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ABSTRACT

A satellite Time Division Multiple Access (TDMA)
channel for transmitting packetized data messages is
considered, The queue length distribution is obtained
using generating functions for an earth station which
uses a TDMA channel for packet broadcast. A formula
for the expected message delay is given. The analysis
assumes Poisson message arrivals. The number of pack-
ets in a message has a general distribution. This
work is motivated by the large frame time in satellite
TDMA systems. (The analysis, however, is applicable
to a general TDMA system.) It is shown that the ex-
pected message delay is equal to the message delay
(of a FDMA channel at the same data rate) given by
the Pollaczek-kKhinchin formula plus a term which
vanishes to zero in the limit of zero frame time. The
delay analysis is also generalized to allow a non-
preemptive priority queue discipline; expected message
delay formulas are given.

INTRODUCTION

As satellite communications mature, the trend is
toward digital transmission and Time Division Multiple
Access (TDMA) in preference to the use of Frequency
Modulation and Frequency Division Multiple Access
(FDMA) which predominate today [1]. The purpose of
this paper is to study the delay performance of a TDMA
channel used for transmitting packetized data messages.
In a TDMA system, the transmission capacity is shared
using Synchronous Time Division Multiplexing (STDM).
STDM is widely used in teleprocessing computer systems
for sharing point-to-point terrestrial lines [2,3].
Each terminal in such a system is assigned a fixed )
time slot within a time frame, buffering at the multi-
plexor is limited to one unit of data per terminal
and addressing is not required. (See Fig, 1.) How~-
ever, since the data stream generated by a single
terminal is typically very "bursty" with long periods
of inactivity, it is often inefficient to permanently
assign channels to individual terminals, ATDM is
proposed to remedy this inefficiency [2,3] the main
attributes of ATDM are: (i) data units from all ter-
minals are buffered on a common queue, and (ii) source
address is required on every transmitted unit of data.
(see Fig., 2.) The increase in channel utilization is
obtained as a result of statistically averaging the
random demands of all terminals attached to the multi-
plexor. Now consider Fig, 3 in which the point-to-
point channel in Fig, 2 is replaced by a satellite
channel, By attaching also the destination address (es)
on each unit of data, it can be broadcasted to one
Or more geographically distributed destinations, Thig
"downlink demultiplexing" capability provides further
gains in channel utilization by statistically aver-
aging in the same channel traffic loads to multiple
destinations.

This paper is concerned with the delay analysis
of a TDMA channel fixed assigned to an earth station
such as shown in Fig. 3, (This work is motivated by
the large frame time in satellite TDMA systems., The
model and analysis, however, are applicable to a gen-~
eral TDMA,system.) The aggregate message arrivals to
the earth station is assumed to be an independent
Poisson process, The number of packets comprising a
message has a general distribution, We solve for
the steady-state probability generating function of
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the earth station queue size. From this, an explicit
formula for the expected message delay (total time

in queve and transmission) is obtained. Next we
consider a nonpreemptive priority discipline for the
earth station queue and obtain expected message delay
formulas for the priority classes,

An STDM model was previously considered by Chu
and Konheim [2] as a special case of a unified model
for a class of computer communication systems, Their
model permits a general distribution for the number
of packet arrivals within a time slot and they solved
for the probability generating function of the queue
size (in number of packets) at time instants just
prior to the beginning of a time slot, They also
obtained the expected delay experienced by a “virtual"
message arrival. By assuming Poisson message arrivals
and employing a different analytic approach, we ob=-
tained different results for the steady-state probabil-
ity generating function of the queue size (in number
of messages) as seen by a random observer as well as
the expected delay actually experienced by messages,

THE ANALYSIS

Consider a TDMA system in which time is slotted
and the time slots are organized into frames of M
slots indexed from 1 to M. Time slots with the same
index in consecutive frames form a TDMA channel,
(See Fig, 4.) The amount of data that can be transmit-
ted into a time slot may, for examples, be a packet,
a byte, a bit, etc, depending on the specific system,
For purposes of this paper, it will be referred to
as a packet, ILet the duration of a frame be T seconds,
An earth station using a TDMA channel transmits one
packet of data into a time slot of T/M seconds (pro-
vided the queue is nonempty); it then becomes idle
for (M-1)T/M seconds before it can transmit another
packet, This is equivalent to a single-server queu~
ing system in which the service time of a packet is
exactly T seconds except for the first packet of a
message which arrives to find an empty system; the
service time of such packets is a random variable
(defined to be X) distributed between T/M and T + T/M,
This last statement is illustrated in the upper part
of Fig. 5 in which s, represents the service time
(as defined above) afd W. the waiting time of the ith
message. Note that the fdle period I is exponentially
distributed under the assumption of Poisson arrivals.
Y is equal to X minus T/M. The functional relationship
between Y and I is shown in the bottom part of Fig, 5,

Let N, be the number of messages in the system
(both queu€ and service) at time t. We now proceed
to find the steady-state probability generating
function of N,_ by studying the following queuing
system, Consider a single-server queue with Poisson
arrivals at A messages per second, The service time
distributign of a message which initiates a bgsy
period is B(x) with first and second moments and ﬁ .
All subsequent messages in the same busy perioé have 2
service times drawn independently from the distribution
B(x) with first and second moments bl and b2. Let

P = lim

n oren Prob [Nt = n]

and define the transforms
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ﬁ*(s) = j' e-sxdﬁ(x)
0

Theorem 1 (Welch [4]1). 1If Abl < 1, then

P, L2 B* (h=2z) - B*(A-dz)]

P(z) = Z =~ BF (oiz) (1)

where
1~ Abl
PO = ""“"‘"‘];“ (2)
1- )\(bl - l)
Proof: The proof is similar to that for the M/G/1

queue [5, Vol, I]. Eq. (1) can be easily obtained
by considering the imbedded Markov Chain of queue
size at service completion times. Also since it is
assumed that the arrival process is Poisson and that
messages arrive and depart individually, the steady~
state probability generating function of the gueue
size at service completion times is equal to the
steady-state probability generating function of N
sampled at random. Eq. (2) is obtained by evaluaEing
Eq. (1) at z = 1, Q.E.D.

The above theorem is now used to obtain formulas
for the expected message delay and expected queue
size of an earth station using a TDMA channel, Higher
moments of message delay and queue size can be ob-
tained in a similar manner. However, only averages
will be considered in what follows.

Let the number of packets in a message be L
which is a random variable given by the probability
density {gZ}Z with first and second moments L. and

=1 1
L2 where

9p = Prob[L = £].

The message service time distributions are given by
the following transforms

Y

z 9 [B*(s)]z
£=1

B*(g) =

Br(s) = Br(s) = gp 8% 7571
£=1

where

-sT
e

B*(s)

I

T
Brs) = &SN [0 S gp iy
0

F(y)} = ProblY <yl

The lower part of Fig, 5 illustrates Y as a function

of the idle period I which is exponentially distributed

‘F(y) is obtained to be

. T
e [e *=1] . U(y—T+2)[l . e A(T-M Y)J
1 -AT M
0 < < T

Fly) = =¥z

1 y>T

where

1 x>0
U(x) 4

0 X <0

The first and second moments of Y are given by

AT - 5
e R e v o 3)
l-e
_ A (T - D)
2@ T L2 1. .2 1 oe
CEaegept (5 a® - 2 LT W

The first and second moments of X are thus given by

= T
X=Y + M (5)

2 T T 2
X =Y + ZEY + (ﬁo (6)

The first and second moments of message service times are

b = LT N

Ql =@ - DT+ X (8)
2 .

b, = L,T \ (9)

2 - 2
ﬁz =X 4 2R(L - DT+ @, - 20 + T (10)

The probability of an empty system is obtained from
Egs. (2), (3), (5), (7) and (8).

et N
1-20, - Ql)

1 -2LT) (- e rTy
= A%T ) (1)
ATe”

The expected number of messages  in the system N is
obtained by evaluating the first derivative of Eq.
(1) at z = 1,
b 6, - b))
= 1 2 2

N = 7 +
1- )\(bl - 1)

2([1 - X(bl - Ql)]

A2b2
toac b)) (12)

An application of Little's formula [5, vol, II, p. 17]
gives the expected message delay

. Ql . A(éz - b)) \ Ab,
1- b, - Ql) 211~ - ﬁl)] 2(1 - b))
(13)
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The expected service time of a message is

w
1

(1 - P)b, + B Ql

b, - Py (b, - 5
Q1

= (14)

1- A, - 61)

1)

which is just the first term in the expected message
delay formula. Hence, the expected waiting time is

_ A B, - b)) Ab,
W= 7 + (15)
2{1 - )x(bl - l)] 2(1 - Abl)
Now if we substitute Egs. (3) =~ (10) into Egs. (12) -
(15), we obtain the following results:
2 2
ATL,T
= AT AT 2
N= AT -3 ¢t g YIS AL,T) (1)
2
b= no-2+214 zfziji-————- an
] 2 M 2(1 - AL T)
o, wr-hHa-eh
s=4. (18)
ATe—X(T - T/M)

_ - AL2T2 1 T - %o(l—e'lT)
W=LT->+=+ - -

1 2 M 2(1 - ALlT) A ATe-A(T T/M)

(19)

The expected message delay given in Eq. (17) is a

very interesting result. Suppose the satellite
transmission capacity is C bps._. The transmission
rate of a TDMA channel is thus = bps., Now consjder
a FDMA channel which transmits continuously at = bps.
The expected message delay for such a channel is
given by the Pollaczek-Khinchin (P-K) formula [5,

vol. I, Eq., (5.6)] to be
) AL,T?
Dok = LT+ 3@ 3 )

Thus the expected message delay for a TDMA channel can
- be expressed in terms of the expected message delay
for a FDMA channel at the same data rate as follows.

(20)

This last is an interesting result because of its
simplicity. It is not obvious, however, because one
might expect from Welch's model [4] that as the traffic
intensity

4

AL T

P 1

approaches 1, the difference D K" D would vanish to
zero because the expected duraglon of a busy period
becomes infinite, Eq. (20) is less surprising if we
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compare it to Skinner's result [6] and consider the
possibility of a negative server—walking time,

Finally, we note that if the duration T of a time
frame is shrunk to zero (by, for example, decreasing
the packet length) while the distribution of message
lengths remains fixed, we have

lim D = D
0 PK

NON~PREEMPTIVE PRIORITY QUEUE DISCIPLINE

We next consider the same system as in the previ-
ous section except that now messages belong to a
number of priority classes. The priority level of a
message may depend, for examples, upon its length,
source, destination(s) and/or its type (data or con-
trol). The discipline being considered is the non-
preemptive head-of~the-line discipline of Cobham [7].

Let there be K message priority classes indexed
from 1 to K where 1 denotes the g'ghest priority level,
K the lowest, Messages in the k  priority class is
assumed to arrive according to an independent Poisson
process at Ak messages per second, Define

K
A= I AL .

k=1 k

The number of packets in a clas§k§ message is given
by the probability density {gz }2_1 with first

and second moments L k) and L (k) respectively, At
the service completion of a me§sage, the server will
serve next a message with the highest priority level,
The first-in-first-out (FIFO) rule is assumed for
messages which belong to the same priority class.
Define
_ (k)

P =M By .
The first two moments b (k), Q (k), b (k) and Q (k) of
message service times fSr the % priority classe§ are

T

defined as in the previous section. Let
K A
b1 = 3 XE bl(k)
k=1
8 K Ak I (k)
17 L 1

=1 .

K
Theorem 2, If I ey < 1 , then the expected

i=1

waiting time of a class k message is

- V -
W= — = k=1,2,...,k (21)
(1 - 2 pi)(l - I p,)
=1 i=1

where

P K 1-P K

A
vest 1 oA 58 —0 5 A b, * (22)
k=1 k=1

where P_ is given by Eg. (2). The expected service

time of "a class k message is

= (k) _ (k)
S, = PO Ql + (1 P)b

o) P (23)



The expected message delay of a class k message is

Dk = sk + Wk (24)
Proof. Eq. (21) is obtained by noting that Cobham's
result [7] can be applied directly here except for

v, which is the expected remaining service time of
the message in service found by an arbitrary arrival.
From Wolff [8], we see that V is given by

n () si2
ve=lim * I A (25)
T 2

T i=1

where n(1) is a random variable denoting the number

of message arrivals in the time_jinterval [0,7], and

S, is the service time of the i message arrival.

B§ considering arrivals from each priority class

separately and noting that P_ is equal to the fraction

of (Poisson) arrivals which gind the system empty,

Eq. (22) is obtained from Eg. (25) in the limit of

1+, Derivations of Egs. (23) and (24) are obvious,
Q.E.D..

Observation. In the special case of K=1 (no
priority classes), Eq. (24) for the expected message
delay reduces to Eq., (13) in the previous section.

As an example, we consider the shortest-message-
first (SMF) priority discipline with FIFO between
messages of equal length. The expected waiting time
of a message of £ packets is

W = 71 7 26)
(L-22 ig, M@ ~-X & i 9; T)
i=1 * i=1
where
AP A(L - P)
0 0
V== Qz + 5 b2 27)

The expected service time of a message of £ packets is

PO[(K-l)T + X] + (1-P0)£T

I

LT - P (T - X) (28)

NUMERICAL EXAMPLES

In this section we examine the delay performance
tradeoffs through some numerical examples, Let the
satellite transmission rate be C bps. In Fig. 6, we
consider a system with ¢ = 1,5 Mbps, M = 450, T = 0.3
second, and 1000 bits/packet. Messages which arrive
to the earth station under consideration consists of
either single-packets or eight-packets with
g, =0 and g, = 1 - o . Three cases are shown for
a"= 1, 8/9 and 1/2 corresponding to (1) single-packet
messages only, (2) single-packet and eight-packet
messages at equal packet rate, and (3) single-packet
and eight-packet messages at equal message rate.

Fig. 6 shows typical delay versus traffic intensity
curves with expected delay going to infinity as p
approaches unity.* Fig. 6 also shows the expected
message delay given by the P-K formula of a FDMA
channel at the same data rate, Note that although the
absolute difference %n delay between TDMA and the P-K

formula is equal to T W the normalized difference

* The satellite propogation delay of roughly 0,27
second is not included in our delay values,

decreases as p increases or as the average message
length increases (a decreases).

In Fig. 7, we consider the effect of the frame
time T on the expected message delay. We assume that
each message is 8000 bits long, At C = 1.5 Mbps,

M= 300 and T = 1.6 seconds, each message can be trans-
mitted as a single packet, Now suppose the frame time
T is halved by splitting each packet into two. This
process is repeated until T approaches 0. (The T=0
limiting case corresponds to a FDMA channel at the
same data rate.) The expected message delay is plotted
versus T in Fig. 7. _As gshown by Egq. (20), the slope
of each curve is - (= - =) . The average message delay
increases to D in the % -+ 0 limit as predicted. The
reader is cautioned not to interpret Fig, 7 as evidence
that a large packet size is necessarily desirable for
TDMA. The example in Fig, 7 assumes a fixed message
length, When the message length is random, a large
packet size may be inefficient due to the large unfill-
ed portion in the last packet of each message, Fig, 7
does tell us that if there is a natural minimum data
block size in the distribution of message lengths, it
should not be split up further into smaller units,

In Fig. 8, we show the delay versus traffic inten-
sity curves for a TDMA channel with the shortest-
message-~first queue discipline, We assume in this
example that C = 1.5 Mbps, M = 450, T=0,3 second, 1000
bits per packet and the message length distribution,
g9, = 0.3 and g, = 0.1 for £ = 2,3,...,8. Note in
Fig. 8 that wigh a priority discipline not only do
high priority messages (short messages in this case)
have a smaller delay than low priority messages (long
messages in this case), they also have a finite delay
even when the traffic intensity is equal to 1, It is
interesting to note that the difference in delay be-
tween TDMA and FDMA vanishes to zero as p increases
to 1 for £ < 7; for £ = 8, the difference actually
increases as p increases to 1 (conservation law! [5,
Vol, II]). Note that the expected message delay in-
creases with the message length., This is often a
desirable feature since most applications typically
require a much smaller delay constraint for short mes-
sages (interactive data traffic) than long messages
(batch data traffic).

CONCLUSIONS

We have considered the delay performance of a
satellite TDMA channel for transmitting packetized
data messages. The steady-state probability gener-
ating function of the earth station queue size is
obtained. Explicit formulas for the expected message
delay and queue size are given, (Higher moments of
message delay and queue size can be readily obtained
from the probability generating functions,) The delay
analysis is also generalized to obtain delay formulas
for a system using a nonpreemptive priority queue
discipline. A priority queue discipline is desirable
since data traffic typically consists of different
classes of messages with disparate delay constraints,
An example of priority based upon message length is
considered, We note that if the message length is
limited to a single packet, our TDMA priority model
becomes the same as some models for loop systems [2}
and our results.can be applied there.,

We have considered in this paper systems in which
the earth station under consideration (see Fig, 3) is
of moderate size such that its combined data traffic
output is sufficiently "smooth" to warrant efficient
use of a dedicated TDMA channel, This is probably a
realistic situation for current domestic satellite
earth stations. If, in future, the trend is toward
small earth stations characterized by a bursty data
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traffic output, other satellite packet switching
techniques such as slotted ALOHA [9-11], packet reser-
vation [12] should be considered,
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