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Abstract

The method of protocol profections to facilitate the analysis of
communication protocols is 1 lustrated with two examples.  In our
model, protocol entities are connected by communication channels;
messages sent by the protocol entities through the channels may be
lost, duplicated and/or reordered. Protocols with several
distinguishable functions are considered. Image protocols are
constructed separately for each function. Image protocols are
obtained by aggregating protocol entity states, messages and events
using equivalence relations. As a result, image protocols are
typically much simpler than the original protocol and can be analyzed
more easily wusing available techniques. We employ two protocol
examples to illustrate the construction of entity states, messages and
events of some image grotocols. In the first example, the protocol
entities are described by a finite state machine model. The second
example is a full-duplex data transfer protocol and its entities are
described by a programming languaﬁe model. In both cases, the image
protocols constructed satis y a well-formed pro erty. As 'a result,
each image protocol constructed is faithful in the sense that its
logical correctness properties are the same as the logical correctness
ropegties of the "original protocol with respect to the projected
unction.

1. INTRODUCTION

The method of protocol projections is intended to facilitate the analysis
of nontrivial protocols that are too complex to be analyzed with one of the
basic approaches [1~5]. We observe that real-life protocols typically have
several distinguishable functions. For example, the HDLC protocol has at least
three functions: connection management, and one-way data transfers in two
directions. We would 1like to ask questions regarding the logical correctness
behavior of the protocol concerning these functions. Instead of asking such
questions all at the same time, we may ask them with respect to one function of
the protocol at a time. The analysis approach is to construct from the given
protocol an EEEES protocol for each of the functions that are of interest to us.

These functions will be referred to as the projected functions- The entity

states, messages, and events of an image protocol are obtained from those of the
original protocol using certain equivalence relations. Entity states, messages
and events that are equivalent with respect to a projected function.are
aggregated in the image protocol. As a result, image protocols are simpler than

the original protocol. Each image protocol can thus be more easily analyzed
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using available means. For example, an image protocol for the function of
one-way data transfer of HDLC will be of the same complexity as Stenning”s data

transfer protocol which has been successfully analyzed [3,4].

A communication protocol system consists of protocol entities conmected by
communication channels (real or virtual) over which messages are exchanged. A
communication protocol system can be modeled abstractly as a tramsition system
specified by the pair (G,T) where G is the set of global states and 1 is a
binary relation in G called the set of transitions [6]}. The global state of
such a model of interacting protocol entities is specified by a joint
description of the states of the protocol entities and communication channels.
State transitions correspond to the occurrence of various events: an entity
sending or receiving messages, errors in channels, an entity receiving signals

from its user and timers, etc.

Given an initial state gg, T determines the reachability tree (space) R. R
is a directed graph with nodes being elements of G and arcs being elements of t.
R contains all available information on logical correctness properties of the
protocol. Let Rg denote the set of reachable states in G. Rg, which may be
obtained from R, determines the safety (partial correctness) properties of the
protocol. Liveness properties, however, require knowledge of the set of paths

in R.

The protocol projection idea can be illustrated by the following example.
Consider a protocol model with the state description (x, y, z) and the set Rg of
reachable states. Suppose that we are only interested in a safety assertion
that involves only the variables x and y. To determine whether the assertion is
true, it is sufficient for us to know the image of Rg on the (x, y) plane.
Obviously, if Rg is known, its image on the (x, y) plane is readily available.
However, the complexity of R (and thus Rg) is the basic source of difficulty in
protocol analysis. Thus, we would like to take the original protocol and
construct from it an image protocol whose set of reachable states duplicates the
image of Rg on the (x, y) plane. In fact, we want to comstruct image protocols
that are faithful with respect to both safety and liveness properties. In
general, an image protocol is said to be faithful if its logical correctness
properties are the same as the logical correctness properties of the projected

function in the original protocol.

The method of protocol projections was first described by these authors in
[71. Subsequently, the theory has been extended to a protocol model with
communication channels that may lose, duplicate or reorder messages [8,9]. The

main result in [8,9] is that if an image protocol is constructed to satisfy a
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well-formed property then it is faithful. Although the well-formed property is

a sufficient condition, we have found that it is the weakest condition that one
can have without any knowledge of the reachability tree R of the protocol.
(Note again that we cannot assume any knowledge of R since its complexity is the

basic source of our difficulties.)

Given a multi-function protocol, the successful construction of well-formed
image protocols that are much smaller than the given protocol depends upon the
protocol”s structure. One can think of a multi-function protocol as
well-structured if it gives rise to "minimal®” well-formed image protocols for

its functions.

The application of protocol projections to the analysis of protocols is as
follows. Suppose that we are given a protocol and one or more assertions that
specify the correct behavior of some protocol function (service specification of
the function). Suppose also that a verifier is available for checking the
validity of assertions for a given protocol. Instead of feeding the
assertion(s) and the original protocol into the verifier, our objective is to
first construct a well~formed image protocol (which should be much simpler than
the original protocol). The image protocol and assertions are then fed into the
verifier for evaluation. If we are interested in several functions of the

protocol, a different image protocol is generated for each function.

In Section 2, we shall first present our basic protocol model. In Sections
3 and 4, two protocol examples are employed to illustrate the construction of
well-formed image protocols. In the first example (Section 3), the protocol
entities are described by a finite state machine model. The second example in
Section 4 is a full-duplex data transfer protocol whose protocol entities are

described by a programming language model.

For a complete exposition of our basic protocol model, the method of
protocol projections and the well-formed property, the reader is referred to
[8,9,10]. 1In a companion paper [11], time variables and time events are added
to our basic protocol model for the analysis of time-dependent communication

protocols and distributed systems.

2. THE PROTOCOL MODEL

Our basic model is an extension of the model of Brand and Zafiropulo [12].
Let P; and Py be two protocol entities that communicate with each other. Py
sends messages to Py through chamnel Cy, and P, sends messages to P; through
channel Cj. (See Fig. 1.) Messages transmitted through a channel may be

reordered, duplicated, and/or lost (due to corruption by noise).
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The consideration of a protocol model with only two entities is strictly for
notational simplicity. Our results in this paper and in [7-10] are applicable
to any network of protocol entities interconnected by communication channels.

A channel from one entity to another consists of all buffers and
communication media between the entities. At any time, the channel contains a
(possibly empty) sequence of messages. We assume that a message can be sent
into the channel without any constraint by the channel (i.e. unblocked sends).
Note that most communication protocols have some measure of flow comntrol. As a
result, their buffer requirements for messages in transit between entities are
bounded. Hence, the assumption of unblocked sends is equivalent to being able

to satisfy those buffer requirements.

We also assume that the message flow in a channel cannot be blocked due to
an entity refusing to accept messages indefinitely. The first message in a
channel”s sequence of messages will be deleted after some finite time duration

(by the channel, the entity or some other agent).

The above two assumptions are both reasonable whether the communication

channels are real or virtual.

For i = 1 and 2, let S; be the set of states of Py, 04 be the initial state

of Py in Sj, and M; be the set of messages sent by Pj.

Let m; denote a sequence of messages representing the state of channel Cj.
A message reception event removes the first message in the sequence. A message
send event appends a new message to the end of the sequence. The set of all
possible message sequences in Cj is a subset of

;= Gy M) U (O}
where <> denotes the null sequence and M} is the cartesian product of Mj with

itself k times.
The state space of the global model of protocol interaction is

G =8S; x M) x My x So.
Each global state is a 4-tuple <sp, M3, M2, 52> where sj€ Sy and m;e€ My for
=1 and 2. The initial global state denoted by gg will be assumed to be
<oys <Oy <2 0,> in the rest of this paper (without any loss of generality).

The events in the protocol are either entity events or channel events. An

event can occur only if certain conditions, denoted as its enabling condition,

hold. When an enabled event occurs, it changes the state of ome or more

components of the global state.

There are three types of entity events. We describe these events for Pp.
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1) (s, r, m), where m €M), denotes an event of Py due to the sending of a
message m by P; into channel C1+ This send event is enabled when Py is in
Sstate s. After the event occurrence, P) is in state r and m has been
appended to the end of the message sequence in Cj. The set of such send

events is a subset of S1 x 81 x M.

(2) (s, r, m), where m €My, denotes an event of Py due to the reception of
message m by Py from channel Cy. This receive event is enabled when Py is
in state s and m is the first message in Cy. After the event occurrence,
Py is in state r and m has been deleted from the message sequence in Co.

The set of such receive events is a subset of 81 x5y x M,.

3) (s, r, @), where a is a special symbol indicating the absence of a message,

denotes an internal event of P; that does not involve a message. This

internal event is enabled when P is in state s; after the event occurence
P; is in state r. Internal events model such events as timeouts and
interactions between the entity and its local user. The set of internal

events is a subset of §; x Sy x {a}.

The three types of events for entity P, are similarly defined, but with the send
events in Sy x 82 b4 M2, receive events in 32 X Sy x Ml, and internal events in

Sy xSy x {a}.

Our model defines 3 types of events in communication channels (loss,
duplication and reordering events). These events transform the sequence of
messages in a communication channel and are enabled whenever the channel has
messages. Furthermore, the following axiom about the behavior of channels is

assumed.

Channel error axiom. If channel C; loses (duplicates, repositions) messages,
then any message in any message sequence in C; may be lost (duplicated,

repositioned).

3. PROTOCOL PROJECTION ILLUSTRATED BY AN EXAMPLE

The first example consists of two interacting finite state machines shown
in Figure 2. Protocol entity P; has state space Sp =1{0, 1, 2, 3, 4, 5, 6} and
sends messages from M = {al, ay, agl}. Protocol entity P, has state space
S, = {0, 1, 2, 3, 4, 5, 6} and sends messages from My, = {bl, bZ’ b3}. The
events of entity P1 are shown in Figure 2 (a). An arc from node i to node j
with a label m specifies event (i, j,m), where m is & for an internal event, m is
-aj for sending message aj, and m is +b; for receiving message bj. The events

of entity P, are similarly shown in Figure 2 (b).
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Note that from state 4 in Sj, the reception of a; can cause a transition to
either state 3 or 5. This nondeterministic behavior is allowed in our model,

and is useful for representing certain features in real protocols and systems.

Projections are achieved using equivalence relations. The image of a
protocol quantity is obtained by aggregating all those protocol quantities that
are equivalent. Images of protocol entity states, messages, and events are next

defined and should be obtained in the order shown below.

Projection of entity states

We start by examining the entity states in S; and S, that are equivalent
with respect to the projected function. For i =1 and 2, for any entity state
SES{s the image of s is the set of entity states in S; that are equivalent to
Se We denote the image of s by s”. s” is also referred to as an image entity
state. Let S{ denote the set of images of states in Sj. S 1is the 1image

state space of Pj-

Consider the example in Figure 2. Suppose that for a particular function,
states 0, 1, 2, 3 and 4 are equivalent, and states 5 and 6 are equivalent. This
equivalence relation corresponds to the partition { {0,1,2,3,4}, {5,6} } of 83
indicated by Figure 3 (a). Let image state 0° denote the partition cell
{0,1,2,3,4}, and image state 5° denote the partition cell {5,6}. 0 1is the
image of states 0, 1, 2, 3 and 4 in Sj. 57 is the image of states 5 and 6 in
{07, 57}.

S1. The image state space of Pj is S

For the same function, suppose that in S, states 0, 3 and 4 are equivalent,
states 1 and 5 are equivalent, and states 2 and 6 are equivalent. This
equivalence relation corresponds to the partition { {0,3,4}, {1,5}, {2,6} } of
S, 1indicated in Figure 3 (b). Let image states 07, 17 and 27 respectively
denote the partition cells {0,3,4}, {1,5} and {2,6}. Then, the image state
space of Py is 83 = {07, 17, 2°}.

Projection of messages

The above equivalence relation is next extended to messages in My and M.
Two messages m and n in Mj are said to be equivalent if and only if they cause
identical changes in both image state spaces Si and Si. For any message
m€ My, the image of m is the set of messages in Mj that are equivalent to m.
The image of m, denoted by m”, 1is also referred to as an image message.
Messages that cause only changes internal to image entity states in both S1 and

83 are said to have the null image. The image message sets are defined by

-

Mi = {m”: m” is not null, me Mg}, for i = 1 and 2.
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Consider the example protocol. In Figures 3 (a) and 3 (b), if we relabel
each state by its image and collapse all identically labelled states, without
deleting any events, then we obtain Figures 4 (a) and 4 (b). From these figures
we can observe the state changes in Si and Si caused by the messages in Ml and

Mo.

We will first examine the message set Mj. The state transitions caused by
message aj; are (07,07) in Si, and (1’,%’) in Si. Hence a; has a null image.
Both messages ap and a3 cause the state transition (07,57) in Si and the state
transition (07,17) 1in 83. However, ay; 1is not equivalent to a3 because ap

causes state transition (0°,0”) in $5 while a3 does not.

This equivalence relation corresponds to partitioning M) as {{a;}, {ay},
{33}}. The image of a; is null. Let the image messages aj and a§ denote the
partition cells {32} and {a3} respectively. The image message set Mi is

{ai; 33}'

We will now examine the message set Mj. The state changes caused by
message by are (57,07) in 8{ and (27,07) in S5+ The state changes caused by
message by are (57,07) in 81 and (27,07) in S3. Hence b; is equivalent to bj.
The state changes caused by message by are (07,07), (57,57) in 81, and (07,07)
in Sé. Hence by, has a null image. This equivalence relation corresponds to
the partiéigﬁ { {b1,b3}, {by} } of My.  The image of by is null. Let image
message b demote the partition cell {bl,b3}. The image message set M5 is
{p{}.

Projection of entity events

The above equivalence relations are next extended to entity events. The
image of an event (s,r,m) is given by (s”,r",m"), where the image of o is still
@ for internal events. Recall that if the image message m”~ is null, then by
definition s”=r-. Consequently, if m” is null, the event (s,r,m) does not
change the image global state of the protocol model. Such an event is said to
have a EEE&.EEEEE’ Similarly, an internal event (s,r,a) with s"=r” has a null

image. The set of image events at P;y for 1 = 1 and 2 is defined as
T; = {(s7,r",m") : (s",r",m") is not null, (s,r,m) eT;}.

Consider the example protocol. Recall that messages a; and by have null
images. From Figures 3 (a) and 4 (a), the events in Py having null images are
(0,1,by), (1,2,0), (2,0,a;), (0,3,a), (3,4,a;), (4,3,0), and (5,6,by).  Event
(3,5,32) has the image (0’,5’,35). Event (4,5,33) has the image (0’,5’,a§).
Events (S,O,bl), (5,4,b3), (6,4,b1), and (6,2,b3) are equivalent and have the
image (57,07,bi). Hence,
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T = { (07,57,a3), (07,57,a3), (57,07,b7) }.

From Figures 3 (b) and 4 (b), the events in P, having null images are
(0,3,2), (3,4,b3), and (1,5,31). The image of (4,3,a;) is (0’,0’,35). Note
that the image of (4,3,a3) 1s not null because a; is not null. Events
(0,1,a3), (3,1,32), and (4,5,a2) are equivalent and have the image (0’,1’,a§).
Event (4,5,a3) has the image (0’,1',a§). Events (1,2,a) and (5,6,qa) are
equivalent and have the image (17,27,a). Events (2,0,b;) and (6,4,b3) are

equivalent and have the image (27,07,b7). Therefore,
T3 = {(07,07,a3), (07,17,a3), (07,17,a3), (17,2",a), (27,07,b7)}.
Image protocol

Our objective is to define a new protocol that is faithful to the projected
function, i.e., such that its logical correctness properties are the same as the
logical correctness properties of the projected function in the original
protocol. We call this protocol an image protocol. A natural candidate is a
protocol between entities Pi and PE, using channels C; and C,, obtained as
follows. For i = 1 and 2, let S] be the entity state space of P{, let M{ be
the set of messages sent by Pj, and let T]{ be the set of entity events for
Pj. Given the channel error axiom, the events of channel C; remain the same as

before.

In general, the image protocol system may not be faithful to the projected
function in the original protocol system. We present next sufficient conditions
for the image protocol to be faithful to the projected function [8,9]. The
objective in the comstruction of an image protocol is therefore to find the most
coarse partitions of entity states (in other words, the smallest image protocol)

which satisfy the sufficient conditions.

Definition. For i = 1 and 2, for a and b in Sj, b is internally reachable from

a if a"=b” (they have the same image), and there is a sequence of internal

events in T; with state changes inside a” that will take P; from a to b.

Note that in our current model, all send events are unblocked. As  a
result, send events involving messages of null images can be regarded as

internal events for the above definition.

Definition. For i =1 and 2, an image send or internal event (s”,r”,m")e Ti
for m”e MjU{a} is well-formed if, for every a whose image is s”, the following
condition holds: for some n whose image is m” there is some be S; such that b

is internally reachable from a, and (b,c,n) € T; for some cer”.
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Definition. For i = 1 and 2, an image receive event (s”,r",m )¢ T{ for m" ¢ M3
(j#i) 1s well-formed if, for every a whose image is s”, the following condition
holds: for every n whose image is m” there is some beS; such that b is

internally reachable from a, and (b,c,n)t T; for some cer”.

If in either of the above definitions of well-formed events, the length of
the internal path is zero (i.e., b=a), then we say that the image event is

strongly well-formed.

Note from the construction of T{ and TE, that for every (s”,r",m") eTi,

there is an (a,b,n)& Ty such that a”=s”, b"=r”, and n"=m".

Definitfon. The image entity state spaces S] and S5 are said to be
well-formed (strongly well-formed), if every image entity event
(s7,r7,m") €T] U T3 is well-formed (strongly well-formed).

It has been shown that if the image entity state spaces 8] and S; are
well-formed, then the image protocol is faithful to the projected function in

the original protocol [8,9].

Consider the example protocol introduced earlier. We have already obtained
the image state spaces $7={07,5"} and 85 = {07,17,27}, the image message sets
M] = {aj,a3} and M5 = {bj}, and the image event sets T{ = { (07,57,a3),
(07,57,a3), (57,07,b7) } and T; = { (07,07,a3), (07,17,a3), (07,17,a3),
(17,27,0), (27,07,b7) }. Using these quantities, we construct the image
protocol system shown in Figures 5 (a) and 5 (b).

We will now show that the image events in T{ are well-formed. First,
-a
consider event (07,57,a3) cTj. Because of the paths 1-%->2-2150-%-33 ang
4_g_>3, state 3 is internally reachable from states 1, 2, O and 4. From state

3, the event (3,5,ay) can be executed. Hence (0°,57,a3) is well-formed.

Because of event (3,4,a;), state 4 {s internally reachable from state 3,
and hence from states 0, 1 and 2 also. From 4, event (4,5,a3)€ T{ can be

executed. Thus, event (07,57,a3)e T] is well-formed.

Because of the events (S,O,bl), (5,4,b3), (6,4,b1), and (6,2,b3) in Ty,
image event (57,07,b7)€ T] is strongly well-formed.

Next, we will show that the image events in T3 are well-formed. Consider
image event (07,07,a3)e T3. Because of events (0,3,0) and (3,4,by) in Ty,
state 4 is internally reachable from 0 and 3. This, and the event (4,3,a3) e Ty

makes image event (0”,07,a3) well-formed.
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Image event (07,17,a3)€ T; is strongly well-formed because of events
(0,1,a3), (3,1,a5), and (4,5,a3) in Ty.

Image event (07,17,a3)e T; is well-formed because of event (4,5,a3) in

Ty, and because 4 is internally reachable from 0 and 3.

Image event (17,27,0)ec T3 1s strongly well-formed because of events
(1,2,0) and (5,6,0) in Tp.

Image event (27,07,b])€ T3 is strongly well-formed because of events
(2,0,by) and (6,4,b3) in Ty.

Thus, we have shown that the image protocol in Figure 5 is well-formed.
A safety assertion

Given the initial state (07,<>,<>,0”) for this image protocol system, and
assuming channels C; and C, are error-free, it is easy to verify that the

following assertion holds for the image protocol:

P; is in state 57 => Exactly one of the following holds:
(a) message aj or aj is in.Cy, or

(b) Py is in state 17 or 27, or

(c) message b] is in Cy, or

(d) Py is in state 0” and channels C; and C, are empty

(deadlock situation).

Note that P} in state 5” means that Py is in any state whose image is 57.
Similarly, message bj is in C, means that any message whose image is by is in

Cae.

We can verify whether this assertion is valid by examining the reachability
tree of the original protocol in Figure 2. However, since the image protocol
has been shown to be well-formed, we know that the above assertion is valid for

the original protocol by virtue of the theorems presented in [8,9].

4. A FULL-DUPLEX DATA TRANSFER PROTOCOL

We illustrate in this section the application of protocol projection to a
full-duplex data transfer protocol whose entities are described by a programming

language model. Since the protocol is full-duplex, it has two basic



An lllustration of Protocol Projections 353

distinguishable functions: one~way data transfers from Py to Py and from Py to

Py.

Let DATASET denote the set of data blocks that can be sent in this
protocol. Consider protocol entity Pj. P; has an infinite array of data
blocks, SOURCE[i] for i=0,1,2,..., destined for Py, and an infinite array,
SINK[i] for i=0,1,2,..., to store data blocks received from Pp. SINK is
initially empty. Additionally, the following variables are used in Py: VS and
VR which are nonnegative integers, and D OUT, ACK DUE and BUSY which are Boolean
variables. VS points to the data block in SOURCE to be sent next. VR points to
the position in SINK to be next filled. D OUT is true if (and only if) a data
block has been sent but not yet acknowledged. ACK DUE is true if (and only if)
a received data block has to be acknowledged. BUSY can be viewed as an
externally operated switch; all events of P; are inhibited if (and only if) BUSY

is true.

The state of Py, at any time, is given by the value of the 7-tuple
<vs, D _OUT, SOURCE, VR, ACK DUE, SINK, BUSY> of Pi. Let S; denote the state
space of P;. Entity P, has a similar set of variables. For convenience, we
have omitted qualifiers (1 or 2) for these variables and we shall omit them as
long as it is clear whether we are referring to P; or Pp. 1In both entities, the
initial state is given by VS and VR equal to O, D _OUT and ACK DUE equal to
false, SINK equal to empty, and SOURCE equal to some infinite array of data
blocks. (In both entities, SOURCE does not change its value during the protocol

interaction.)

Each message in the protocol is a tuple with one or more components. The
first component is used to identify the kind of message, and it can take the
(character string) values DATA, ACK and DATA&ACK, corresponding to three kinds
of messages. A DATA message is a 2-tuple (DATA, d), where d is a data block
from DATASET. There are as many DATA messages as data blocks in DATASET. An
ACK message is the l-tuple (ACK), signifying a positive acknowledgement for a
received data block. Unlike DATA messages, there is only one ACK message. A
DATARACK message is a 2-tuple (DATASACK, d) where d is a data block from
DATASET.

The set of messages that can be sent by P; is given by
My = {(ACK)} U {(DATA,d) : d c¢DATASET} U {(DATA&ACK,d) : d¢ DATASET}.
The message set My for P, is the same as M.

The set of entity events for P; 1is presented in Table 1. Events 1-0

correspond to the sending of a message by Pj. Events 6-8 correspond to th
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reception of a message by Pj. Events 4 and 5 correspond to internal events
caused by an agent locally connected to Py (e.g., user, channel controller).
The enabling condition of an event defines the entity states and channel states
at which the event may take place. The action of each event causes the entity

to enter a new state.

SDATA and RDATA are variables taking values from DATASET. SDATA and RDATA
can be thought of as temporary buffers for transmission and reception
(respectively) of data blocks. In Table 1, the operation
put(CHANNEL1l, (DATA,SDATA)) sends a DATA message with the value of SDATA as its
data block into CHANNELl (i.e. appends the DATA message to the end of the
sequence of messages in CHANNELL). The operations
put (CHANNEL1, (DATA&ACK,SDATA)) sends into CHANNEL] a DATASACK message with the
value of SDATA as its data block. The operation put(CHANNEL1l, (ACK)) sends an
ACK message into CHANNEL1.

The function first(CHANNEL2) indicates the type of the message that is at
the head of CHANNEL2 and has arrived at P;. When a DATA message is at the head
of CHANNEL2, the operation get(CHANNEL2, (DATA,RDATA)) removes the message from
CHANNEL2 and assigns the data block in the message to RDATA. When a DATA&ACK
message is at the head of CHANNEL2, the operation
get (CHANNEL2, (DATA&ACK,RDATA)) removes the message from CHANNEL2, and assigns
the data block in the message to RDATA. When an ACK message is at the head of
CHANNEL2, the operation get(CHANNEL2, (ACK)) removes the message from CHANNEL2.

This example protocol has two functions corresponding to data transfers in
the two directions. The protocol is extremely simple but it embodies two types
of dependencies that one encounters when one attempts to decompose a protocol
into functional components. First, the variable BUSY 1is shared by both
functions of the protocol. Second, the messages of type DATA&ACK are also
shared. Such dependencies present major obstacles for protocol analysis using a
decomposition approach. The method of protocol projections will be used to

obtain a faithful image protocol for each function.
Image protocol

Consider the function of one-way data transfer from Py to P,. Observe that
variables VR, ACK DUE and SINK in Pyp, and VS, b OUT and SOURCE in PZ are not
needed for the P; to P, data transfer. Thus, the variables of the projected
function (referred to as function variables) are VS, D OUT, SOURCE and BUSY in
P, and VR, ACK DUE, SINK and BUSY in P,.
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At any time, the image state (i.e. state of the projected function) of P;
is given by the value of <VS, D OUT, SOURCE, BUSY>. Let S] denote the image
state space of Pj. Thus, two states s and r in S, are equivalent if they differ

only in the values of VR, ACK DUE and SINK.

At any time, the image state of Py is given by the value of
<VR, ACK DUE, SINK, BUSY>. Let S denote the image state space of P,. Thus,
two states s and r in Sy are equivalent if they differ only in the values of VS,
D OUT and SOURCE.

By examining the state changes in the image spaces S] and S due to send
and receive events, the following can be shown about messages in M;. The
message (ACK) has a null image. The messages (DATA,d) and (DATA&ACK,d) are
equivalent; let their image be denoted by (DATA” ,d). Thus
M = {(DATA7,d) : d ¢ DATASET}

Similarly, the following can be shown about messages in Mj. All (DATA,d)
messages have the null image. All (DATASACK,d) messages are equivalent to the
ACK message; denote their image by (ACK”). Thus M5 = {(ACK")}.

The messages and events of the image protocol for the projected function

are shown in Tables 2 and 3.

For this image protocol, assuming error-free channels C; and C,, the
following assertions stating some logical correctness properties of the

projected one-way data transfer function have been found (by inspection):
1. SINK[1] = SOURCE[1] for 0 < 1 < VR.
2. VS > VR > vs-1.

3. (DATA",d) in CHANNEL1l => (D OUT)
and (d = SOURCE[VS-1])
and (exactly one DATA” message in CHANNELL)
and (not ACK DUE) and (VS = VR + 1)
and (no ACK™ message in CHANNEL2).

4. ACK DUE => (D_OUT)
and (no DATA” message in CHANNELL)
and (VS = VR) and (no ACK” message in CHANNEL2)

5. ACK” in CHANNEL2 => (D_QUT)
and (no DATA” message in CHANNEL1l) and (VS = VR)
and (not ACK DUE)
and (exactly one ACK” message in CHANNEL2)

6. not D_OUT => VS = VR
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The image protocol can be shown to be well-formed. As a result, the above
assertions are valid for the original full-duplex data transfer protocol by

virtue of the theorems in [8,9].

Error-free channels have been assumed to make the protocol example small.
As shown in [8,9], the method of protocol projections is applicable to protocol
models in which a channel may lose, duplicate and reorder messages. An example

involving channels with errors is described in the companion paper [11].

5. CONCLUSIONS

We have employed two protocol examples, a palr of interacting finite state
machines and a full-duplex data transfer protocol described by a programming
language model, to illustrate the method of protocol projections. We have shown
how to construct the entity states, messages and events of an image protocol
from the corresponding quantities of a given protocol. Since image protocols of
a well-structured multi~function protocol are much simpler than the original
protocol, they can be analyzed more easily using available techniques. In our
examples, the image protocols constructed are simple enough that various
assertions describing the logical correctness properties of the image protocols
have been obtained by inspection. The image protocols can be shown to be
well-formed. As a result, the assertions obtained are also valid for the

original protocol examples.

The consideration of a protocol model with only two entities is strictly
for notational simplicity. Our main results (Theorems 1 and 2 in [7,8]) are
applicable to any network of protocol entities interconnected by communication
channels. The global state of the general protocol model is again specified by
a joint description of the states of the protocol entities and communication
channels. The definitions of message equivalence, event equivalence, and
well-formed image events are simply restated to cover all protocol entities in

the model [10].
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Event Name

1. SEND DATA

2. SEND_DATA&ACK

3. SEND_ACK

4. START BUSY
5. STOP_BUSY

6. REC DATA

7. REC_DATAGACK

8. REC_ACK

S. Lam & A.U. Shankar

Enabling Condltion

not BUSY and not D_OUT

not BUSY and not D_OUT aad ACK_DUE

not BUSY and ACK_DUE

not BUSY
BUsSY

first(CHANNEL2) = DATA

£1rst(CHANNEL2) = DATA

first(CHANNEL2) = ACK

Action

SDATA := SOURCE[VS];
Pput (CHANNELL, (DATA,SDATA));
VS = VS + 1; D OUT := true

SDATA := SOURCE[VS];
PUt(CHANNELL, (DATASACK,SDATA));
VS := VS 4 1; D OUT := true;
ACK_DUE := false

PUt(CHANNELL, (ACK));
ACK_DUE := false

BUSY := true
BUSY :~ false

get(CHANNEL?, (DATA,RDATA));
SINK[VR] := RDATA;
VR := VR + 1; ACK DUE := true

get(CHANNEL2, (DATASACK,RDATA));
SINK{VR] := RDATA; VR := VR + 1;
ACK_DUE := true; D OUT := false

get(CHANNEL2, (ACK));
D_OUT := false

TABLE 1. Events of entity Pj in the full-duplex data transfer protocol.

Event Name

1. SEND_DATA

2. START_BUSY~
3. STOR_BUSY”

4. REC_ACK”

Enabling Condition

ot BUSY and mot D_OUT

first(CHARNEL2) = ACK”

Action

SDATA := SOURCE[VS];

put (CHANNEL1, (DATA”, SDATA));
VS = V8 + 1; D OUT := true

not BUSY BUSY

BUSY BUSY

:= true

:= false

get(CHANNEL2, (ACK™));

D_OUT := false

TABLE 2. Eveats of P in the image protocol

Event Name

1. REC DATA”

»

. START BUSY”

3. STOP_BUSY”

4. SEND ACK~

TABLE

Epabling Conditfon

first(CHANNEL1) = DATA”

not BUSY and ACK_DUE

3. Events of P3 in the image

for one-way data transfer

Action

get(CHANNELL, (DATA", RDATA));

SINK[VR] := RDATA;
VR := VR + 1; ACK DUE := true

not BUSY BUSY

BUSY BUSY

i= true

:= false

Put(CHANNELL, (ACK7));

ACK_DUE := false

1 for y data t .



