will not mislead us into

making any false statement about the behavior of the
original protocol. Obviously, fewer logical properties
are observable and verifiable in an image protocol than
in the original protocol. Lam and Shankar presented a
method for constructing a sequence of image protocols
with increasing resolution until one is found with
enough resolution for verifying the logical property in
question. This approach was found to be very effective
for the analysis of multifunction protocols that are not
easily decomposable into different modules for im-
plementing different functions, due to the use of shared
variables and shared messages. Their method has been
applied to verify a version of the HDLC protocol [2].

The construction of a multifunction protocol from a
composition of single-function protocols is a much har-
der problem. There is no easy method that corresponds
to an "inverse projection" operation. Many real-life
protocols, however, can be observed to go through dif-
ferent phases performing a distinct function in each
phase. Chow, Gouda, and Lam defined formally the
concept of a phase. They presented a multiphase model
for protocols and the following three-step methodology
for constructing multiphase protocols:

e Identify the distinct functions of a mul-
tifunction protocol.

e Construct and verify a phase to perform
each function. (A phase is a network of com-
municating finite state machines that has
certain desirable properties, including proper
termination, and freedom from deadlocks
and unspecified receptions.)

e Connect individual phases together so that
the resulting protocol is also a phase, and is
thus guaranteed to possess the desirable
properties of phases.

This last step in the methodology was the basic con-
tribution in [3]. Chow, Gouda, and Lam also presented
a sufficient condition for a multiphase protocol to have
bounded communications given that its constituent
phases have bounded communications. They illustrated
their methodology with the construction of several non-
trivial multiphase protocols, including a version of
IBM'’s BSC protocol for data link control [3] and a high-
level session control protocol [4].

The model of communicating finite state machines
(CFSMs) has been used with success for the specifica-
tion and verification of many communication protocols.
With this model, it is most convenient and efficient for
a human designer to specify FSMs graphically and also
to verify (or 'debug’) his protocols by looking at graphi-
cal representations of reachability graphs. Ideally,
when a protocol has been designed and found to have
the desired logical behavior, executable code can be
generated directly from the internal representation of
the protocol’s graphical specification. (With this objec-
tive in mind, several tools for protocol design and rea-
chability analysis have been developed, such as the ones
developed at IBM Research [5] and at Bell Laboratories

[6].)

We have developed the programming environment
PROSPEC for interactive protocol verification and con-
struetion with more than just the above objective. Fol-
lowing our efforts on the protocol projection method,
the multiphase protocol construction method, and
several other abstraction and composition techniques,
we came to realize that a user-friendly graphical inter-
face in itself is not adequate to make life easy for
protocol designers. The inherent weakness of the
CFSM model is its inability to deal with FSMs with
many states and the resulting large (and possibly
infinite) reachability graph. Even if a graph is finite it
may be too large to display on a screen. Thus the
abstraction and modular construction techniques that
we have developed, in addition to reducing the
analysis/construction of protocols from a large problem
to a hierarchy of small problems, will also considerably
enhance the effectiveness of an interactive graphical in-
terface. At the same time, the interactive graphical in-
terface enhances the effectiveness of the techniques.

PROSPEC has been developed on a SUN 2/120
workstation running 4.2 BSD UNIX. In addition to a
graphical wuser interface, the attractiveness of
PROSPEC lies in the user's ability to do protocol
design and verification interactively and with access to
several helpful tools that implement the methods of

68

projections, multiphase protocol constructions, and
some others. In this respect, two features of PROSPEC.
are significant. First, a standard internal represen-
tation of data facilitates the passing of FSMs and rea-
chability graphs from one tool to another. Second, each
tool of PROSPEC is associated with a window and to
further increase the interaction speed, we employ the
menu utility of SUN and group all commands provided
by PROSPEC into menus. The menu-selection facility
relieves a user from having to remember all the com-
mands and reduces the number of key strokes he has to
enter for interaction with PROSPEC [7,8].

This paper is organized as follows. In Section 2, we
give an overview of the method of projections. In Sec-
tion 3, we give an overview of the multiphase protocol
construction methodology. In Section 4, we show the
structure of tools and menus available in PROSPEC
and also illustrate the menus themselves. The current
PROSPEC environment supports only the CFSM model
and state exploration methods. (The method of projec-
tions, however, is not limited to the CFSM model. This
is illustrated by its application in [2] where an HDLC
protocol and its image protocols are specified using a
programming language notation and verified using a
deductive inference method.)

2. METHOD OF PROJECTIONS [1]

A protocol system consists of a network of protocol
entities and channels. At any time, the global state of
the system is specified by a joint description of the
states of the entities and channels. Let G denote the
set of all global states of the protocol system. The states
of entities and channels (and hence the global state)
may change due to the occurrence of certain events: en-
tities sending messages, entities receiving messages,
timeouts, channel errors, etc. These global state tran-
sitions define a directed graph on G. Given any initial
global state gy the portion of the graph that is reach-

able from g is referred to as the reachability graph

R. R contains all available information on the logical
properties of the protocol system.

Specifically, assertions of liveness properties are
predicates on the set of paths in G. A liveness assertion
is valid if it is satisfied by the paths in R. Assertions of
safety properties are predicates on G. Let Rs denote the
set of states reachable from g A safety assertion is

valid if it is satisfied by the states in RS.

Verification of these properties may be carried out
by a brute-force state exploration (in the case of a small
finite R), or by proof techniques for parallel programs.
The method of projections can be used in conjunction
with either verification approach.

Consider a protocol with several distinguishable
functions. We would like to ask questions regarding the
logical behavior of the protocol system concerning these
functions. Instead of asking such questions all at the
same time, we may ask them with respect to one func-
tion of the protocol at a time. Our analysis approach
avoids a characterization of R. Instead, we construct
from the given protocol an image protocol for each of
the functions that are of interest to us.

An image protocol is specified just like any real
protocol. The states, messages and events of entities in
an image protocol are obtained by aggregating groups
of states, messages and events of the corresponding en-
tities in the original protocol. Definitions needed for the
construction of an image protocol are presented in f].

Given an image protocol, suppose that a second im-
age protocol is obtained by aggregating some of the en-
tity states, messages and events of the first one. We say
that the second image protocol has a lower resolution
than the first image protocol. The original protocol can
be thought of as an image protocol of itself, and ob-
viously it has the highest resolution available.

Due to the aggregations, an image protocol is
smaller than the original protocol and is typically easier
to analyze. However, the reachability graph of an image
protocol captures only part of the logical behavior of
the original protocol. The following useful properties of
image protocols are proved in [1].

First, any safety property that holds for an image
protocol must also hold for the original protocol.
Second, if an image protocol is constructed with suf-
ficient resolution so that its events satisfy a well-formed
property, then it is faithful: Any logical property,
safety or liveness, of the image protocol holds 7 f, and
only if, it holds in the original protocol. The well-
formedness of an image protocol is determined by
checking protocol entities individually. The well-formed
property is the weakest sufficient condition for faithful-
ness that can be stated without any knowledge of R.

Given a protocol and an assertion A0 stating some

desired logical behavior of the protocol, our objective is
to construct the smallest image protocol that is of suf-
ficient resolution to verify Ay Towards this goal, we
construct a sequence of image protocols of increasing
resolution by a stepwise refinement process. The initial
image protocol can be determined by the resolution
needed to describe A\ The stepwise refinement is ter-
minated when an image protocol with sufficient resolu-
tion to wertfy AO is constructed. Two stepwise refine-
ment algorithms are presented in [1] with termination
conditions based wupon the two image protocol
properties mentioned above.

69

Given a multifunction protocol, a faithful image
protocol can always be obtained for each function by
adjusting its resolution. However, the successful con-
struction of faithful image protocols that are much
smaller than the original protocol depends upon
whether the protocol has a good structure. Thus, one
can think of a multifunction protocol as being
well-structured if it possesses small faithful image
protocols for its functions.

3. MULTIPHASE PROTOCOLS AND

THEIR CONSTRUCTION (3]

A discipline for constructing multiphase communica-
tion protocols was developed for the CFSM model 13]-
In this model, a machine M is a directed labelled graph
with two types of edges, namely sending and recesving
edges. A sending (or receiving) edge is labelled -f (or
+f, respectively) for some message f in a finite set F of
messages. A node in M whose outgoing edges are all
sending (or all receiving) edges is called a sending (or
receiving, respectively) node. A node in M whose out-
going edges include both sending and receiving edges is
called a mized node, and a node in M that has no out-
going edges is called a final node. One of the nodes in
M is identified as its ¢nitial node, and each node in M
is reachable by a directed path from the initial node.

Let M and N be two machines with the same set F
of messages; the pair (M,N) is called a network of M
and N.

A state of network (M,N) is a four-tuple [v,w,%,¥],
where v and w are nodes in M and N respectively, and
x and y are strings over the messages in F. Informally, a
state [v,w,x,y] means that the executions of M and N
have reached nodes v and w respectively, while the in-
put channels of M and N store the strings x and y
respectively.

Let M and N be two machines. The network M,N)
is called safe if, and only if, its communication ter-
minates properly and is free from deadlocks and un-
specified receptions.

Let (M,N) be a safe network, and let v and w be two
final nodes in machines M and N respectively. The
node pair (v,w) is called an exit node pair of (M,N) if,
and only if, the state [v,w,E,E] of (M,N) is reachable.

The exit set of a safe network (M,N) is the set of all
exit node pairs of (M,N).

A safe network (M,N) is called a phase if, and only
if, every final node in M or N appears in exactly one
exit node pair in the exit set of (M,N).

In what follows, we discuss a discipline to connect a
number of phases together to construct a multiphase
network that is also a phase (thus guaranteeing that its
communication terminates properly and is free from
deadlocks and unspecified receptions). Phases are con-
nected by joining the exit node pairs of one phase to
the initial node pair of another phase, or the same
phase. The technique is discussed in detail next.

Let p1=(M1,N1) and p2=(M2,N2) be two phases,
with exit sets S and S, respectively, and let C be a
subset of of S;. We define a composite network of p,,
C, and p,, denoted by <p,,C,py>, t0 be the network
(M,N) where

i. M is the machine constructed (from M, C,
and Mz) by joining all the final nodes of My
in C to the initial node of M2. The initial
node of M; becomes the initial node of M.

ii. N is the machine constructed (from N,, C,
and N2) by joining all the final nodes of N;
in C to the initial node of N2. The initial
node of N1 becomes the initial node of N.

The two phases p,=(M,,N;) and py=(My,N,) are
called the constituent phases of the composite network
<p1,C,p2>. In this case, machines M1 and M, are
called the constituent machines of M, and machines Nl
and N, are called the constituent machines of N. It is
proved in [3] that the composite network <p;,C,py> is
also a phase whose exit set is (S; U 8, - C).

So far we have discussed how to connect one phase

to another. Next, we discuss how to connect a phase to
itself.

Let p1=(M1,N1) be a phase whose exit set is S;, and
let C be a subset of S,. The composite network of Py
and C, denoted <p,,C>, is a network (M,N) where

i. M is the machine constructed (from M, and
C) by joining all the final nodes of M, in C
to the initial node of M. The initial node of
M, becomes the initial node of M.

ii. N is the machine constructed (from N, and
C) by joining all the final nodes of N1 in C
to the initial node of N,. The initial node of
N, becomes the initial node of N.

70

Phase p1=(M1,N1) is called the constituent phase of
the composite network <p1,C>=(M,N). In this case,
machines M1 and N1 are called the

machines of M and N respectively. It is proved in [3]
that the composite network <p,,C> is also a phase

constituent

whose exit set is S1 -C.

4. THE PROSPEC ENVIRONMENT
PROSPEC is constructed in a modular fashion.
Each important function of the system is realized by a
tool. The hierarchy of tools within PROSPEC is shown
in Figure 1. The user can invoke each tool indepen-
dently. PROSPEC also provides a tool called pdtool to
facilitate invocation of the other tools. Each fork arrow
in Figure 1 indicates that a tool can be invoked; a new
window for the tool is created upon such invocation.
The current version (1.1} of PROSPEC consists of six

tools:

1. The protocol design tool (pdtool) provides
an interface between the user and the other
tools. After starting the Suntools window en-
vironment, pdtool is invoked by typing
npdtool” in any Shell Tool window. Figure 2
shows the menu of pdtool.

9. The protocol editing tool (petool) provides
commands for the user to specify the topol-
ogy of a protocol system. Figure 3 shows the
menus of petool.

pommmooooTTTIIIIATTTTT H

‘ [l

P P

H Menu H

: TN, —=iork

| Protocol Degign Togl |
g T 3
: Protocol i St ':
1 P ate
' Editing ! 11 Exploration E
' Ml“ ' enu !
] 1 1
:LEmmgql.lﬁ.di.ting.Tpp_l-} oy B
_________ e Machine E
7 b Menu | !
H Machine [t
H s 1 State H
i Editing ': Exploration ':
! ! N o) Q. 3
[}]
L

lr R anitaain Nyttt .:
] 1t]
: Protocol : : Multiphase
! Projection " Construction

)
| i |
!| Project || Explore|| Edit 11| Construct Explore{ | Edit
{|Protocol| | States ||Machin t1iMultiphase States ||[Machings
{{_Menu ti__Menu Menu :
: H Maultiphase ;
1]
! Protocol Projection Tool | i onstrucltxon !
hreecrcrreemr e —r_ e —-————- e o oo.

Figure 1. Structure of the PROSPEC System

3. The machine editing tool (metool) is capable
of specifying labeled directed graphs of
which CFSMs constitute a special case.
Figure 4 shows the menus of metool.

4. The state exploration tool (setool) is an in-
teractive tool for exploring all reachable
states of a protocol (given a finite rea-
chability graph). The reachability graph can
be generated one portion at a time according

to the user’s decisions. The too] highlights
all problem states in the graph. Figure 4

shows the menus of setool. Note that all
functions of the metool are included, so that
when errors are discovered, the user can
proceed immediately to modify the machines
of the protocol.

5. The protocol projection tool (pptool) imple-
ments the method of projections [1]. The
user can aggregate machine states and mes-
sages according to some resolution. The tool
constructs the corresponding image protocol.
The image protocol can be checked for faith-
fulness. The reachability graph of the image
protocol can be generated within this tool.
The machines can also be edited within this
tool. Figure 6 shows the menus of pptool.
Since the Edit Machine menu is shown in
Figure 5, it is not repeated in Figure 6.

6. The multiphase construction tool (metool)
implements the multiphase protocol con-
struction methodology [3]. Each protocol,
together with an exit set, can be specified
and checked to see if it is a phase. The tool
provides functions to connect phases
together to form a larger protocol (also a
phase) and to disconnect them. Figure 7
shows the menus of mectool. Note that the
Explore States menu and Edit Machine
menu are also included in this tool.

Figure 8 shows two additional menus available in
the subwindow at the top of the screen. The Zoom
Scale menu allows the user to select different sizes for
displaying machines and graphs on the screen.

Figures 9-11 illustrate several typical screen displays
during the course of interacting with PROSPEC. Figure
9 shows two communicating FSMs with a partial dis-
play of the reachability graph. The machines and the
graph can be moved around on the screen. Their sizes
can be changed by pulling down the Zoom Scale menu.
Most interactions with PROSPEC are done by the user
with the SUN workstation’s mouse. The menus are hid-
den until the user holds down one of the buttons on the

71

mouse. Figures 10 and 11 show displays when the
mctool was used to construct a multiphase protocol.
Figure 10 shows the primary machine of the BSC
protocol constructed by connecting phases together [3];
to do so the user needs to see only the initial nodes and
exit nodes of individual phases. Figure 11 shows the in-
ternal structure of the primary machine after it has
been constructed.

A more detailed description of PROSPEC can be
found in [7,8]. We anticipate adding some more tools to
PROSPEC in the future.

REFERENCES

[1] S. S. Lam and A. U. Shankar, "Protocol
Verification via Projections," IEEE Trans-
actions on Software Engineering, Vol.
SE-10, No. 4, July 1984, pp. 325-342.

[2] A. U. Shankar and S. S. Lam, "An HDLC
Protocol Specification and Its Verification
Using Image Protocols,* ACM T ransactions
on Computer Systems, Vol. 1, No. 4,
November 1983, pp. 331-368.

[3] C.-H. Chow, M. G. Gouda, and S. S. Lam,
"A Discipline for Constructing Multiphase
Communication Protocols," ACM Trans-
actions on Computer Systems, Vol. 3, No.
4, November 1985, pp. 315-343.

[4] C.-H. Chow, M. G. Gouda, and S. S. Lam,
"An Exercise in Constructing Multiphase
Communication Protocols," Proc. ACM
SIGCOMM 84 Symposium (June 1984),
ACM, New York, pp. 493-503.

[5] P. Zafiropulo, et al., "Towards Analyzing
and Synthesizing Protocols," IEEE Trans-
actions on Communications, Vol. COM-28,
April 1980, pp. 651-661.

6] S. Aggarwal and R. P. Kurshan,
"Automated Implementation from Formal
Specification," Protocol Speci fication, Test-
ing, and Verification IV, Y. Yemini et al.
(editors), North-Holland, 1985.

[7] C-H. Chow and S. S. Lam, "Prospec 1.1:
User’s Guide," Technical Report, Depart-
ment of Computer Sciences, University of
Texas at Austin (in preparation).

[8] C.-H. Chow, "A Discipline for Verification
and Modular Construction of Communica-
tion Protocols," Ph.D. Dissertation, Dept. of
Computer Sciences, University of Texas at
Austin, December 1985.

|p1ace machine

FORK Protocol Editing Tool

FORK State Exploration Tool

FORK Protocol Projection Tool

FORK Multiphase Construction Tool

Explore A1l Reachable States

Explore Fairly Reachable States

Figure 2. Menu of the Protocol Design Tool

|move

machine

remove

machine

change

machine label

place

channel

move

channel

uni-directional

remove

channel

bhi-directional

change

channel Tabel

place

subtopology

save

subtopology

move

subtopology

remove

subtopology

create

topology

move

topology

Toad

topology

store

topology

redispl

ay

FORK Machine Editing Tool

complete

T-spline

B-spline

straight line

single loop

double loop

from file

Figure 3. Menus of the Protocol Editing Tool

place node

move node

remove node

change node label

change initial node

place edge

move edge T-spline
remove edge B-spline
change edge label straight line
place subgraph

save subgraph

move subgraph

remove subgraph

create gfaph

move graph

load graph

store graph
Jredisplay

Figure 4. Menus of the Machine Editing Tool

72

load protocol

show protocol

store protocol
RG from initial state

RG from specific state
show path to specific state
show details

show RG

show message table

move RG
store RG to file

load RG from file

place node
move node

remove node
change node label
change initial node

move edge

place edge >

T-spline

remove edge

B-spTine

change edge label

straight line

save subgraph
place subgraph

redisplay

move subgraph

Exit to Edit Machine

remove subgraph

create graph

move graph

Toad graph

store graph

edit another machine

redisplay

Return

Figure 5. Menus of the State Exploration Tool

Toad protocol

show protocal

store protocol

Exit to Project Protocol
Exit to Edit Machine
Exit to Explore States

aggregate entity states

construct image protocol
check well_formedness

save image protocol
show partition
redisplay

Return

Exit to Edit Machine
Exit to Explore States

RG from specific state

show path to specific state

show details

show RG

show message table

move RG

store RG to file

load RG from file

Toad protocol

show protocol

store protocol

redisplay

Return

Exit to Edit Machine

Figure 6. Menus of the Protocol Projection Tool

73

Multiphase Caonstruction

Toad protocol verify & create phase

show protocol save phase

store protocol place phase

Exit to Construct Multiphase| [nove phase

Exit to Edit Machine change phase label _

Exit to Explore States phase details = Comment
delete phase 1/16 enter comment
connect phases 1/8 change comment
delete connection 1/4 remove comment

Explore States construct multiphase 1s2
save multiphase 1

Toad multiphase

Edit Machine show muTtiphase

jmove multiphase
fruTtiphase details Figure 8. Menus in Subwindow at top of screen

move graph

redisplay

Return

Exit to Edit Machine
Exit to Explore States

Figure 7. Menus of the Multiphase Construction Tool

11

i s
zoom) arrow head: JEER spear no } draw: fast Comment)
eace select tha command in the middlie button menu.
message table
Primary Secondary =TT CUTTTUeTOT

e Exp
Toad protocol
show protocol

store protoco]
Ei from initial state
~»[RG from specific state

PZ—E//Pz-LE 1-€ 14E show path to specific state
show details
E 4 5 show RG
322 |sas3] |22 show message table
E move RG
/uﬁ’b(pz—nm-u P1TA PI-W-P1-N store RG to file
/ \ Toad RG from file
e 7 8 B 18 11 A 12 W 13 N redisplay
22 |32 |32 |s21] |a 2 |s2x2| 122 1&2 Exit to Edit Machine
E A w

12

Hit middTe FER

Figure 9. An illustration of the State Exploration tool

74

place phase

iove phass
change phase 1aba]
phase details

delete phase

cornect phases 1
delete connection
construct multiphase
save multiphase

load multiphase

show muTtiphase

frove multiphase
multiphase datails

move graph

redisplay

Return
Ex1t to EdTt Maching
Exit to Explore States

+Ach--—Er—Ls

~ENQAaY ENQ
7 H +WACK: E
4+RVI +4A Ki/

\
-EOT

+ACK1-D-Eriig

A
K

