Protocol Specification, Testing, and Verification VIII

S. Aggarwal and K. Sabnani (Editors)

Elsevier Science Publishers B.V. (North-Holland) 333
© IFIP, 1988

A Relational Notation for State Transition Systems*

Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

A.Udaya Shankar

Department of Computer Science and
Institute for Advanced Computer Studies
University of Maryland

College Park, Maryland 20742

The basic building blocks for specifying systems in the relational notation are
state variables and events. Each event is a binary relation on the system state
space, and is specified by a formula in a predicate logic notation. We strived
for a notation that is easy to learn so that it will be widely accessible to proto-
col engineers. Our proof method, based on a fragment of linear-time temporal
logic, was also designed to be easy to learn and understand.

Using the relational notation, we present a theory of refinement and projection
of systems. Refinement and projection are relations defined between state tran-
sition systems. These relations have been applied to simplify the verification
of multifunction protocols, to derive specifications and proofs of systems
hierarchically, and to address the protocol conversion problem. Several rela-
tions between systems defined by other authors, A simulates B, A implements
B, and A is a superposition of B, where A and B denote systems, are compared
with refinement and projection.

1. Introduction

The concepts of state and state transition are fundamental to many formalisms for
the specification and analysis of systems. The situation in a physical system can usually
be described by the values of a set of variables. For example, a state description of a
spacecraft would include its spatial coordinates, its mass, and its velocity, among others.
The state of a physical system changes in the course of time. Such changes are called
state transitions. In modeling such a system, the state description is assumed to contain
sufficient information such that the future behavior of the system is determined only by
its present state, and not its past history. (Such models are said to be Markovian.)

The most general state transition systems would allow states described by continu-
ous variables. We shall not be that general. Let us consider state transition systems
specified by a pair (S,T), where S is a finite or countably infinite set of states and T is a
binary relation on §. Each element of T defines a state transition. The system is deter-
ministic if T is a function or a partial function; that is, for each state s; in S there is at

*The work of Simon S. Lam was supported by National Science Foundation under grant no. NCR-8613338. The work of A.
Udaya Shankar was supported by National Science Foundation under grant no. ECS-8502113.

334 S.S. Lam and A.U. Shankar

most one state s; in S such that (s;,s;) is in 7. Otherwise, the system is nondeterminis-
tic. Given (§,T) and an initial condition on the system state, a sequence of states
<s0,81, " > is said to be a path if s satisfies the initial condition and, for i >0, (s;,5;+1)
isinT.

The sets S and T are adequate for the specification and analysis of some systems,
e.g., connection management protocols for CCITT Recommendations X.21 and X.25.
For most systems, however, their specification, and possibly their analysis also, would
benefit from having some structure in S and in T. Towards this goal, many models and
notations have been developed using state transition systems as their foundation. We
name just a few: difference equations, Markov chains, programming languages, commun-
icating finite state machines (CFSMs), Petri nets, and various temporal logics. Each was
designed for a special-purpose application. Some are designed primarily for
specification, such as many programming languages [CCITT 85, ISO 85]. Some are
designed for the numerical generation of paths, such as difference equations and CFSMs.
Some are designed for the calculation of path probabilities and state probabilities from a
given set of state transition probabilities, such as Markov chains and stochastic Petri nets.
Some are designed for formal reasoning about system behaviors, such as temporal logics
and some programming languages [Chandy & Misra 88, Clarke & Emerson 81, Lamport
83, Owicki & Lamport 82, Pnueli 86].

The CFSM model is widely used for protocol specification in practice [IBM 80, Sab-
nani 86, West 78]. Because CFSMs are analyzed by a numerical generation of all paths,
the CFSM model is applicable to the analysis of just a small number of protocols. Why
is it widely used by practitioners despite this shortcoming? The answer may be that most
engineers (and programmers) are familiar with the concepts of states and state transitions.
Thus they are accustomed to operational reasoning based upon state transitions [Piat-
kowski 86]. The same is not true for reasoning methods of other formalisms. Even for
temporal logics, whose underlying models are state transition systems, the need to master
a new notation presents a barrier to the majority of engineers. For the formalisms of CSP
and CCS, the additional requirement of reasoning with event traces will further restrict
the accessibility of these formalisms despite their mathematical elegance [Milner 80,
Hoare 85].

We hasten to say that while operational reasoning based upon state transitions
allows engineers to grasp intuitively and quickly what a protocol does, it is often unreli-
able and should be avoided by the protocol’s designer in verification.

During the course of our research on modeling time-dependent distributed systems
and methods for protocol construction, we developed a notation for specifying state tran-
sition systems [Shankar & Lam 84, 87a, 87b]. We believe that our notation is easy to
learn because it represents states and state transitions explicitly. Our notation for specify-
ing and proving protocol properties, based upon a fragment of linear-time temporal logic,
was also designed to be easy to learn and understand. Proofs of properties presented by a
protocol’s designer or verifier can be checked in a mechanical fashion by applying a
small set of inference rules. We hope that our notation will be widely accessible to proto-
col engineers.

Note that the task of constructing a protocol to satisfy a given specification is still
nontrivial and still requires ingenuity and insight from the protocol’s designer. To facili-
tate this task, we present a theory of refinement and projection of systems. Refinement
and projection are relations between systems. These relations have been applied to sim-
plify the verification of multifunction protocols, to derive specifications and proofs of
systems hierarchically, and to reason about the correctness of protocol converters. (See

A Relational Notation for State Transition Systems 335

Section 6 for references.)

2. Notation

A state transition system is specified by a finite set of state variables,
v=(v1,Vo, - - -), a finite set of events, e,e,- - -, and an initial condition on the system
state.

For every state variable, there is a specified domain of allowed values. The system
state is represented by the set of values assumed by the state variables. The state space S
of the transition system is the cartesian product of the state variable domains.

An event can occur only when the values in v satisfy the event’s enabling condition.
The occurrence of the event updates the values of the state variables in one atomic action.
Let v’ represent the value of the state vector after the event occurrence. We specify each
event by stating the relationship between v and v, Note that each event defines a relation
on the state space S of the transition system. The union of these relations over all events
defines T of the transition system.

Instead of using a programming language, we employ a predicate logic notation to

specify events. Let p denote a formula and x a set of variables.! We say that p is a for-
mula in x if the free variables of p are in x.

In our notation, an event ¢ is specified by a formula in v v’. For convenience, we
use e to refer to both the event’s name and the formula that specifies it. We adopt the
convention that any variable v’ in v’ that does not appear in e is not changed by the
occurrence of e; that is, the conjunct v’=v is implicit in the event formula. Some exam-
ples of event specifications are shown below:

e; =v>2/vy e {125}
€2 = Vi>VaAvy'=5-v,
e3 = V>V AV +vy=5
Note that e 3 and e 3 are equivalent; they define the same relation between v and v'.

The enabling condition of an event ¢, denoted by enabled(e), is a formula in v.
enabled(e) is logically equivalent to 3v'[e]. Most events encountered in our examples
have the following special form:

e = enabled(e) 1 action(e)
where enabled(e) is a formula in v and action (e) is a formula in v v’. These formulas
in the special form must satisfy the following condition: enabled (e)=>23v’[action (e)].
(Otherwise, part of the enabling condition is specified by action (e).)

Parameters can be included in the definition of events. Let w be a set of parameters,
each with a specified domain of values. Given w, enabled(e) is a formula in viuw, and
action(e) is a formula in viu wU V. For example, event e 3 above can be modified to

e4(N) = vi>vaavi+vy'=N
where N is a parameter. Note that for N =5, e 4(5) is the same as ¢ 3 above.

The granularity of events in our notation is a design decision. Aside from determin-

ing what constitutes atomic actions in the system, it also affects the progress properties of

the system. Even for two systems with the same S and the same T, their progress proper-
ties may be different because their events are defined differently.

"We use formula to refer to well-formed formula.

336 S.S. Lam and A.U. Shankar

In addition to state variables needed to model a system, the state vector v may
include auxiliary variables which are needed for verification only [Owicki & Gries 76].
For example, an auxiliary variable may be needed to record the history of certain event
occurrences. Variables in v are auxiliary if they satisfy the following: (1) The enabling
conditions of events do not depend on values of auxiliary variables. (2) Updates of state
variables that are not auxiliary are not affected by values of auxiliary variables.

We use the following example to illustrate two classes of properties of state transi-
tion systems that are of interest to us, namely, safety properties and progress properties.
Rules for proving these properties are presented in the next section.

Consider the following model of an object moving in two-dimensional space. Ima-
gine that the object is an airplane flying from Austin to Dallas. There are two state vari-
ables: x is the horizontal distance from Austin along a straight line between the two
cities, and y is the altitude of the airplane. The domain of x is {0,1, - ,N} such that
x=0 indicates that the airplane is at Austin airport and x=N indicates that the airplane is
at Dallas airport. The domain of y is the set of natural numbers such that y=0 indicates
that the airplane is on the ground. The initial condition is x=0Ay=0, indicating that the
airplane is on the ground at Austin airport. The behavior of the airplane is specified by
the following events:

TakeOff = x=0 Ay=0nx"=1 A 10<y’ <20
Landing = x=N-1110<y<20 Ax'=N ny' =0
Fly = 1<x<N-2 A 10<y <20 A X =x+1
FlyHigher = 1x<N-1 A 10y <20 ny =y +1
FlyLower = 1<x<N-1 A 10<y <20 0y’ =y -1

A safety property of the airplane example may be stated as follows: The airplane is
in a specified portion of the air space if it is not at one of the two airports. This can be
formalized by the assertion

x#0 Ax2N = 10<y <20 isinvariant
Informally, we say that a system state s is reachable if there exists a path from an

initial state to s in the transition system. The assertion that P is invariant is satisfied if
and only if it is satisfied by every reachable state of the system.

Generally, the letters P, Q, R, and I are used in this report to denote state formulas.
A state formula is a formula in the state variables that can be evaluated over an individual
system state to yield a truth value. We say that state s satisfies P if P evaluates to true
overs.

A progress property of the airplane example may be stated as follows: The airplane,
initially in Austin, eventually arrives at Dallas. This can be formalized by the assertion”

x=0ry=0 leads—to x=N ny=0

Before we give meaning to the temporal operator leads-to, we need to introduce the
concept of fairness. In any system state, several events may be enabled. For a state tran-
sition system with no fairness assumption, the choice of the next event to occur from the
set of enabled events is nondeterministic. Such nondeterminism allows the possibility
that some events never occur even though they are enabled continuously (or infinitely
often). In order for a system to have progress properties, it is often the case that some of
its events must be scheduled in such a way that certain fairness criteria are satisfied for

7In writing assertions containing leads-fo, we adopt the convention that its binding power is weaker than any of the other logical
connectives.

A Relational Notation for State Transition Systems 337

these events. These fairness assumptions should be stated explicity as part of the system
specification; they must be satisfied by any implementaton of the specification.

In the relational notation, fairness assumptions are stated for individual events. For
example, in order for the airplane example to have the progress property stated above, the
events TakeOff , Fly and Landing must be scheduled in such a way that they have weak
fairness. (Note that for this particular progress property, the other events of the airplane
example do not have to be fairly scheduled.) Informally, the meaning of an event having
weak fairness is the following: If the event is continuously enabled, it eventually occurs.
Before we can give a rigorous definition of weak fairness, we need to define what is a
maximal path.

The set of maximal paths of a state transition system includes all of its infinite paths.
A finite path is maximal only if it ends in a terminal state s; such that for all s #sz, (s5¢.5)
isnotinT.

The semantics of a system without any fairness assumption is given by its set of
maximal paths. If fairness criteria are specified for a subset of events of a system, then
only a subset of maximal paths are realizable for the system, namely, those maximal
paths that satisfy the fairness criteria. We shall refer to this subset as the set of fair paths.

Weak fairness: We say that a particular event e has weak fairness if and only if
each maximal path 6=<s(,5, - - - > that is realizable for the system satisfies the follow-
ing requirement: If for some s; in © and for all i 2k, s; satisfies enabled(e) then there is
some state §; in ¢ (j2k) such that the transition from s; to 541 is due to the occurrence
of e.

We are now in a position to give meaning to leads—to: P leads—to Q in a system if
and only if on every fair path <sq,s1, - > of the system, if some state s; in the path
satisfies P then there is a state s5; in the path (j2i) that satisfies Q.

Another way to state that a system is making progress or doing useful work is by
assertions of real-time behavior. To do so, some state variables can be used to represent
values of clocks and timers in the system. The requirement that an event must occur
within a certain duration of time is stated as a safety property. Also, clocks are not
allowed to reach certain values without the event having occurred; namely, clock ticks
are events whose occurrences must preserve the real-time requirements of the system. In
addition to proving that the real-time requirements are invariant, it is also necessary to
prove that clock values are unbounded [Shankar & Lam 87a]. (This approach was also
suggested by Lamport [1986].)

3. Proof Method

Assertions of safety properties are limited to the form: P is invariant, where P is a
state formula. Consider an arbitrary state formula R. We use R’ to denote the formula
obtained by replacing every free variable v in R by v’. Let Initial denote a state formula
specifying the initial condition on the system state, and ¢ an event. A safety property is
proved by the following rule:

Safety rule: P is invariant if, for some R,
(i) Initial =R,
(ii) foralle, R ne =R’, and
({i)R=>P
Note that P = R = true satisfies the above rule for every system. If [is invariant,
we can replace R with I AI”AR in parts (ii) and (iii) of the above rule.

338 S.S. Lam and A.U. Shankar

We say that P is a safety property of a system if and only if P satisfies the safety
rule for the system. By convention, for p and ¢ being state formulas containing free
variables, p = ¢ is logically valid if and only if p = ¢ is logically valid for all values of
the free variables. This convention of universal quantification is also followed for pro-
perties and inference rules containing free variables.

Assertions of progress properties are limited to the form P leads-to Q, where P
and Q are state formulas. Let ¢; denote a particular event. We first define a relation
between state formulas called leads —to —via .

Definition 1: P leads —to Q viae; if and only if
DP ne=>0Q’,
(ii) for alle, P ne=>P’'vQ’,
(iii) P => enabled(e;) is invariant, and
(iv) event ¢; has weak fairness.

If / is invariant, it can be used to strengthenthe antecedent of each logical implica-
tion in the definition; that is, replace P by I AI’ AP in parts (i)-(iii) of the definition.

The leads —to relation is defined to be the strongest relation that satisfies the follow-
ing rules. (This definition follows the one by Chandy and Misra [1988].)

Leads-to rules:
[Implication]
P leads—to Q if P =>Q isinvariant
[Event]
P leads—to Q if forsomee, P leads—to Q viae
[Transitivity]
P leads—to Q if forsomeR, P leads—to R and R leads—to Q
[Disjunction]
PV Pyleads—to Q if Py leads—to Q and P, leads—to Q
For a given system, if /I is invariant and P AJ leads—to R, we infer that
P leads—to R.

Consider an event e that has weak fairness. Let count(e) be an auxiliary variable
that counts the number of occurrences of e from the beginning of system execution.
Specifically, let the value of count (e) be zero initially. Add count (e Y=count (e }+1 as a
conjunct to the formula that specifies ¢. Add count(e)'=count(e) as a conjunct to the
formulas that specify other events. The following progress property can be easily proved
using the Event leads-to rule and Definition 1. It states a consequence of the weakness
fairness assumption for an event.

enabled(e) A count (e)=k leads—to count(e)=k+1 v —enabled(e)
‘We next prove a lemma that will be used in Section 5.

Lemma 1: P leads —to (Q VP ,) if
(i) P leads—to (Q VP), and
(ii) P 1 leads —to (Q VP 5)

A Relational Notation for State Transition Systems 339

Proof:
(ii)@=Q VP, (from Q = Q)
@@v) Q leads—to (Q VP 2) (by Implication rule on (iii))
) (Q vP)) leads—to (Q vP,) (by Disjunction rule on (iv) and (ii))
(vi) P leads —to (Q VP 5) (by Transitivity rule on (v) and (i))
QED.

4. Distributed Systems

The basic building blocks of our model consist of state variables and events. Note
that the relational notation and proof method introduced above are not dependent on
whether the system being specified is distributed or centralized. The assumption that
events are atomic means that concurrent actions in different modules of a distributed sys-
tem are modeled by interleaving them in any order.

Some distributed systems use shared variables for interprocess communication. In
the relational notation, a state variable can be shared and accessed by any number of
events. Thus, no specialization in the notation is necessary for this class of distributed
systems.

Some distributed systems use message-passing for interprocess communication. For
such a system, a state variable is declared to represent the state of each communication
channel in the system. These channel state variables are typed. The variable types we
use for channels are sequence and set of message values that are sent along the channels.

Channel state variables can only be accessed by send and receive primitives that are
specifically defined for the channels. For example, let z; be a state variable of type
sequence tepresenting channel ; that is an unbounded communication channel. Let m be
a message value. Define

Sendi(m) = zi’=z,~@m

Rec;(m) = z;=m@1z;’
where @ denotes the concatenation operator. Note that Rec;(m) is false if z; is empty.
(Primitives for channels with a finite capacity and for channels of variable type set can be
similarly defined.)

An event containing the primitive Send;(m) is called a send event of m. An event
containing the primitive Rec;(m) is called a receive event of m. Note that each primitive
is a formula in state variables, just like other formulas that make up the specification of
an event. The names Send;(m) and Rec;(m) are introduced primarily for notational con-
venience and to improve readability of event definitions.

Let M denote a set of messages that are sent along a channel. (Several sets of mes-
sages may be specified for a channel. For convenience, message and message value will
be used synonymously in this report.) Let e,(m) denote an event for receiving m,
m € M, from the channel. The specification of events is required to satisfy the following
condition: For every message m that can be sent along a channel, say channel i, the ena-
bling conditions of receive events satisfy the following requirement:

m € z; = for some e, (m), enabled (e, (m)) if z; is a set
m=Head (z;)= for some e,(m), enabled(e,(m)) if z; is a sequence

where Head is a function whose value is the first element of z; if z; is not empty; other-
wise, Head returns a null value.

340 S.S. Lam and A.U. Shankar

Consider message-passing systems with unreliable channels that can lose or reorder
messages. To prove progress properties for such systems, it is necessary to assume that
these unreliable channels have some progress property. The assumption should be as
weak as possible so that it can be satisfied by most communication channels. An informal
statement of the channel progress assumption is the following: If messages in a set M are
sent repeatedly along a channel, one of them is eventually received [Hailpern & Owicki
83].

We next define another leads—to—via relation between state formulas. Let ey
denote an event for sending messages in M along a channel, and count (M) an auxiliary
variable whose value indicates the number of times messages in M have been sent along
the channel by any send event of M since the beginning of system execution.

Definition 2: P leads—to Q viaM if and only if
(i) foralle,, Vime M [P ne,(m)=>Q’],
(ii) foralle, P ne=>P’vQ’, and
(iii) for some eyr, P A count (M)2k leads—to Q V count (M Y=k+1via ey

Given the channel progress assumption, we have the following leads-to rule which is
added to the definition of the leads-to relation.

Leads-to rule [Message]:
P leads—to Q if forsomeM, P leads—to Q viaM

We give a few general observations about the specification and verification of distri-
buted systems using our notation and proof method.

While it is not necessary to explicitly define modules (or processes) and associate
state variables and events with these modules, it is useful to know the state variables that
are accessed by each event. This information is available from the syntax of an event’s
definition. In a distributed system, each event accesses just a small subset of the system’s
state variables. This information can be used to substantially simplify applications of the
inference tules. In applying the safety rule, for example, if none of the free variables in
R is updated by event e then R Ae => R’ is trivially satisfied.

In a state transition system, the occurrence of a send or a receive event is asynchro-
nous. Each event occurrence corresponds to a transition in the system state space. This is
unlike the CSP model in which modules in a message-passing network are explicitly
defined and pairs of send and receive events in different module occur synchronously.
This observation about state transition systems does not depend on having unbounded
communication channels. But it does depend upon having channels with nonzero capa-
city.

Lastly, in the relational notation, it is also possible to specify synchronous updates of
state variables; this is done by placing the updates within the action of the same event.

5. Refinement and Projection of Systems

Consider two state transition systems A and B. Let V, denote a set of variables
{v1.v2,....va} and Vg denote the subset {v1,vs,...,v, }, where m<n. Let V4 and Vg be
the state variable sets of A and B respectively. Note that since Vp is a subset of V there
is a projection mapping from the states of A to the states of B; states in A having the
same values for {v,vo, - - - ,v,, } are mapped to the same state in B. Also, any state for-
mula of system B is a state formula of system A.

A Relational Notation for State Transition Systems 341

Let {a;} denote the set of events of system A, and {b 7} the set of events of system
B.

We next define a relation between two systems, called refinement, by first introduc-
ing a relation between events of the two systems. Event a; in system A is a refinement of
events in system B if, for some invariant R4 of system A, for some subset {b1,b,...,b; }
of events in B,

Ryna;=b1Vbyv --- Vb (refinement condition)

Very often, g; is the refinement of a single event. In this case, to check if g; satisfies
the refinement condition, it is sufficient to show either a; = b j or Ry A a;=b; for some
bj.

Let us explain informally the meaning of an event being a refinement of events in
another system. If g; can take system A from state 51 to 5, then there is some event b;
that can take system B from state ¢, to 79, where 7, and ¢, are the images of s and 5,
respectively under the projection mapping. This condition can be relaxed by introducing
a safety property R4 of system A, in which case the condition has to hold only for each
(5 1,8 2) pair such that 5, and s, satisfy R4. We will have to prove separately that such
safety properties introduced are in fact properties of system A. Note that an event g;
satisfies the refinement condition if it has a null image under the projection mapping,
namely, t 1=t for all 5| and s reachable in system A .

Let Initialy and Initialg be the initial conditions of A and B respectively.

Definition 3: System A is a refinement of system B if and only if every event in A is a
refinement of some events in B and /nitial, => Initialp .

The above condition is also used for defining B to be an image of A under the projection
mapping; that is, the relation image is the inverse of the relation refinement by definition.

The safety properties needed to guarantee events of system A to be refinements of
events of system B arise naturally in the following manner. In the process of deriving
system A from system B, suppose we want to implement a state variable x in B by two
state variables y and z in A. In system A, x is still a state variable but is made auxiliary.
To prove a;=>bj, where b; may contain references to x, an assertion of the relation
between x, y, and z in system A must be included as a conjunct of R4. Note that this
relation is akin to the possibilities mapping of Lynch and Tuttle [1987]. For the special
case of the relation being a function, the function is just like the state functions used by
Lamport [1983].

We provide two examples to illustrate the above observation:

Example 1. Suppose x is a channel state variable of type sequence of {m,m4} in
system B. In system A, the channel is represented by a state variable y of type sequence
of {my,my,m3}. Then the function x=y|{m,m,}, where the right hand side of the
equality denotes the restriction of sequence y to {m1,m,}, must be a safety property of
system A in order for it to be a refinement of system B .

Example 2. Let x be a state variable of system B. Its domain is the set of natural
numbers. The following event is defined in system B :

by =xiseven Nx'=x+l1
In deriving system A from system B, suppose we introduce a variable y whose domain is
{0,1} to replace x, and the following event is defined:

ay; =y=0ny’=l nx"=x+1

342 S.S. Lam and A.U. Shankar

Event a is a refinement of b given that y=x mod 2 is a safety property of system A.
Note that x can be made an auxiliary variable of system A and it does not have to be
implemented.

Theorem 1: If A is a refinement of B then every safety property of B is a safety pro-
perty of A.

Proof: Let P be a safety property of B. Let Rp denote a safety property of B that makes
P satisfy the safety rule. Let R4 be a safety property of A that makes events of A satisfy
the refinement condition. We show that P satisfies the safety rule for system A. First,
we have Initialy = Initialp = Rp . Second, we have Ry is invariant in system A, and for
any event a; of A, there exists a subset {&,b5, - - - ,b; } of events in B, such that

Rg NRy na;=> Rp AbiVvbyv --- vb)
=>(Rp nb1)V(Rg NDo)V -+ V(R Aby)
=Rp’
Since we already know that Rg => P, the proof is complete.
QE.D.
The following lemma will be used in the proof of Theorem 2 below.

Lemma 2: If system A is a refinement of system B and
forall eventb, P Ab=>P’VvQ’ in system B
then the following is logically valid
for all eventa, P na=>P’vQ’ insystemA.

The proof is immediate by applying the refinement condition.3

We next consider the conditions under which progress properties of system B are
also progress properties of system A. We distinguish two cases, depending on whether
we want to preserve some specific progress properties of B or every progress property of
B.

A hierarchical proof method can be used to establish specific progress properties in
connection with the hierarchical specification of a complex system. Suppose we specify
system A in two steps. First, specify system B, a simpler system than A. Second, derive
system A to be a refinement of system B. The proof of a progress property such as
P leads—to Q for system A can be carried out hierarchically as follows. The progress
property is first proved for system B by proving a set L of leads—to—via relations and
showing that the relation P leads—to Q is in the closure of the relations in L. Subse-
quently, it suffices to show that for each relation p leads—to q viaevent b or via message
set M in the set L, the relation p leads —to g holds for system A .

For some applications, however, it is desirable that every progress property of sys-
tem B be a progress property of system A. This can be achieved by imposing some
requirements on the event formulas of A and B

Let {b;,j € J } be the set of events of B, where J is an index set. Let {a;} be the set
of events of A with an index set that is a superset of J. The conditions for system A to
have well-formed events with respect to events of system B are given below. (These con-
ditions are adapted from conditions in {[Lam & Shankar 84] bearing the same name.)

“The relation between P and Q in Lemma 2 is almost the same as the P unless (relation of Chandy and Misra [1988].

A Relational Notation for State Transition Systems 343

WF1 [refinement of observable events)
Forall j e J, eventa ; is arefinement of b -

WE2 [refinement of unobservable events)
For all j € J, event a; is a formula in a set of parameters and the restricted set of
state Variables {Vm+1,vvm+2,s e yvn’} (& {V 1LV2, " " ,vn}'

Events with this restriction in system A are referred to as null-image events because
their actions do not update state variables that are also in system B ; their updates are thus
not observable in system B.

The following two conditions are specified for every j in J such that b; has weak
fairness in system B. (The set J in this requirement may be relaxed to a subset of J if
only some, but not all, progress properties of system B are to be properties of system A.
We will elaborate on this observation later.) In the following, R4 denotes a safety pro-
perty of system A .

WEF3 [unobservable leads-to]
The null-image events of system A satisfy the following:

Ry Nenabled (b)leads—to enabled(a;) via a sequence of null-image
events.

By Definition 1, each of the null-image event in the sequence must have weak fair-
ness.

WEF4 [noninterference]
Events of system A, for all {,i#/ , satisfy the following:
Ry Nenabled(aj) © a;=> enabled (a;) .
As is evident from the proof of Theorem 2 below, the noninterference condition
(WF4) is not needed if the implementation of system A guarantees strong fairness for

event ;. (Informally, if an event having strong fairness is enabled repeatedly, it eventu-
ally occurs [Pnueli 86].)

If event a i, J €J, satisfies the WF3’ condition below, it is said to be strongly well-
formed. Conditions WF3 and WF4 are not needed for a strongly well-formed event.

WEF3' [strongly well-formed event]
Ry N enabled(b;)=>enabled (a).
Clearly, WF3’ is much easier to apply than WEF3 and WE4. It has been our experi-

ence in the specification of communication protocols that many events can be refined to
satisfy WF3’. But for some events, WF3 and WF4 are needed.

The first two conditions, WF1 and WF2, guarantee that all events of system A
satisfy the refinement condition.

Definition 4: System A is a well-formed refinement of system B if and only if A has
well-formed events with respect to B and Initialy = Initialg.

Theorem 2: Every progress property of system B is a progress property of system A if
(i) system A is a well-formed refinement of system B, and

344 S.S. Lam and A.U. Shankar

(ii) forallj e J,if event b; has weak fairness in system B,
then event a; has weak fairness in system A.

A proof of Theorem 2 is given in [Lam & Shankar 88].

If only some progress properties of system B are required to be properties of system
A, the conditions for well-formed events can be relaxed as follows. Let L be the set of
leads-to-via relations that are needed to prove these progress properties for system B.
Instead of proving WF3’, or WF3 and WF4, for every j in J such that event b; has weak
fairness, the conditions have to be proved only for those events and message sets whose
leads-to-via relations are in L .

Let us now consider a refinement of the specification of the airplane example. Let
the state variables x and y be augmented by a third state variable z, with domain over all
integers, so that we will be reasoning about trajectories of the airplane in 3-dimensional
space. Initially, z=0. Five events, denoted by *, are defined in terms of events of the 2-
variable system as follows:

TakeOff* = TakeOff nz=0n-10<z"<10
Landing* = Landing n-10<z<10 A 2" =0
Fly* = Fly n-10<z<10

FlyHigher* = FlyHigher n—10<z<10
FlyLower* = FlyLower n—=10<z<10

It is easy to see that the above events are refinements of corresponding events in the 2-
variable system. Add the following two events:

FlyLeft = 1<x<N-1/A10<y<201-10<z<10n 2" =2z-1

FlyRight = 1<x<N-1110<y<20n-10<z<10 Az’ =z+1

The two new events are also refinements because they are null-image events whose
occurrences are not observable in the 2-variable system. Hence, the new 3-variable sys-
tem is a refinement of the 2-variable system. Furthermore, events of the 2-variable sys-
tems satisfy the well-formed conditions (in fact, they are strongly well-formed) given the
following safety requirement:

R4 = (x=0ny=0=>z=0) A (1<x<N—1=>-10<z<10)

R, is easily shown to be an invariant of the 3-variable system. Thus safety and progress
properties of the 2-variable system are also properties of the 3-variable system. Once
proved for the 2-variable system, they do not have to be proved again for the 3-variable
system.

6. Discussions and Related Work

The basic building blocks for specifying systems in the relational notation are state
variables and events. Events are binary relations on the system state space and they are
specified by formulas in a predicate logic notation. We believe that our notation is easy
to learn because states and state transitions are represented explicitly. For the same rea-
son, event specifications are also easy to read and understand. The idea of specifying an
event as a formula in the values of state variables before and after the event’s occurrence
is not unique to our work. A similar notation was used for program statements by Lam-
port [1983] and by Hehner [1984].

Prototypes of the relational notation and the proof method presented in this paper
were described in [Shankar & Lam 84, Shankar & Lam 87a]. Our proof method is based

A Relational Notation for State Transition Systems 345

upon a fragment of linear-time temporal logic [Chandy & Misra 88, Lamport 83, Owicki
& Lamport 82, Pnueli 86]. The method was designed to have a minimal amount of nota-
tion with the goal that it will be widely accessible to protocol engineers. Proofs provided
by the designer or verifier of a system can be checked in a mechanical fashion by apply-
ing a small set of inference rules as well as rules in predicate logic.

In order for a system to have progress properties, its events must be scheduled in
such a way that certain fairness criteria are satisfied for some events. We advocate the
approach of stating fairness assumptions explicitly for individual events as part of the
system specification, noting that for some systems not all events have to be fairly
scheduled. This contrasts with the approach of a blanket assumption that all events in a
system are fairly scheduled according to a particular criterion.

Using the relational notation, we presented a theory of refinement of state transition
systems. The theory is adapted from our earlier work on projection of a state transition
system to get image systems [Lam & Shankar 84]. The relation A is a refinement of B,
for two systems A and B, is the inverse of the relation B is an image of A by definition.

Other authors have defined similar relations between state transition systems. Lam-
port [1985] explained what it means for a program to implement its specification, that is,
the relation A implements B. He offered two definitions. In a pure axiomatic definition,
he said, "the implementation is correct if and only if the axioms comprising the semantics
of the implementation imply the axioms of the specification, after the latter are translated
by F into assertions about the implementation”, where F denotes a mapping from the for-
mulas of B to those of A.

Our refinement condition is reminiscent of the above definition. Specifically, we
define systems A and B such that every state variable of B is a state variable of A. Thus,
assertions about B are valid assertions about A. No translation is needed.

In the second definition of Lamport, the formal semantics of A and B are sets of
behaviors, paths, and pathsg, respectively. (A behavior corresponds to a fair path as
defined in Section 2.) Systems A and B satisfy the relation A implements B if
pathsy < F (pathsg), where F maps behaviors in pathsg into a set of behaviors in A
allowable by B. The definition of A simulates B by Lynch and Tuttle [1987] is almost the
same.

Lam and Shankar [1984] showed that if B is a well-formed image of A then
paths,=F (pathsg). Note the relation "=" instead of " = ". Consequently, if A is a well-
formed refinement of B or B is a well-formed image of A, then A simulates B according to
Lynch and Tuttle and A implements B according to Lamport. The converse may not be
true.

Chandy and Misra [1988] recently defined the relation A is a superposition of B. In
their approach, program A is obtained from transforming program B by repeated applica-
tions of two rules. This approach is attractive because the rules are syntactic and are thus
very easy to use. However, the class of systems that can be obtained by these rules is
smaller than the class that can be obtained by refinement. In particular, it is easy to see
that if A is a superposition of B then A is a well-formed refinement of B. The converse
may not be true. Specifically, if A is a superposition of B, then conditions WF1 and WF2
are satisfied. In addition, the superposition rules guarantee enabled(a;) = enabled(b;),
for all j € J, which implies WF3'.

While the relational notation and proof method in this paper are applicable to state
transition systems in general, their development has been motivated primarily by protocol
systems. In particular, we were dissatisfied with the limited capability of the CFSM

346 S8.S. Lam and A.U. Shankar

model in specifying as well as in verifying communication protocols. Without state vari-
ables, specification of sequence numbers and timers in a CFSM model is difficult.
Without timers, the modeling of unreliable channels in a CFSM model requires the use of
special techniques that do not always work, e.g., virtual messages, unbounded retransmis-
sions, etc.

The ideas and methods in this paper have been applied to the specification and
verification of some relatively large protocol systems.

The first application was the verification of a version of the High-level Data Link
Control (HDLC) protocol standard with functions of connection management and full-
duplex data transfer. Instead of verifying such a multifunction protocol in its entirety,
smaller image protocols were obtained by projection and verified [Shankar & Lam 83].

The relational notation was applied to specify an implementation of a two-phase
locking system to satisfy two interface specifications: (1) an "upper” interface that offers
serializable access to concurrent client programs, and (2) a "lower” interface for access-
ing a physical database. The implementation was obtained as a refinement of the upper
interface [Lam & Shankar 87].

A stepwise refinement heuristic was developed based upon the refinement relation.
The heuristic was applied to the construction of sliding window protocols for the tran-
sport layer where channels can lose, duplicate, and reorder messages, and the protocols
use cyclic sequence numbers [Shankar 86, Shankar & Lam 87b]. It was also applied to
the specification and verification of connection management protocols for the transport
layer [Murphy & Shankar 87, Murphy & Shankar 88].

In the last two references, Murphy and Shankar demonstrated how a complete tran-
sport protocol with functions of connection management and full-duplex data transfer can
be obtained by combining protocols constructed for the individual functions. Because the
multifunction protocol is a refinement of instances of the single-function protocols, safety
properties of the single-function protocols are preserved in the multifunction protocol.
Proofs of progress properties of the multifunction protocol were obtained hierarchically
[Murphy & Shankar 88].

Recently, the image relation between systems was used to reason about semantics of
different communication protocols and conversions between them. The two theorems in
this paper were applied to define what it means for a protocol converter to achieve intero-
perability between entities that implement different protocols [Lam 88].

Acknowledgements

We thank Jayadev Misra who discovered several technical errors in an early draft of this
paper. We also thank Mohamed Gouda who provided various constructive comments.

REFERENCES

[CCITT 85] CCITT, Recommendations Z.101 10 Z.104, Red Book, Geneva, 1985 (Stan-
dard Definition Language).

[Chandy & Misra 88] K.M. Chandy and J. Misra, A Foundation of Parallel Program
Design, Addison-Wesley, Reading, MA, 1988.

[Clarke & Emerson 81] E.M. Clarke and E.A. Emerson, "Synthesis of Synchronization
Skeletons for Branching Time Temporal Logic," Proceedings Workshop on Logic of

A Relational Notation for State Transition Systems 347

Programs, LNCS 131, Spring Verlag, 1981.

[Hailpern & Owicki 83] B.T. Hailpern and S. Owicki, "Modular Verification of Com-
puter Communication Protocols,” IEEE Transactions on Communications, Vol. COM-31,
No. 1, January 1983.

[Hehner 84] E.C.R Hehner, "Predicative Programming, Part I and Part I1," Communica-
tions of the ACM, Vol. 27, No. 2, February 1984,

[Hoare 85] C.A.R. Hoare, Communication Sequential Processes, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1985.

[IBM 80] IBM Corporation, Systems Network Architecture Format and Protocol Refer-
ence Manual: Architectare Logic, IBM Form No. SC32-3112-2, 1980.

[ISO 851 ISO/TC97/SC21/WG16-1 N422 Estelle--A Formal Description Technique
Based on an Extended State Transition Model, Feb. 1985.

[Lam 88] S.S. Lam, "Protocol Conversion," IEEE Transactions on Software Engineering,
Vol. 14, No. 3, March 1988.

[Lam & Shankar 84] S.S. Lam and A. U. Shankar, "Protocol Verification via Projec-
tions," IEEE Transactions on Software Engineering, Vol. SE-10, No. 4, July 1984.

[Lam & Shankar 87] S.S. Lam and A. U. Shankar, "Specifying an Implementation to
Satisfy Interface Specifications: A State Transition Approach,” presented at the 26th Lake
Arrowhead Workshop on How will we specify concurrent systems in the year 20007,
September 1987.

[Lam & Shankar 88] S. S. Lam and A. U. Shankar, "A Relational Notation for State
Transition Systems,” Technical Report TR-88-21, Department of Computer Sciences,
University of Texas at Austin, May 1988.

[Lamport 83] L. Lamport, "What Good is Temporal Logic?" Proceedings Information
Processing 83, IFIP, 1983.

[Lamport 85] L. Lamport, "What it means for a concurrent program to satisfy a
specification: Why no one has specified priority," Proceedings of the 12th ACM Sympo-
sium on Principles of Programming Languages, New Orleans, January 1985.

[Lamport 86] L. Lamport, "A Simple Approach to Specifying Concurrent Systems,"
Technical Report 15, System Research Center, Digital Corporation, Palo Alto, California,
December 1986.

[Lynch & Tuttle 87] N.A. Lynch and M.R. Tuttle, "Hierarchical Correctness Proofs for
Distributed Algorithms," Proceedings of the ACM Symposium on Principles of Distri-
buted Computing, Vancouver, B.C., August 1987.

[Manna & Pnueli 84] Z. Manna and A. Pnueli, "Adequate Proof Principles for Invari-
ance and Liveness Properties of Concurrent Programs," Science of Computer Program-
ming, Vol. 4, 1984.

348 S.S. Lam and A.U. Shankar

[Milner 80] R. Milner, A Calculus of Communication Systems, LNCS 92, Springer Ver-
lag, New York, 1980.

[(Murphy & Shankar 87] S.L. Murphy and A.U. Shankar, "A Verified Connection
Management Protocol for the Transport Layer," Proceedings ACM SIGCOMM '87
Workshop, Stowe, Vermont, August 1987.

[Murphy & Shankar 88] S.L. Murphy and A.U. Shankar, "Service Specification and Pro-
tocol Construction for the Transport Layer," Proceedings ACM SIGCOMM ’88 Sympo-
sium, Stanford University, August 1988 (to appear).

[Owicki & Gries 76] S. Owicki and D. Gries, "Verifying Properties of Parallel Pro-
grams: An Axiomatic Approach,” Communications of the ACM, Vol. 19, No. 5, May
1976.

[Owicki & Lamport 82] S. Owicki and L. Lamport, "Proving Liveness Properties of
Concurrent Systems,” ACM TOPLAS, Vol. 4, No. 3, 1982.

[Piatkowski 86] T. F. Piatkowski, "The State of The Art in Protocol Engineering,"
Proceedings ACM Sigcomm ’86 Symposium, Stowe, Vermont, 1986.

[Pnueli 86] A. Pnueli, "Applications of Temporal Logic to the Specification and
Verification of Reactive Systems: A Survey of Current Trends," in Current Trends in
Concurrency: Overviews and Tutorials, J.W, deBakker et al. (ed.), LNCS 224, Springer
Verlag, 1986.

[Sabnani 86] K. Sabnani, "An Algorithmic Procedure for Protocol Verification," AT&T
Bell Laboratories Research Report, Murray Hill, N.J., 1986.

[Shankar 86] A.U. Shankar, "Verified Data Transfer Protocols with Variable Flow Con-
trol," Technical Report CS-TR-1746, University of Maryland, December 1986, to appear
in ACM Transactions on Computer Systems; an abbreviated version appeared in Proceed-
ings ACM SIGCOMM ’ 86, Stowe, Vermont, August 1986.

[Shankar & Lam 83] A.U. Shankar and S.S. Lam, "An HDLC Protocol Specification and
its Verification Using Image Protocols,” ACM TOCS, Vol. 1, No. 4, November 1983.

[Shankar & Lam 84] A.U. Shankar and S.S. Lam, "Time-dependent communication pro-
tocols, " in Tutorial: Principles of Communication and Networking Protocols, S.S. Lam
(ed.), IEEE Computer Society, 1984.

[Shankar & Lam 87a] A.U. Shankar and S.S. Lam, "Time-dependent distributed sys-
tems: proving safety, liveness, and real-time properties,” Distributed Computing, Vol. 2,
1987.

[Shankar & Lam 87b] A.U. Shankar and S.S. Lam, "A Stepwise Refinement Heuristic
for Protocol Construction,” Technical Report CS-TR-1812, Department of Computer Sci-
ence, University of Maryland, March 1987.

[West 78] C.H. West, "General Techniques for Communications Protocol Validation,"
IBM Journal of Research and Development, Vol. 22, July 1978.

