
Neighbor Table Construction and Update in a Dynamic Peer-to-Peer Network�

Huaiyu Liu and Simon S. Lam

Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712
fhuaiyu, lamg@cs.utexas.edu

Abstract

In a system proposed by Plaxton, Rajaraman and Richa
(PRR), the expected cost of accessing a replicated object
was proved to be asymptotically optimal for a static set of
nodes and pre-existence of consistent and optimal neighbor
tables in nodes [9]. To implement PRR’s hypercube rout-
ing scheme in a dynamic, distributed environment, such as
the Internet, various protocols are needed (for node join-
ing, leaving, table optimization, and failure recovery). In
this paper, we first present a conceptual foundation, called
C-set trees, for protocol design and reasoning about con-
sistency. We then present the detailed specification of a
join protocol. In our protocol, only nodes that are joining
need to keep extra state information about the join process.
We present a rigorous proof that the join protocol gener-
ates consistent neighbor tables for an arbitrary number of
concurrent joins. The crux of our proof is based upon in-
duction on a C-set tree. Our join protocol can also be used
for building consistent neighbor tables for a set of nodes at
network initialization time. Lastly, we present both analytic
and simulation results on the communication cost of a join
in our protocol.

1. Introduction
The main goal of popular peer-to-peer systems, such as
Napster [8], Gnutella [4], and Freenet [3], is object (file)
sharing. Objects are stored in user machines and transferred
from one machine to another upon requests. In this paper,
we view such a system conceptually as a network ofnodes.
Each node, representing a user machine, can send messages
to every other node in the system using the Internet.

In these systems, objects are generally replicated, with
multiple copies of the same object stored in different nodes.
Objects are addressed by location-independent names, with
location-independent routingused to forward one node’s
query for an object to some node storing a copy of the ob-
ject. Four desirable properties of a location-independent

�Research sponsored by National Science Foundation grant no. ANI-
9977267 and Texas Advanced Research Program grant no. 003658–0439–
2001. To appear inProceedings IEEE ICDCS, Providence, RI, May 2003.

routing infrastructure for these systems, presented by Hil-
drum, Kubiatowicz, Rao, and Zhao in [5], are the following
(slightly rephrased):

P1 Deterministic Location: If an object exists anywhere
in the network, it should be located.

P2 Routing Locality: If multiple copies of an object exist
in the network, a query for the object should be for-
warded to a nearby copy. Also, routes should have low
stretch.1

P3 Load Balance: The load of storing objects (or object
locations) and routing information should be evenly
distributed over network nodes.

P4 Dynamic Membership: The network should adapt to
joining and leaving nodes while maintaining the above
properties.

Napster employs a centralized directory of object loca-
tions and clearly does not satisfy P3. The system is also
not fault-tolerant since the directory server is a single point
of failure. Gnutella and Freenet were designed to have dis-
tributed directory information. However, neither of them
satisfies P1.

In two recent research proposals, Chord [12] and
CAN [10], the main operation is name resolution, i.e., map-
ping a name (object ID) to a node that stores a copy of the
object (or the location of the object). Each system was de-
signed to satisfy P1, P3, and P4. However, these systems do
not satisfy P2 because they are not concerned with forward-
ing a query directly to a nearby object. Furthermore, while a
name can be resolved within a small number of application-
level hops,2 the actual distance of each hop through the In-
ternet, from one node to another, may be very large.

Of interest in this paper is the hypercube routing scheme
used in PRR [9], Pastry [11], Tapestry [13], and SPRR [6].
Each node maintains a neighbor table storing pointers (IP
addresses) toO(logn) nodes in the network. These tables
constitute the network’s routing infrastructure. With addi-
tional distributed directory information, PRR tends to sat-

1Stretch is the ratio between the distance traveled by a query to an ob-
ject to the minimum distance between query origin and the object.

2The number isO(log n) for Chord andO(dn1=d) for CAN, wheren
is the number of nodes in the system andd is the number of dimensions
chosen for CAN.

isfy each object request with a nearby copy. Givenconsis-
tent(definition in Section 3) andoptimal(that is, they store
nearest neighbors) neighbor tables, PRR guarantees to lo-
cate an object if it exists, and the expected cost of accessing
a replicated object is asymptotically optimal [9].

To implement the hypercube routing scheme in a dy-
namic, distributed environment, we need to address the fol-
lowing problems:

1. Given a set of nodes, a join protocol is needed for the
nodes to initialize their neighbor tables such that the
tables areconsistent. (In what follows, a “consistent
network” means a set of nodes with consistent neigh-
bor tables.)

2. Protocols are needed for nodes to join and leave a con-
sistent network such that the neighbor tables are still
consistent after a set of joins and leaves. When a node
fails, a recovery protocol is needed to re-establish con-
sistency of neighbor tables.

3. A protocol is needed for nodes to optimize their neigh-
bor tables.

Solving all of these problems is beyond the scope of a
single paper. In this paper, we focus on designing a join
protocol for the hypercube routing scheme. Given a con-
sistent network, and a set of new nodes joining the network
using our protocol, we prove that the join process will termi-
nate and the resulting neighbor tables of both existing and
new nodes are consistent (assuming reliable message deliv-
ery and no node deletion). In particular, our proof holds for
an arbitrary number of concurrent joins.

Contributions of this paper are the following:

� We analyze the goal of the join protocol and present a
conceptual foundation, calledC-set trees, for protocol
design and reasoning about consistency.

� We design a join protocol for the hypercube routing
scheme, and present a detailed protocol specification.
In our protocol, only nodes that are still in the join pro-
cess need to keep extra state information about the join
process. The join protocol can also be used for network
initialization, where initially the network has only one
node. Other nodes then join the network by executing
the join protocol.

� We present a rigorous proof that the join protocol pro-
duces consistent neighbor tables for an arbitrary num-
ber of concurrent joins. The crux of our proof is based
upon induction on a C-set tree.

� We present both analytic and simulation results on the
communication cost of a join in our join protocol.

The join protocol presented in this paper provides a so-
lution to problem 1, and part of the solution to problem 2,
discussed above. Moreover, the conceptual foundation pre-
sented in this paper can be used for designing protocols for

leaving, failure recovery, and neighbor table optimization.3

Note that since we are only concerned with consistency in
this paper, the assumption of optimal neighbor tables is re-
laxed when we design our join protocol. Interested readers
can refer to [5, 2] for methods of exploiting node proximity
and optimizing neighbor tables.

PRR includes algorithms for dynamically maintaining
directory information when objects are inserted, deleted,
and accessed [9]. However it does not have node join and
leave protocols. Pastry, Tapestry, and SPRR all have join
and leave protocols. The issue of neighbor table consis-
tency after concurrent joins and leaves was raised but not
addressed in SPRR [6]. Pastry uses an optimistic approach
to control concurrent node joins and leaves because the au-
thors believe “contention” to be rare [11]. A join protocol
was presented for Tapestry with a correctness proof [5]. The
join protocol is based upon the use of multicast. The exis-
tence of a joining node is announced by a multicast mes-
sage. Each intermediate node in the multicast tree keeps
the joining node in a list (one list per entry updated by a
joining node) until it has received acknowledgments from
all downstream nodes. This approach has the disadvantage
of requiring many existing nodes to store and process ex-
tra states as well as send and receive messages on behalf of
joining nodes. We take a very different approach in our join
protocol design. We put the burden of the join process on
joining nodes only.

The balance of this paper is organized as follows: In Sec-
tion 2, we briefly describe the hypercube routing scheme. In
Section 3, our conceptual foundation for protocol design is
illustrated. In Section 4, a detailed specification of our join
protocol is presented. In Section 5, we present a consistency
proof of the join protocol as well as an analysis of the pro-
tocol’s communication cost. In Section 6, we discuss how
to use the join protocol for network initialization, as well as
several protocol enhancements. We conclude in Section 7.

2. Background: Hypercube Routing Scheme
Consider a set of nodes and a set of objects. Each node or
object has an identifier (ID), which is a fixed-length random
binary string. (These IDs are typically generated using a
hash function, such as MD5 or SHA-1.) Node and object
IDs are drawn from the same ID space which can be thought
of as a ring.

To present the hypercube routing scheme, we will follow
notation and terminology used for PRR [9]. Each node’s ID
is represented byd digits of baseb. For example, a 32-bit
ID can be represented by 8 Hex digits (b = 16). Hereafter,
we usex:ID to denote the ID of nodex and usex[i], 0 �
i � d� 1, to denote theith digit in x:ID, with the 0th digit
referred to as therightmostdigit.

3This paper is the first in a series of papers we write to address these
problems.

The routing schemes of PRR [9], Pastry [11],
Tapestry [13], and SPRR [6] can all be viewed as exten-
sions of the hypercube routing scheme in this paper. For
these schemes, a query of an object is routed to a node that
matches the object in the largest number of suffix (or prefix)
digits.4 The schemes differ in the technique each uses to re-
solve the final routing hop when there are multiple nodes
that match an object in the largest number of suffix (or pre-
fix) digits. These schemes also differ in how they replicate
objects and how they provide fault-tolerant routing.

2.1. Neighbor table

The neighbor table of each node consists ofd levels with
b entries at each level. (In what follows, we useneigh-
bor tableandtable interchangeably.) The entryj at leveli,
0 � j � b� 1, 0 � i � d� 1, referred to as the (i; j)-entry,
in the table of nodex contains link information to nodes
whose IDs andx:ID share a common suffix withi digits,
and whoseith digit is j. These nodes are said to beneigh-
borsof x.5 If multiple nodes exist with the desired suffix of
the (i; j)-entry, then a subset of these nodes, chosen accord-
ing to some criterion,6 may be stored in the entry with the
nearest one designated as theprimary(i; j)-neighbor. Each
node also keeps track of itsreverse-neighbors. Nodex is
a reverse(i; j)-neighbor of nodey if y is the primary(i; j)-
neighbor ofx. Figure 1 shows an example neighbor table,
in which only primary-neighbors are shown. (Also, IP ad-
dresses of neighbors are omitted.) The number to the right
of each entry is the desired suffix for that entry. An empty
entry indicates that there does not exist a node in the net-
work whose ID has the desired suffix.

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233 (b=4, d=5)

Figure 1. An example neighbor table

2.2. Routing scheme

When nodex sends a message to nodey, it first forwards
the message tou1, a primary-neighbor ofx at level-0 that
shares the rightmost digit withy. u1 then forwards the
message to its primary-neighbor at level-1 that shares the

4PRR routing uses suffix matching, while the other schemes use prefix
matching. We follow PRR and count digits in an ID from right to left, with
the 0th digit being therightmostdigit.

5The link information for each neighbor consists of the neighbor’s ID
and its IP address. For simplicity, we will use “neighbor” or “node” instead
of “node’s ID and IP address” whenever the meaning is clear from context.

6In PRR, for example, nodes with minimum communication costs are
chosen. Extra neighbors in an entry are used to facilitate object location [9]
or for fault tolerant routing [13].

rightmost two digits withy. This process continues until
the message reachesy. For example, a message sent from
node 21233 to destination node 03231 is first forwarded
to the primary(0; 1)-neighbor of 21233, which is 33121 in
Figure 1, then to the primary(1; 3)-neighbor of 33121, say,
13331, and so on, until it reaches 03231. In this paper, the
primary(i; x[i])-neighbor ofx is chosen to bex itself. As a
result, whenx sends a message toy following the primary-
neighbor pointers, instead of starting at level-0, it starts at
level-k, wherek is the length of the longest common suffix
of x:ID andy:ID.

3. Conceptual Foundation
In this section, we analyze the goals and tasks for a join
protocol to produce consistent neighbor tables. We first an-
alyze the case of a single join, which is straightforward and
presents intuition of the protocol design. Then we discuss
multiple joins and present the concept ofC-set trees.

Since in this paper, we are only concerned with consis-
tency, we relax the assumption ofoptimalneighbor tables in
the hypercube routing scheme. In what follows, we use the
termneighborto meanprimary neighbor. Thus, to simplify
our presentation, we assume that there is only one neighbor
in each table entry. Table 1 presents notation used through-
out this paper.

Table 1. Notation

Notation Definition
[`] the setf0, ...,`� 1g, ` is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x:table the neighbor table of nodex
j � ! digit j concatenated with suffix!
Nx(i; j) the node in the(i; j)-entry ofx:table, also referred

to as the(i; j)-neighborof nodex
j!j the number of digits in suffix!
csuf(!1; !2) the longest common suffix of!1 and!2
hV;N (V)i a hypercube network:V is the set of nodes in the

network,N (V) is the set of neighbor tables
Vli:::l0 asuffix setof V , which is the set of nodes inV ,

each of which has an ID with the suffixli:::l0
jV j the number of nodes in setV

3.1. Definitions and assumptions
Definition 3.1 Let tbx be the time when nodex begins join-
ing a network, andtex be the time whenx becomes an S-
node (to be defined in Section 4). The period fromtbx to tex,
denoted by[tbx; t

e
x], is thejoining period of x.

Definition 3.2 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a network. If the joining period of each node
does not overlap with that of any other, then the joins are
sequential.
Definition 3.3 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a network. Lettb = min(tbx1 ; :::; t

b
xm

) and
te = max(tex1 ; :::; t

e
xm

). If for each nodex, x 2 W , there
exists a nodey, y 2 W andy 6= x, such that their joining

periods overlap, and there does not exist a sub-interval of
[tb,te] that does not overlap with the joining period of any
node inW , then the joins areconcurrent.
Definition 3.4 Suppose a set of nodes,W = fx1,...,xmg,
m � 1, join a networkhV;N (V)i. For any nodex, x 2W ,
if Vx[k�1]:::x[0] 6= ; andVx[k]:::x[0] = ;, 1 � k � d � 1,
thenV x[k�1]:::x[0] is thenotification set of x regardingV ,
denoted byV Notify

x . If Vx[0] = ;, thenV Notify
x is V .

Definition 3.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a networkhV;N (V)i. The joins areindepen-
dent if for any pair of nodesx and y, x 2 W , y 2 W ,
x 6= y, V Notify

x \ V Notify
y = ;.

Definition 3.6 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a networkhV;N (V)i. The joins aredepen-
dent if for any pair of nodesx and y, x 2 W , y 2 W ,
x 6= y, one of the following is true:
� V Notify

x \ V Notify
y 6= ;.

� 9u, u 2 W , u 6= x ^ u 6= y, such thatV Notify
x �

V Notify
u andV Notify

y � V Notify
u .

Definition 3.7 Consider two nodes,x and y, in network
hV;N (V)i. If there exists a neighbor sequence(u0; :::; uk),
k � d, such thatu0 is x, uk is y, andui+1 is Nui(i; y[i]),
i 2 [k], theny is reachable from x (within k hops), orx
canreachy, to be denoted byhx! yik.
Definition 3.8 Consider a networkhV;N (V)i. The net-
work, or N (V), is consistent if for any nodex, x 2 V ,
each entry in its table satisfies the following conditions:
(a) If Vj�x[i�1]:::x[0] 6= ;, then Nx(i; j) = y, y 2

Vj�x[i�1]:::x[0], 1 � i � d � 1, j 2 [b]; if Vj 6= ;,
thenNx(0; j) = y, y 2 Vj , j 2 [b].

(b) If Vj�x[i�1]:::x[0] = ;, thenNx(i; j) = null, 1 � i �
d� 1, j 2 [b]; if Vj = ;, thenNx(0; j) = null, j 2 [b].

If condition (a) is satisfied, thenN (V) is false negative
free, i.e., if a node exists in the network, it is reachable from
any other node. If condition(b) is satisfied, thenN (V)
is false positive free, i.e., if a node does not exist in the
network, there should not exist a path that leads to it.

Lemma 3.1 In a networkhV;N (V)i, any node is reach-
able from any other node iff condition (a) of Definition 3.8
is satisfied by the network.

In designing our protocol for nodes to join a network
hV;N (V)i, we assume that (i)V 6= ; andN (V) is consis-
tent, (ii) each joining node, by some means, knows a node
in V initially, (iii) messages between nodes are delivered
reliably, and (iv) there is no node deletion (leave or failure)
during the joining period of any node.

Under the assumption that there is no node deletion dur-
ing joins, condition(b) in Definition 3.8 can be satisfied
easily, since once a node has joined, it always exists in the
network. Hence, the goal of the join protocol is to construct
neighbor tables for new nodes and update tables of existing

nodes such that condition(a) in Definition 3.8 is satisfied.
In a distributed peer-to-peer network, global knowledge is
difficult (if not impossible) to get. Therefore, a node should
utilize local information to construct or update neighbor ta-
bles. Our join protocol is designed to expand the network
monotonically and preserve reachability of existing nodes
so that once a set of nodes can reach each other, they al-
ways can thereafter. Hence, starting with a consistent net-
work, hV;N (V)i, and a setW of joining nodes, the goals
of the protocol are the following:
� Goal 1: 8x, 8y, x 2 W , y 2 V , eventuallyx andy

can reach each other.
� Goal 2: 8x1, 8x2, x1 2 W , x2 2 W , eventuallyx1

andx2 can reach each other.

3.2. Operations of a single join

Whenx joins, it is given a nodeg0, g0 2 V . First,x con-
structs its own table level by level by copying neighbors
from nodes inV . It starts with copying level-0 neighbors of
g0 into level-0 of its own table. Among these level-0 neigh-
bors,x finds nodeg1, g1[0] = x[0]. Thenx copies level-1
neighbors ofg1 into level-1 of its own table and searches
for a nodeg2 that shares the rightmost 2 digits with it. This
process is repeated untilx cannot find a node that shares the
rightmostk + 1 digits with it (k must exist and is at most
d � 1 sincex:ID is unique in the network).x then adds
itself into its table.

Since there exist nodes inV that share the rightmostk
digits with x but no node shares the rightmostk + 1 dig-
its with x, Vx[k�1]:::x[0] 6= ;, however,Vx[k]:::x[0] = ;.
Hence nodes inVx[k�1]:::x[0] need to be notified and their
(k,x[k])-entries need to be updated. Conceptually, nodes
in Vx[k�1]:::x[0] form a forest whose roots are the level-k

neighbors ofx. By following neighbor pointers,x traverses
the forest and notifies all nodes inVx[k�1]:::x[0] eventually.

Duringx’s join, the consistency of the original network
hV;N (V)i is preserved because nodes inV will fill x into
a table entry only if that entry is empty.

3.3. Operations of multiple joins

If multiple nodes join a network sequentially, then the joins
do not interfere with each other, because when a node joins,
any node that joined ealier has already been integrated into
the network. Also, if multiple nodes join a network con-
currently and the joins are independent, then intuitively the
joins do not interfere with each other, because the sets of
nodes these joining nodes need to notify do not intersect and
none of the joining nodes needs to store any other joining
node in its table. The most difficult case isconcurrent and
dependent joins, where the views different joining nodes
have about the current network may conflict. For exam-
ple, if nodes 10261 and 00261 join concurrently, each of
them may think of itself as the only node with suffix 261

in the network. If handled incorrectly, views of the joining
nodes may not converge eventually, which would result in
inconsistent neighbor tables.

10261

13141 31701

C261

C47051C00261 C10261

C61

C051

C7051C0261

C61 C51

C261 C051

C0261 C7051

C00261 C10261 C47051

C61

C261

C0261

C10261

13141 31701

(b)

1

(a)

VV

 4705100261

10261

47051

47051

10261 47051

10261

V

(c)

C51

1V 1V

Figure 2. C-set tree

We first analyze the desirable results of multiple joins by
using an example (b = 8, d = 5). Suppose a set of nodes,
W = f10261, 47051, 00261g, join a consistent network
hV;N (V)i, V = f72430,10353,62332,13141,31701g.
Then, at the end of joins, for anyy to reach 10261,y 2 V ,
there should exist a neighbor sequence (u0; u1; :::; u5) such
thatu0 is y, u5 is 10261, and the IDs ofu1 to u4 have suffix
1, 61, 261, and 0261, respectively. SinceN (V) is consis-
tent,y must have stored a neighbor with suffix 1, which can
be any node inV1. Let the set of (1; 6)-neighbors of nodes
in V1 beC61, the set of (2; 2)-neighbors of nodes inC61

beC261 and so on. We call these setsC-setsand the se-
quence of sets fromV1 to C10261 a C-set path. As shown
in Figure 2(a), for nodes inV to reach 10261, each C-set
in the path should be filled with nodes inW with the de-
sired suffix. Generally, from any node inV to each node
in W , there is an associated C-set path, and all the paths
form a tree rooted atV1, called aC-set tree, as shown in
Figure 2(c). Note that C-set trees are conceptual structures
used for protocol design and reasoning about consistency.
They arenot implementedin any node.

The above example is a special case of multiple joins,
where the notification sets regardingV (noti-sets, in short)
of all nodes inW are the same (namely,V1 in the example).
Generally, the noti-sets of all nodes inW may not be the
same. Then, nodes with the same noti-set belong to the
same C-set tree and the C-set trees for all nodes inW form
a forest. In the above example, ifW = f10261, 00261,
67320, 11445g, then 10261 and 00261 belong to a C-set
tree rooted atV1, 67320 belongs to a C-set tree rooted atV0
and 11445 belongs to a C-set tree rooted atV . Each C-set
tree can be treated separately. Hence, in the balance of this
subsection, our discussion is focused on a single C-set tree.

Definition 3.9 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a consistent networkhV;N (V)i, and for any
nodex, x 2 W , V Notify

x = V!, wherej!j = k. Then the
C-settree templateassociated withV andW , denoted by
C(V;W), is defined as follows:

� V! is the root of the tree (the root is not a C-set);
� If Wl1�! 6= ;, l1 2 [b], then setCl1�! is a child ofV!,

andl1 � ! is the associated suffix ofCl1�!;

� If Wlj :::l1�! 6= ;, 2 � j � d� k, l1,...,lj 2 [b], then set
Clj :::l1�! is a child of setClj�1:::l1�!.

GivenV andW , the tree template is determined. Fig-
ure 2(b) shows the tree template for the above example. The
task of the join protocol is to construct and update neighbor
tables such that paths are established between nodes;con-
ceptuallynodes are filled into each C-set inC(V;W). For
different sequences of protocol message exchange, different
nodes could be filled into each C-set, which would result in
different realizations of the tree template. Figure 2(c) shows
one realization of the tree template in Figure 2(b). Observe
that since for any nodex, Nx(i; x[i]) = x, i 2 [b], once
x is filled into a C-set, it is automatically filled into those
descendants of the C-set in the tree, whose suffix is also a
suffix of x:ID. For instance, if both 13141 and 31701 store
10261 in (1; 6)-entry, then conceptually 10261 is filled in
C61 and consequently, 102612 C261, C0261 andC10261.

Given a setW of nodes joining a consistent network
hV;N (V)i and nodes inW belong to the same C-set tree,
we denote the C-set tree realized at the end of all joins
ascset(V;W) (formal definition ofcset(V;W) is in Sec-
tion 5.1). By the end of joins, the following conditions
should be satisfied by neighbor tables of nodes inV [W

for them to be consistent:

(1) cset(V;W) has the same structure withC(V;W) and
none of the C-sets incset(V;W) is empty.

(2) For each nodey, y 2 V! (root of the C-set tree), for
each child C-set ofV! in cset(V;W), y stores a node
with the suffix of that C-set into its neighbor table.

(3) For each nodex, x 2 W , the C-set whose suffix is
x:ID is a leaf node in the tree. For any C-set along
the path from this leaf node to the root, if it has any
sibling C-set, thenx stores a node with the suffix of
that sibling C-set in its table.7

If condition (1) is satisfied, then incset(V;W), each leaf
node whose suffix corresponds to a node’s ID must include
that node. Therefore, the union of all C-sets incset(V;W)
is W . If condition (2) is satisfied, then all entries inN (V)
that need to be updated are updated. If condition (3) is satis-
fied, then for any node inW , it can reach every other node
in W . Hence, these three conditions, together with each
joining node’s copying neighbors from nodes inV , ensure
that the network is consistent after the joins.

4. Specification of Join Protocol
In our protocol, each node keeps its own status, which could
becopying, waiting, notifying, andin system. When a node
starts joining, its status is set tocopying. Each node also
stores the state of each neighbor asT orS in its table, where

7For instance, in Figure 2(c), fromC00261 to V1, there are two
branches with suffix 10261 and 51 respectively. Then, eventually, 00261
should store a node with suffix 10261 and a node with suffix 51.

S indicates that the neighbor is in statusin system, whileT
means it is not yet.

A node with statusin systemis called anS-node; other-
wise, it is aT-node. Figure 3 describes the state variables
of a joining node. Variables in the first part are also used
by nodes inV , where for each nodey, y 2 V , y:status =
in system, y:table is populated in a way that satisfies the
conditions in Definition 3.8, andNy(i; j):state = S if
Ny(i; j) 6= null for all i and j. Figure 4 presents the
protocol messages. Figures 5 to 14 present the pseudo-
code of the protocol, in whichx, y, u andv denote nodes,
and i, j and k denote integers. Note that when any
node,x, setsNx(i; j) = y, y 6= x, x needs to send a
RvNghNotiMsg(y;Nx(i; j):state) to y, andy should reply
to x if Nx(i; j):state is not consistent withy:status. For
clarity of presentation, we have omitted the sending and re-
ception of these messages in the pseudo-code.

State variables of a joining nodex:

x:status 2 fcopying, waiting, notifying, in systemg, initially copying.
Nx(i; j): the (i; j)-neighbor ofx, initially null.
Nx(i; j).state2 fT , Sg.
Rx(i; j): the set of reverse(i; j)-neighbors ofx, initially empty.

x:noti level: an integer, initially 0.
Qr : a set of nodes from whichx waits for replies, initiallyempty.
Qn: a set of nodesx has sent notifications to, initiallyempty.
Qj : a set of nodes that have sentx aJoinWaitMsg, initially empty.
Qsr , Qsn: a set of nodes, initiallyempty.

Figure 3. State variables

Messages exchanged by nodes:

CpRstMsg, sent byx to request a copy of receiver’s neighbor table.
CpRlyMsg(x:table), sent byx in response to aCpRstMsg.
JoinWaitMsg, sent byx to notify receiver of the existence ofx,

whenx:status is waiting.
JoinWaitRlyMsg(r; u; x:table), sent byx in response to

aJoinWaitMsg, r 2 fnegative, positiveg, u: a node.
JoinNotiMsg(x:table), sent byx to notify receiver of the

existence ofx, whenx:status is notifying.
JoinNotiRlyMsg(r; x:table; f), sent byx in response to

aJoinNotiMsg, r 2 fnegative, positiveg, f 2 ftrue, falseg.
InSysNotiMsg, sent byx whenx:status changes toin system.
SpeNotiMsg(x; y), sent or forwarded by a node to inform receiver

of the existence ofy, wherex is the initial sender.
SpeNotiRlyMsg(x; y), response to aSpeNotiMsg.
RvNghNotiMsg(y; s), sent byx to notify y thatx is a reverse

neighbor ofy, s 2 fT;Sg.
RvNghNotiRlyMsg(s), sent byx in response to aRvNghNotiMsg,

s = S if x:status is in system; otherwises = T .

Figure 4. Protocol messages

4.1. Action in statuscopying

In this status,x constructs its table level by level until it
stops at level-k, k 2 [b], where after copying level-k neigh-
bors of nodegk, x could not find a nodegk+1 that shares
the rightmostk + 1 digits with it, or x finds such agk+1

but gk+1 is still a T-node. In the former case,x sends a
JoinWaitMsgto gk, while in the latter case,x sends aJoin-
WaitMsgto gk+1. Meanwhile,x sets its status towaiting.
Figure 5 depicts the action in this status. (For clarity of pre-
sentation, we have omitted the sending of aCpRstMsgfrom
x to g, and the reception of aCpRlyMsgfrom g to x.)

Action ofx on joininghV;N (V)i, given nodeg0, g0 2 V :

i: initially 0. p, g: a node, initiallyg0. s 2 fT , Sg, initially S.

x:status = copying;
while (g 6= null ands == S) f // copy level-i neighbors ofg
for (j = 0; j < b; j++) f
Nx(i; j) = Ng(i; j); Nx(i; j):state = Ng(i; j):state;
g
p = g; g = Np(i; x[i]); s = Np(i; x[i]):state; i++;
g
for (i = 0; i < d; i++) fNx(i; x[i]) = x; Nx(i; x[i]):state = T ;g
x:status = waiting;
if (g == null) f
SendJoinWaitMsgto p; Qn = Qn [fpg; Qr = Qr [fpg;
gelsefSendJoinWaitMsgto g; Qn = Qn [fgg; Qr = Qr [fgg;g

Figure 5. Action in status copying

4.2. Action in statuswaiting

The JoinWaitMsgx sends togk (or gk+1) notifies gk (or
gk+1) that x is waiting to be stored in its table. Ifgk (or
gk+1) has already storedu1 in the entryx can be filled into
by the time it receives the message, it sends a negative reply
to x with u1 and its own table.x then sends anotherJoin-
WaitMsgto u1. This process may be repeated (for at most
d times) until some node fillsx into its table and sendsx a
positive reply. Note that a node can only reply tox when it
is an S-node; otherwise, it has to delay its reply. On receiv-
ing a positive reply,x changes status tonotifying and sets
x:noti level = jcsuf(x:ID; y:ID)j, wherey is the node
that sends the positive reply tox. Figures 6 and 7 present
actions upon receivingJoinWaitMsgandJoinWaitRlyMsg,
respectively.

Action ofy on receiving JoinWaitMsg fromx:

k = jcsuf(x:ID;y:ID)j;
if (y:status == in system) f
if (Ny(k; x[k]) 6= null ^ Ny(k; x[k]) 6= x) f
SendJoinWaitRlyMsg(negative,Ny(k; x[k]), y:table) to x;
g elsef // it must be thatNy(k; x[k]) is null
Ny(k; x[k]) = x; Ny(k; x[k]):state = T ;
SendJoinWaitRlyMsg(positive,x, y:table) to x;
g
gelseQj = Qj [fxg;

Figure 6. Action on receiving JoinWaitMsg

4.3. Action in statusnotifying

As shown in Figure 8, in this status, ifx finds a nodey such
that jcsuf(x:ID; y:ID)j � x:noti level, x sends aJoin-
NotiMsg, which includesx:table, to y if it has not done so.

Action ofx on receiving JoinWaitRlyMsg(r; u; y:table) fromy:

Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j;
if (Nx(k; y[k]) == y) Nx(k; y[k]):state = S;
if (r == positive) f
x:status = notifying; x:noti level = k;
Rx(k; x[k]) = Rx(k; x[k]) [fyg;
gelsef SendJoinWaitMsgto u; Qn = Qn [fug; Qr = Qr [fug;g
CheckNgh Table(y:table);
if (x:status == notifying^Qr == ; ^ Qsr == ;)
Switch To S Node();

Figure 7. Action on receiving JoinWaitRlyMsg

On receiving theJoinNotiMsgfromx, y fills x into its table
if the corresponding entry is empty and replies withy:table.
x then checksy:table level by level to send moreJoinNo-
tiMsg if necessary. Also, ifx finds a nodeu in y:table that
can be filled into an empty entry, it storesu in that entry.
Figures 9 and 10 present the actions on receivingJoinNo-
tiMsg andJoinNotiRlyMsg, respectively.

CheckNgh Table(y:table) at x:

for eachNy(i; j) f
if (Ny(i; j) 6= null ^ Ny(i; j) 6= x)f
u = Ny(i; j); k = jcsuf(x:ID;u:ID)j;
if (Nx(k; u[k]) == null) f
Nx(k; u[k]) = u; Nx(k; u[k]):state = Ny(i; j):state;
g
if (x:status == notifying^ k � x:noti level ^ u 62Qn)f
SendJoinNotiMsg(x:table) to u;
Qn = Qn [fug; Qr = Qr [fug;
g
g
g

Figure 8. Subroutine: Check Ngh Table

Action ofy on receiving JoinNotiMsg(x:table) fromx:

k = jcsuf(x:ID;y:ID)j; f = false;
if (Ny(k; x[k]) == null) fNy(k; x[k])=x; Ny(k; x[k]):state=T ; g
if (Nx(k; y[k]) 6= y ^ y:status == in system) f = true;
if (Ny(k; x[k]) == x) SendJoinNotiRlyMsg(positive,y:table, f) to x;
elseSendJoinNotiRlyMsg(negative,y:table, f) to x;
CheckNgh Table(x:table);

Figure 9. Action on receiving JoinNotiMsg

In what follows, we use “notification” to refer to either
a JoinWaitMsgor a JoinNotiMsg. So far, three cases for a
nodex to know another nodey have been presented: (i)x
copiesy in statuscopying, (ii) x receives a notification from
y, and (iii) x receives a message, which includesz:table,
from z and y is in z:table. There is one more case, as
shown in Figures 9 and 10: Suppose in statusnotifying, x
sends aJoinNotiMsgto y. Wheny receives the message,
if y is an S-node and finds thatNx(k; y[k]) = u1, where
k = jcsuf(x:ID; y:ID)j andu1 6= y, theny sets a flag
in its reply. Seeing the flag in the reply,x sends aSpeNo-
tiMsg to u1 to inform it abouty if x has not done so and

Action ofx on receiving JoinNotiRlyMsg(r; y:table; f) fromy:

Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j;
if (r == positive) Rx(k; x[k]) = Rx(k; x[k]) [fyg;
if (f == true^ k > x:noti level ^ y 62 Qsn)f
SendSpeNotiMsg(x,y) toNx(k; y[k]);
Qsn = Qsn [fyg; Qsr = Qsr [fyg;
g
CheckNgh Table(y:table);
if (Qr == ; ^ Qsr == ;) Switch To S Node();

Figure 10. Action on receiving JoinNotiRlyMsg

k > x:noti level. If u1 has setu2 instead ofy as the cor-
responding neighbor, it forwards the message tou2. This
process stops when a receiver stores or has storedy in its
table and sends a reply tox. (The process can be repeated
at mostd times.) Figures 11 and 12 depict the actions on
receivingSpeNotiMsgandSpeNotiRlyMsg, respectively.

Action ofu on receiving SpeNotiMsg(x; y) fromv:

k = jcsuf(y:ID;u:ID)j;
if (Nu(k; y[k])==null) fNu(k; y[k]) = y; Nu(k; y[k]):state = S;g
if (Nu(k; y[k]) 6= y) SendSpeNotiMsg(x; y) toNu(k; y[k]);
elseSendSpeNotiRlyMsg(x, y) to x;

Figure 11. Action on receiving SpeNotiMsg

Action ofx on receiving SpeNotiRlyMsg(x, y) fromu:

Qsr = Qsr� fyg; if (Qr == ; ^Qsr == ;) Switch To S Node();

Figure 12. Action on receiving SpeNotiRlyMsg

4.4. Action in statusin system

Whenx has received replies from all of the nodes it has
notified and finds no more node to notify, it changes status
to in system. Next, x informs all of its reverse-neighbors
and nodes inQj , which have sent it aJoinWaitMsg, that
it has become an S-node. Figures 13 and 14 present the
pseudo-code for this part.

5. Protocol Analysis
In this section, we present a consistency proof of the join
protocol, and analyze the communication cost of each join.
Due to space limitation, we only present important lemmas
and proof outlines. Proof details can be found in [7].

5.1. Correctness of join protocol

We present two theorems. Theorem 1 states that when a set
of nodes use the join protocol to join a consistent network,
then at the end of the joins, the resulting network is also con-
sistent. Theorem 2 states that each joining node eventually
becomes an S-node. We begin by presenting Lemmas 5.1
to 5.4. Recall thattex denotes the time when a joining node
x becomes an S-node. In what follows, we usete to denote
max(tex1 ; :::; t

e
xm

).

SwitchTo S Node() atx:

x:status = in system;
for (i = 0; i < d; i++) f Nx(i; x[i]):state = S; g
for eachv of x’s reverse neighbors, SendInSysNotiMsgto v;
for eachu, u 2 Qjf
k = jcsuf(x:ID;u:ID)j;
if (Nx(k; u[k]) == null) f
Nx(k; u[k]) = u; Nx(k; u[k]):state = T ;
SendJoinWaitRlyMsg(positive,u, x:table) to u;
gelseSendJoinWaitRlyMsg(negative,Nx (k; u[k]),x:table) to u;
g

Figure 13. Subroutine: Switch To S Node

Action ofy on receiving a InSysNotiMsg fromx:

k = jcsuf(y:ID;x:ID)j; Ny(k; x[k]):state = S;

Figure 14. Action on receiving InSysNotiMsg

Lemma 5.1 Suppose nodex joins a consistent network
hV;N (V)i. Then, at timetex, hV [fxg;N (V [fxg)i is
consistent.
Lemma 5.2 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V)i sequentially.
Then, at timete, hV [W;N (V [W)i is consistent.
Lemma 5.3 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V)i concurrently.
If the joins are independent, then at timete, hV [W;N (V [
W)i is consistent.
Lemma 5.4 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V)i concurrently.
If the joins are dependent, then at timete, hV [W;N (V [
W)i is consistent.

To prove Lemma 5.4, first consider any two nodes inW ,
x andy. If V Notify

x = V Notify
y , thenx andy belong to the

same C-set tree rooted atV Notify
x , otherwise they belong to

different C-set trees. We consider nodes in the same C-set
tree first. We next present the definition ofcset(V;W), the
C-set tree realized at timete. The definition is based on a
snapshot of neighbor tables at timete.

Definition 5.1 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a consistent networkhV;N (V)i, and for any
nodex, x 2 W , V Notify

x = V! , j!j = k. Then the C-set
tree realized at timete, denoted ascset(V;W), is defined
as follows:
� V! is the root of the tree.
� Cl1�! is a child ofV! , whereCl1�! = fx; x 2 Wl1�! ^

(9u; u 2 V! ^Nu(k; l1) = x)g, l1 2 [b].
� Clj :::l1�! is a child ofClj�1:::l1�!, whereClj :::l1�! =
fx; x 2 Wlj :::l1�! ^ (9u; u 2 Clj�1 :::l1�! ^ Nu(k +
j � 1; lj) = x)g, 2 � j < d� k, l1,...,lj 2 [b].

Intuitively, in cset(V;W), Cl1�! is the set of nodes in
Wl1�!, each of which is stored as a (k; l1)-neighbor by at
least one node inV! by time te; Cl2l1�! is the set of nodes

in Wl2l1�!, each of which is stored as a (k+1; l2)-neighbor
by at least one node inCl1�! by timete, and so on. Next, we
prove a few propositions aboutcset(V;W) andN (V [W),
given that nodes inW belong to the same C-set tree. Propo-
sitions 5.1, 5.2 and 5.3 state that condition (1), (2) and (3),
stated in Section 3.3, are satisfied at timete, respectively,
while Proposition 5.4 concludes that by timete, nodes in the
same C-set tree as well as nodes inV can reach each other.
Then, Proposition 5.5 extends the result to nodes in differ-
ent C-set trees. Our proofs of these propositions are based
upon induction on C-set trees. Note that Propositions 5.1 to
5.4 make the following assumption:

Assumption 5.1 (for Propositions 5.1 to 5.4)
A set of nodes,W = fx1; :::; xmg,m � 2, join a consistent
networkhV;N (V)i concurrently and for anyx, x 2 W ,
V Notify
x = V! , j!j = k.

Proposition 5.1 If Wlj :::l1�! 6= ;, 1 � j � d�k, l1,...,lj 2
[b], thenClj :::l1�! 6= ;.
Proposition 5.2 Let u be a node inV! . If Wl1�! 6= ;,
l1 2 [b], then there exists a nodex, x 2 Wl1�!, such that
Nu(k; l1) = x by timete.
Proposition 5.3 For any nodex, x 2 W , if Wl�li:::l1�! 6= ;,
wherel 2 [b] andli:::l1 �! is a suffix ofx:ID, 1 � i < d�k,
thenNx(i+ k; l) = y by timete, y 2Wl�li:::l1�!; if Wl�! 6=
;, l 2 [b], thenNx(k; l) = y, y 2Wl�! .
Proposition 5.4 For any two nodesx andy, x 2 V [W ,
y 2 V [W; hx! yid by timete.
Proposition 5.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V)i concurrently.
Let G(V!1) = fx; x 2 W;V Notify

x = V!1g, G(V!2) =
fy; y 2W;V Notify

y = V!2g, !1 6= !2. Then by timete,
� 8x, 8y, x 2 G(V!1), y 2 G(V!2), hx! yid.

Proof of Lemma 5.4: First, separate nodes inW into
groupsfG(V!i), 1 � i � hg, where!i 6= !j if i 6= j, such
that for any nodex in W , x 2 G(V!i) iff V Notify

x = V!i ,
1 � i � h. Then, by Propositions 5.4, 5.5 and Lemma 3.1,
the lemma follows.

Lemma 5.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V)i concurrently.
Then at timete, hV [W;N (V [W)i is consistent.

Proof of Lemma 5.5: First, separate nodes inW into
groups, such that joins of nodes in the same group are de-
pendent and joins of nodes in different groups are mutually
independent, as follows (initially, leti = 1 and put an arbi-
trary nodex, x 2 W , in G1):
� For each nodey, y 2 W�

Si

j=1Gj , if there exists a
nodex, x 2 Gi, such that(V Notify

y \ V Notify
x 6= ;)

or (9u; u 2 W�
Si�1
j=1Gj , (V Notify

y � V Notify
u) ^

(V Notify
x � V Notify

u)), puty in Gi;

� Pick any nodex0, x0 2 W�
Si

j=1Gj , putx0 in Gi+1,
incrementi and repeat these two steps until there is no
node left.

Then, by Lemmas 5.4 and 5.3, the lemma holds.

Theorem 1 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V)i. Then, at timete,
hV [W;N (V [W)i is consistent.
Proof of Theorem 1: According to their joining peri-
ods, nodes inW can be separated into several groups,fGi,
1 � i � lg, such that nodes in the same group join concur-
rently and nodes in different groups join sequentially. Let
the joining period ofGi be [tbGi

; teGi
], 1 � i � l, where

tbGi
= min(tbx; x 2 Gi) andteGi

= max(tex; x 2 Gi). We
number the groups in such a way thatteGi

� tbGi+1
. Then,

by Lemma 5.1 and Lemma 5.5, we conclude that at timete,
hV [W;N (V [W)i is consistent.

Theorem 2 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V)i. Then, each nodex,
x 2W , eventually becomes an S-node.

Proof of Theorem 2: First, consider a joining node,x, in
statuscopying. x eventually changes status towaiting be-
cause it sends at mostd CpRstMsgand each receiver of a
CpRstMsgreplies tox with no waiting. Second, consider
a joining node,x, in statuswaiting. In this status,x sends
JoinWaitMsgto at mostd nodes. We next show that for each
JoinWaitMsgit sends out,x eventually receives a reply. If
the receiver of aJoinWaitMsg, y, is an S-node, theny replies
with no waiting; ify is not yet an S-node, then it is a joining
node in statusnotifying and will wait until it becomes an
S-node before replying tox. Thus, to complete the proof,
it suffices to show that any joining node in statusnotify-
ing eventually becomes an S-node. Last, consider a joining
node,z, in statusnotifying. There are two types of messages
sent byz in this status,JoinNotiMsgandSpeNotiMsg. z

only sendsJoinNotiMsgto a subset of nodes inV [W that
share the rightmosti digits with itself,i = z:noti level, and
each receiver of aJoinNotiMsgreplies toz with no waiting.
Also, z only sendsSpeNotiMsgto a subset of nodes inW
that share the rightmosti + 1 digits with it.8 EachSpeNo-
tiMsg is forwarded at mostd times before a reply is sent to
z, and each receiver of the message can reply toz or forward
the message to another node with no waiting. Therefore,z

eventually becomes an S-node.

5.2. Communication cost

Among the messages exchanged during a node’s join,
CpRstMsg, JoinWaitMsg, JoinNotiMsg, and their corre-
sponding replies could be big in size since a copy of a neigh-
bor table may be included, while messages of other types
are small in size. We analyze the number of big messages
in this section. The analyses for numbers of small messages
are presented in [7].

For each message of typeCpRstMsg, JoinWaitMsg, or
JoinNotiMsg, there is one and only one corresponding reply.

8In simulations, we observed thatSpeNotiMsgis rarely sent.

Hence, it is sufficient to analyze the number of messages for
these three types. Theorem 3 presents an upper bound of
the total number ofCpRstMsgandJoinWaitMsgsent by a
joining node,x. Next, letJ be the number ofJoinNotiMsg
sent byx. The expectation ofJ when onlyx joins is given
by Theorem 4, and an upper bound of the expectation of
J whenx joins concurrently with other nodes is given by
Theorem 5. Proofs of the theorems are presented in [7].

Theorem 3 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a consistent networkhV;N (V)i. Then, for anyx,
x 2 W , the number of CpRstMsg and JoinWaitMsg sent by
x is at mostd+ 1.
Theorem 4 Suppose nodex joins a consistent network
hV;N (V)i, jV j = n. Then, the expected number of Join-
NotiMsg sent byx is

Pd�1
i=0

n
bi
Pi(n) � 1, wherePi(n)

is
Pmin(n;B)

k=1
C(B;k)C(bd�bd�i;n�k)

C(bd�1;n)
for 1 � i < d � 1,

whereB = (b� 1)bd�1�i andC(B; k) denotes number of

k-combinations ofB objects,P0(n) is C(bd�bd�1;n)
C(bd�1;n) , and

Pd�1(n) is 1�
Pd�2

j=0 Pj(n).
Theorem 5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a consistent networkhV;N (V)i. Then for
any nodex, x 2 W , an upper bound of the expected num-
ber of JoinNotiMsg sent byx is

Pd�1
i=0 (

n+m
bi

)Pi(n), where
n = jV j andPi(n) is defined in Theorem 4.

Figure 15(a) plots the upper bound ofE(J) when a set of
nodes join concurrently, wheren = jV j andm = jW j. We
have implemented our join protocol in detail in an event-
driven simulator. Figure 15(b) shows simulation results of
the number ofJoinNotiMsgsent by each joining node. We
use the GT-ITM package [1] to generate network topolo-
gies. The topology used in Figure 15(b) has 8320 routers.
There are two simulation setups. In one setup, 4096 nodes
(end-hosts) are attached to the routers randomly, 3096 of
which form a consistent network initially and the remain-
ing 1000 nodes join concurrently. In the other setup, 8192
nodes are attached, and 1000 nodes join a consistent net-
work formed by the other 7192 nodes. (In the simulations,
all joins start at the same time.) For the simulations shown
in Figure 15(b), average number ofJoinNotiMsgsent by
joining nodes are 6.117, 6.051, 5.026, and 5.399, respec-
tively, while the upper bounds by Theorem 5 are 8.001,
8.001, 6.986, and 6.986, respectively. Also, results in Fig-
ure 15(b) indicate that the majority of joining nodes send
a small number ofJoinNotiMsg. Other simulation results
show the same trend.

6. Discussions
6.1. Network initialization

The join protocol can be used for network initialization. To
initialize a network withn nodes, put one node,x, in V ,
and constructx:table as follows:

3

4

5

6

7

8

9

10000 20000 30000 40000 50000 60000 70000 80000 90000100000

U
pp

er
 b

ou
nd

 o
f E

(J
)

Number of nodes n

m=500, b=16, d=40
m=1000, b=16, d=40

m=500, b=16, d=8
m=1000, b=16, d=8

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of JoinNotiMsg sent by a joining node

n=3096, m=1000, b=16, d=8
n=3096, m=1000, b=16, d=40

n=7192, m=1000 b=16, d=8
n=7192, m=1000 b=16, d=40

(a) Theoretical upper bound (b) Data from simulations

Figure 15. Number of JoinNotiMsg sent by a joining node

� Nx(i; x[i]) = x, Nx(i; x[i]):state = S, i 2 [d].

� Nx(i; j) = null, i 2 [d], j 2 [b] andj 6= x[i].

Next, the othern � 1 nodes join the network by executing
the join protocol, each is givenx to begin with. Eventually,
a consistent network is constructed.

6.2. Message size reduction

In the join protocol, some types of messages need to include
a copy of the sender’s neighbor table. Several enhancements
can be made to reduce the size of such a message:

� When nodex sends aJoinNotiMsgto nodey, it does
not need to include its whole table in the message.
Only including level-i, i = x:noti level, to level-k,
k = jcsuf(x:ID; y:ID)j, is enough.

� Moreover,x can include abit vector in the JoinNo-
tiMsg it sends to a nodey, as suggested in [5]. Each
bit corresponds to an entry inx:table, with ‘1’ mean-
ing that the entry is already filled and ‘0’ meaning the
opposite. Then, in its reply tox, y only needs to in-
clude neighbors in level-i entries that correspond to a
‘0’ in the bit vector,0 � i < x:noti level, as well as
all level-i0 neighbors,x:noti level � i0 � d� 1.

7. Conclusions

For the hypercube routing scheme used in several proposed
peer-to-peer systems [9, 13, 11, 6], we present a new join
protocol that constructs neighbor tables for new nodes and
updates neighbor tables in existing nodes. We present a
rigorous proof that the join protocol produces consistent
neighbor tables after an arbitrary number of concurrent
joins. Furthermore, we present a conceptual foundation, C-
set trees, for reasoning about consistency. We plan to use
this conceptual foundation to design protocols for leaving,
failure recovery, and neighbor table optimization. The ex-
pected communication cost of integrating a new node into
the network is shown to be small by both theoretical analy-
sis and simulations.

Acknowledgment
The authors would like to thank Greg Plaxton for valuable
discussions.

References
[1] K. Calvert, M. Doar, and E. W. Zegura. Modeling Internet

Topology. IEEE Communications Magazine, June 1997.
[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploit-

ing network proximity in peer-to-peer overlay networks. In
Proc. of International Workshop on Future Directions in
Distributed Computing, 2002.

[3] Freenet. http://freenetproject.org.
[4] Gnutella. http://www.gnutella.com.
[5] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-

tributed object location in a dynamic network. InProc. of
ACM Symposium on Parallel Algorithms and Architectures,
2002.

[6] X. Li and C. G. Plaxton. On name resolution in peer-to-peer
networks. InProc. of the 2nd Workshop on Principles of
Mobile Computing, 2002.

[7] H. Liu and S. S. Lam. Neighbor table construction and
update in a dynamic peer-to-peer network. Technical Re-
port TR-02-46, Dept. of CS, Univ. of Texas at Austin,
http://www.cs.utexas.edu/users/lam/NRL/, Sept. 2002.

[8] Napster. http://www.napster.com/.
[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

nearby copies of replicated objects in a distributed environ-
ment. InProc. of ACM Symposium on Parallel Algorithms
and Architectures, 1997.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM, 2001.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProc. of IFIP/ACM International Conference on
Distributed Systems Platforms, 2001.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. InProc. of ACM SIGCOMM, 2001.

[13] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and
routing. Technical Report UCB/CSD-01-1141, UC Berke-
ley, Aug. 2001.

