Neighbor Table Construction and Update in a Dynamic Peer-to-Peer Network

Huaiyu Liu and Simon S. Lam

Dept. of Computer Sciences, Univ. of Texas at Austin, Austin, TX 78712
{huaiyu, lan} @cs.utexas.edu

Abstract routing infrastructure for these systems, presented by Hil-
drum, Kubiatowicz, Rao, and Zhao in [5], are the following
In a system proposed by Plaxton, Rajaraman and Richa(slightly rephrased):

(PRR), the expected cost of accessing a replicated object p1 Deterministic Location: If an object exists anywhere

was proved to be asymptotically optimal for a static set of in the network, it should be located.

nodes and pre-existence of consistent and optimal neighbor p2 Routing Locality: If multiple copies of an object exist
tables in nodes [9]. To implement PRR’s hypercube rout- in the network, a query for the object should be for-
ing scheme in a dynamic, distributed environment, such as warded to a nearby copy. Also, routes should have low
the Internet, various protocols are needed (for node join- stretcht

ing, leaving, table optimization, and failure recoyery). N p3 Load Balance: The load of storing objects (or object
this paper, we first present a conceptual foundation, called locations) and routing information should be evenly
C-set treesfor protocol design and reasoning about con- distributed over network nodes.

sistency. We then present the detailed specification of a
join protocol. In our protocol, only nodes that are joining
need to keep extra state information about the join process.
We present a rigorous proof that the join protocol gener-

ates consistent neighbor tables for an arbitrary number of i Napstder lempl)IO)és a centtralltz_ed ?D';eCt_:_);y of O?JeCt. Iocla—
concurrent joins. The crux of our proof is based upon in- ions and clearly does not satisfy P3. € system IS aiso

duction on a C-set tree. Our join protocol can also be used not fault-tolerant since the directory server is a single point

for building consistent neighbor tables for a set of nodes at ?f;allu(;ea_Gm:telle_l :?nd Frtgenet;vere deS|gn$rc]i to hfa;;]e dis-
network initialization time. Lastly, we present both analytic riouted directory information. However, neither of them

and simulation results on the communication cost of a join satisfies P1.
in our protocol In two recent research proposals, Chord [12] and

CAN [10], the main operation is name resolution, i.e., map-
ping a name (object ID) to a node that stores a copy of the
1. Introduction o_bject (or th(=T location of the object). Each system was de-
) signed to satisfy P1, P3, and P4. However, these systems do
The main goal of popular peer-to-peer systems, such asot satisfy P2 because they are not concerned with forward-
Napster [8], Gnutella [4], and Freenet [3], is object (file) jnq a query directly to a nearby object. Furthermore, while a
sharing. Object_s are stored in user machines and tr’;msferreg;\ame can be resolved within a small number of application-
from one machine to another upon requests. In this paperieye| hops? the actual distance of each hop through the In-
we view such a system conceptually as a netwonkarfes tarnet, from one node to another, may be very large.
Each node, representing a user machine, can send messages of interest in this paper is the hypercube routing scheme
to every other node in thg system using the Intemet. _used in PRR [9], Pastry [11], Tapestry [13], and SPRR [6].
In these systems, objects are generally replicated, withgach node maintains a neighbor table storing pointers (IP
mu!tlple copies of the same objgct §tored in different ”Ode$-addresses) t@(logn) nodes in the network. These tables
Objects are addressed by location-independent names, with o nsitute the network’s routing infrastructure. With addi-

location-independent routingsed to forward one node’s ona distributed directory information, PRR tends to sat-
query for an object to some node storing a copy of the ob-
ject. Four desirable properties of a |Ocation_independent 1stretch is the ratio between the distance traveled by a query to an ob-
ject to the minimum distance between query origin and the object.

*Research sponsored by National Science Foundation grant no. ANI- 2The number igD (log n) for Chord andO (dn!/?) for CAN, wheren
9977267 and Texas Advanced Research Program grant no. 003658-0439is the number of nodes in the system aht the number of dimensions
2001. To appear iRroceedings IEEE ICDCSrovidence, RI, May 2003. chosen for CAN.

P4 Dynamic Membership: The network should adapt to
joining and leaving nodes while maintaining the above
properties.

isfy each object request with a nearby copy. Gigensis- leaving, failure recovery, and neighbor table optimizafion.
tent(definition in Section 3) andptimal(that is, they store Note that since we are only concerned with consistency in
nearest neighbors) neighbor tables, PRR guarantees to lothis paper, the assumption of optimal neighbor tables is re-
cate an object if it exists, and the expected cost of accessindaxed when we design our join protocol. Interested readers
a replicated object is asymptotically optimal [9]. can referto [5, 2] for methods of exploiting node proximity
To implement the hypercube routing scheme in a dy- and optimizing neighbor tables.
namic, distributed environment, we need to address the fol- PRR includes algorithms for dynamically maintaining
lowing problems: directory information when objects are inserted, deleted,
and accessed [9]. However it does not have node join and
leave protocols. Pastry, Tapestry, and SPRR all have join
tables areconsistent (In what follows, a “consistent and 'ea]}’e protocols. 'I_'h_e |ssu§ IOf neighbor t"’.‘b'z %onas-
network” means a set of nodes with consistent neigh- tency after _concurrent J0Ins and leaves was raise ut not
bor tables.) addressed in SPRR [6]. Pa.sgry uses an optimistic approach
o to control concurrent node joins and leaves because the au-
2. Protocols are needed for nodes to join and leave a conypors pelieve “contention” to be rare [11]. A join protocol

sistent network such that the neighbor tables are still \ 55 hresented for Tapestry with a correctness proof [5]. The
consistent after a set of joins and leaves. When a nodgin protocol is based upon the use of multicast. The exis-
fa_uls, arecovery protocol is needed to re-establish con-ionce of a joining node is announced by a multicast mes-
sistency of neighbor tables. sage. Each intermediate node in the multicast tree keeps
3. Aprotocol is needed for nodes to optimize their neigh- the joining node in a list (one list per entry updated by a
bor tables. joining node) until it has received acknowledgments from
Solving all of these problems is beyond the scope of aall down_stream node_s. _This approach has the disadvantage
single paper. In this paper, we focus on designing a join ©f réquiring many existing nodes to store and process ex-
protocol for the hypercube routing scheme. Given a con- ra states as well as send and receive messages on behalf of
sistent network, and a set of new nodes joining the networkI0ining nodes. We take a very different approach in ourjoin
using our protocol, we prove that the join process will termi- Protocol design. We put the burden of the join process on
nate and the resulting neighbor tables of both existing andiining nodes only. - _ _
new nodes are consistent (assuming reliable message deliv- The balance of this paper is organized as follows: In Sec-
ery and no node deletion). In particular, our proof holds for ton 2, we briefly describe the hypercube routing scheme. In
an arbitrary number of concurrent joins Section 3, our conceptual foundation for protocol design is
Contributions of this paper are the following: |IIustrateq. In Section 4, a det_alled specification of our join
protocol is presented. In Section 5, we present a consistency
proof of the join protocol as well as an analysis of the pro-
tocol's communication cost. In Section 6, we discuss how
to use the join protocol for network initialization, as well as
e We design a join protocol for the hypercube routing several protocol enhancements. We conclude in Section 7.
scheme, and present a detailed protocol specification.
In our protocol, only nodes that are still in the join pro- 2. Background: Hypercube Routing Scheme
cess need to keep extra state information about the join
process. The join protocol can also be used for network
initialization, where initially the network has only one

1. Given a set of nodes, a join protocol is needed for the
nodes to initialize their neighbor tables such that the

e \We analyze the goal of the join protocol and present a
conceptual foundation, calleg+set treesfor protocol
design and reasoning about consistency.

Consider a set of nodes and a set of objects. Each node or
object has an identifier (ID), which is a fixed-length random
7 . _binary string. (These IDs are typically generated using a
?hoed;ir?;?;roggfes then join the network by executing hash function, such as MD5 or SHA-1.) .Node and object
: IDs are drawn from the same ID space which can be thought
* We present a rigorous proof that the join protocol pro- of gs a ring.
duces consistent neighbor tables for an arbitrary num- ¢ present the hypercube routing scheme, we will follow
ber of'concgrrentjoins. The crux of our proofis based npotation and terminology used for PRR [9]. Each node’s ID
upon induction on a C-set tree. is represented by digits of baseh. For example, a 32-bit
¢ We present both analytic and simulation results on the ID can be represented by 8 Hex digits£ 16). Hereafter,
communication cost of a join in our join protocol. we usez.ID to denote the ID of node and usez[i], 0 <
The join protocol presented in this paper provides a so-? < @ — 1, to denote théth digitin z.1D, with the Oth digit
lution to problem 1, and part of the solution to problem 2, referred to as theghtmostdigit.
discussed above. Moreover, the conceptual foundation pre-sthis paper is the first in a series of papers we write to address these
sented in this paper can be used for designing protocols forproblems.

The routing schemes of PRR [9], Pastry [11], rightmost two digits withy. This process continues until
Tapestry [13], and SPRR [6] can all be viewed as exten-the message reachgs For example, a message sent from
sions of the hypercube routing scheme in this paper. Fornode 21233 to destination node 03231 is first forwarded
these schemes, a query of an object is routed to a node thab the primary(, 1)-neighbor of 21233, which is 33121 in
matches the object in the largest number of suffix (or prefix) Figure 1, then to the primary(3)-neighbor of 33121, say,
digits* The schemes differ in the technique each uses to re-13331, and so on, until it reaches 03231. In this paper, the
solve the final routing hop when there are multiple nodes primary(, z[i])-neighbor ofz is chosen to be itself. As a
that match an object in the largest number of suffix (or pre- result, whene sends a messagegdollowing the primary-
fix) digits. These schemes also differ in how they replicate neighbor pointers, instead of starting at level-0, it starts at
objects and how they provide fault-tolerant routing. level-k, wherek is the length of the longest common suffix

of z.ID andy.ID.
2.1. Neighbor table

The neighbor table of each node consistsidévels with 3. Conceptual Foundation

b entries at each level. (In what follows, we useigh- In this section, we analyze the goals and tasks for a join
bor tableandtableinterchangeably.) The entyyat levels, protocol to produce consistent neighbor tables. We first an-
0<j<b-1,0<1i<d-1,referredto as the(j)-entry, alyze the case of a single join, which is straightforward and
in the table of noder contains link information to nodes presents intuition of the protocol design. Then we discuss
whose IDs and:.ID share a common suffix withdigits, multiple joins and present the concept®ket trees

and whoséth digit is j. These nodes are said to beigh- Since in this paper, we are only concerned with consis-
borsof z.° If multiple nodes exist with the desired suffix of tency, we relax the assumptionagtimalneighbor tables in

the ¢, j)-entry, then a subset of these nodes, chosen accordthe hypercube routing scheme. In what follows, we use the
ing to some criterion® may be stored in the entry with the termneighborto mearprimary neighbor Thus, to simplify
nearest one designated as finenary(i, j)-neighbor Each our presentation, we assume that there is only one neighbor
node also keeps track of itsverse-neighborsNodez is in each table entry. Table 1 presents notation used through-
a reversey, j)-neighbor of nodey if y is the primaryg, j)- out this paper.

neighbor ofz. Figure 1 shows an example neighbor table,
in which only primary-neighbors are shown. (Also, IP ad-

Table 1. Notation

dresses of neighbors are omitted.) The number to the righ E}Otaﬂon t?]eﬁ””ti{og‘ 7T e
. . . e sef{0, ..., — 1}, £ is a positive integer
of eac_h gntry is the desired suffix for that entry. An empty —; the number of digits in & node’s ID
entry indicates that there dpes not.eX|st a node in the neti the base of each digit
work whose ID has the desired suffix. ©.table the neighbor table of node
. j - digit j concatenated with suffix
Neighbo =4, d= J @
ighbor table of node 21233 (b=4, =5) Ng(i,j the node in thdi, j)-entry ofz.table, also referred
7] ’] y
A~ | 01233 10233 |0233| 31033 |033 | 22303 |03 | 01100 |0 to as the(i, j)-neighborof nodex
11233 |11233| 21233 | 1233 | 03133 |133 | 13113 |13 | 33121 |1] the number of digits in suffix

csuf(wi,w2) | the longest common suffix of; andws
21233 |21233| A |2233| 21233 |233 | 00123 |23 | 12232 |2

(V,N(V)) a hypercube network¥” is the set of nodes in the
~ | 31233| 03233 |3233| o~ [333 | 21233 |33 | 21233 |3 network, (V') is the set of neighbor tables
level 4 level 3 level 2 leve 1 level 0 Vi, asuffix sebf V, which is the set of nodes i,
each of which has an ID with the suffix...lo
Figure 1. An example neighbor table V] the number of nodes in s&t
2.2. Routing scheme 3.1. Definitions and assumptions

When noder sends a message to nogleit first forwards Definition 3.1 Lett’ be the time when nodebegins join-
the message ta;, a primary-neighbor of at level-0 that ~ ing a network, and; be the time whemw becomes an S-
shares the rightmost digit with. w; then forwards the node (to be defined in Section 4). The period fegrto ¢¢,
message to its primary-neighbor at level-1 that shares thedenoted byi?, ¢¢], is thejoining period of z.

Definition 3.2 Suppose a set of nodd§] = {z1,...2m },
4PRR routing uses suffix matching, while the other schemes use prefix

matching. We follow PRR and count digits in an ID from right to left, with m = 2,joina netwqu. If the joining period of eac.h.nOde
the Oth digit being theightmostdigit. does not overlap with that of any other, then the joins are
5The link information for each neighbor consists of the neighbor's ID Sequential
and ts IP address. For simplicity, we will use “neighbor” or “node” instead - Definition 3.3 Suppose a set of noddd, = {z1,-ZTm}
of QlodesID and IP address when'ever.th'e meaning is cl'ear'from context. m > 2, join a network. Lett® — min(tb ,...,tb) and
n PRR, for example, nodes with minimum communication costs are e e Z1 Tm

chosen. Extra neighbors in an entry are used to facilitate object location [9]t© = max(tg, ,...,t5). If for each noder, z € W, there
or for fault tolerant routing [13]. exists a node, y € W andy # z, such that their joining

periods overlap, and there does not exist a sub-interval of nodes such that conditidia) in Definition 3.8 is satisfied.
[t?,t°] that does not overlap with the joining period of any In a distributed peer-to-peer network, global knowledge is

node inW, then the joins areoncurrent. difficult (if not impossible) to get. Therefore, a node should
Definition 3.4 Suppose a set of noddd, = {z;,...xz}, utilize local information to construct or update neighbor ta-
m > 1, join a network(V, N'(V)). For any noder, z € W, bles. Our join protocol is designed to expand the network
if Vate—1)..wfo] 7 0 and Vo a0 = 0,1 < k < d -1, monotonically and preserve reachability of existing nodes
thenV ;111 5[0] IS thenotification set of z regardingV’, so that once a set of nodes can reach each other, they al-
denoted by, Notify _ |f Vaio) = 0, thenV,Notify is /. ways can thereafter. Hence, ste.lrt.in.g with a consistent net-
Definition 3.5 Suppose a set of nodds, = {z1,...z,}, WOk, (V,N(V)), and a seW of joining nodes, the goals
m > 2, join a network(V, N'(V)). The joins aréndepen- Of the protocol are the following:
dent if for any pair of nodest andy, z € W,y € W, e Goal L Vz,Vy,z € W,y € V, eventuallyz andy
z #y, VNt n yNetify = . can reach each other.
Definition 3.6 Suppose a set of nodd¥, = {z1,...2m }, o Goal 2 Vz,, Vxz, 21 € W, 23 € W, eventuallyz,
m > 2, join a network(V, N'(V)). The joins aredepen- andz, can reach each other.
dent if for any pair of nodest andy, x € W,y € W,
& # y, one of the following is true: 3.2. Operations of a single join

o VNotify nyy Notify £ (), Whenz joins, it is given a nodegg, go € V. First, z con-

e Ju,u € W,u # z Au # y, such thatVNotify ¢ structs its own table level by level by copying neighbors

V. Notify and VyNotify C v Notify, from nodes inV. It starts with copying level-0 neighbors of

go into level-0 of its own table. Among these level-0 neigh-
bors,z finds nodey;, ¢1[0] = z[0]. Thenz copies level-1
neighbors ofg; into level-1 of its own table and searches

i € [k], theny is reachablefrom z (within k hops), orz for a nodey, that shares the rightmost 2 digits with it. This
canreachy, to be denoted byr — y). process is repeated unticannot find a node that shares the

Definition 3.8 Consider a networkV, A'(V)). The net- rightmostk + 1 digits with it (¢ must exist and is at most
work, or N'(V'), is consistentif for any nodez, z € V, d — 1 sincez.ID is unique in the network)z then adds

each entry in its table satisfies the following conditions: itself into its table._ :
@ If Vv £ 0, then N, (i, j) Y € Since there exist nodes ¥ that share the rightmost
jrz[i—1]...2[0]) z\?, = Y

Vitiot,aon 1 < i <d—1,j € [B; if V; # 0, @gltS_ with z but no node shares the rightmdst- 1 dig-
J : . its with , Vypi_1). zj0) # 0, however,V, . 40 = 0.
thenN,(0,5) =y,y € V;, 5 € [b]. : I .
b) If 1V 0 then NG) = null 1 < i < Hence nodes iV,[;_1]....[0) N€ed to be notified and their
(b) g jl-w[ffl]zw'[t}]l v o fr:‘ j\gl’%) - T L n (k,z[k])-entries need to be updated. Conceptually, nodes
—1,j € [b];if V; = 0, thenN,(0, j) = null, j & [o]. iN Vyk—1]...z[0) fOrm a forest whose roots are the level-
neighbors ofc. By following neighbor pointers; traverses
the forest and notifies all nodesWy;,_1j....[o) eventually.
During z's join, the consistency of the original network
(V,N(V)) is preserved because nodedimwill fill z into
a table entry only if that entry is empty.

Definition 3.7 Consider two nodesy and y, in network
(V,N'(V)). If there exists a neighbor sequenes, ..., u),
k < d, such thatug is z, ug is y, andu;1 is Ny, (¢, y[7]),

If condition (a) is satisfied, thet' (V) is false negative
freg i.e., if a node exists in the network, it is reachable from
any other node. If conditionb) is satisfied, thenV (V)
is false positive fregi.e., if a node does not exist in the
network, there should not exist a path that leads to it.

Lemma 3.1 In a network(V, N'(V)), any node is reach- 3.3. Operations of multiple joins

able from any other node iff condition (a) of Definition 3.8 |t multiple nodes join a network sequentially, then the joins
is satisfied by the network. do not interfere with each other, because when a node joins,
In designing our protocol for nodes to join a network any node that joined ealier has already been integrated into
(V,N(V)), we assume that (fy # 0 andN' (V) is consis- the network. Also, if multiple nodes join a network con-
tent, (ii) each joining node, by some means, knows a nodecurrently and the joins are independent, then intuitively the
in V initially, (iii) messages between nodes are delivered joins do not interfere with each other, because the sets of
reliably, and (iv) there is no node deletion (leave or failure) nodes these joining nodes need to notify do notintersect and
during the joining period of any node. none of the joining nodes needs to store any other joining
Under the assumption that there is no node deletion dur-node in its table. The most difficult casedencurrent and
ing joins, condition(b) in Definition 3.8 can be satisfied dependent joinswhere the views different joining nodes
easily, since once a node has joined, it always exists in thehave about the current network may conflict. For exam-
network. Hence, the goal of the join protocol is to construct ple, if nodes 10261 and 00261 join concurrently, each of
neighbor tables for new nodes and update tables of existingthem may think of itself as the only node with suffix 261

in the network. If handled incorrectly, views of the joining o fWi, 0w #0,2<j <d—k,l,..]; € [b], then set
nodes may not converge eventually, which would result in Ci;..1,w isachild of seCy; ;. 4;.0-

inconsistent neighbor tables. _ . . .
GivenV andW, the tree template is determined. Fig-

v | ure 2(b) shows the tree template for the above example. The
task of the join protocol is to construct and update neighbor
Car tables such that paths are established between nodes;
Can Com ceptuallynodes are filled into each C-set@(V, W). For
Coast Crost different sequences of protocol message exchange, different
Cm C o nodes could be filled into each C-set, which would result in
@ (b) © different realizations of the tree template. Figure 2(c) shows
Figure 2. C-set tree one realization of the tree template in Figure 2(b). Observe

We first analyze the desirable results of multiple joins by that since for any node, N, (i,z[i]) = z, i € [b], once
using an exampleb(= 8, d = 5). Suppose a set of nodes, = is filled into a C-set, it is automatically filled into those
W = {10261, 47051, 00261 join a consistent network descendants of the C-set in the tree, whose suffix is also a
(V,N(V)), V = {72430,10353,62332,13141,31301 suffix of z.ID. For instance, if both 13141 and 31701 store
Then, at the end of joins, for anyto reach 10261y € V, 10261 in (, 6)-entry, then conceptually 10261 is filled in
there should exist a neighbor sequengg {1, ..., us) such Cs1 and consequently, 102&1C%1, Co261 andCioag1 -
thatug is y, us is 10261, and the IDs af; to u4 have suffix Given a setiW of nodes joining a consistent network
1, 61, 261, and 0261, respectively. Sin€l/) is consis- (V,N'(V)) and nodes i belong to the same C-set tree,
tent,y must have stored a neighbor with suffix 1, which can we denote the C-set tree realized at the end of all joins
be any node iff;. Let the set of {, 6)-neighbors of nodes ascset(V, W) (formal definition ofcset(V, W) is in Sec-
in V1 be Cs1, the set of 2,2)-neighbors of nodes id's; tion 5.1). By the end of joins, the following conditions
be Cs6; and so on. We call these sefssetsand the se- should be satisfied by neighbor tables of node¥® i W
quence of sets frorr; to Cig261 a C-set path As shown for them to be consistent:
in Figure 2(a), for nodes i to reach 10261, each C-set (1) cset(V, W) has the same structure wi€V, W) and
in the path should be filled with nodes W with the de- none of the C-sets inset(V, W) is empty.
sired suffix. Generally, from any node If to each node (2) For each nodg, y € V,, (root of the C-set tree), for
in W, there is an associated C-set path, and all the paths each child C-set oF, in cset(V, W), y stores a node
form a tree rooted at;, called aC-set tre¢ as shown in with the suffix of that C-set into its neighbor table.
Figure 2(c). Note that C-set trees are conceptual structures(3) For each node, z € W, the C-set whose suffix is
used for protocol design and reasoning about consistency. ~ .. 1p is a leaf node in the tree. For any C-set along

They arenot implementeth any node. o the path from this leaf node to the root, if it has any
The above example is a special case of multiple joins, sibling C-set, then: stores a node with the suffix of
where the notification sets regardilg(noti-sets in short) that sibling C-set in its table.

of all nodes inW are the same (namelly; in the example).
Generally, the noti-sets of all nodes Wi may not be the
same. Then, nodes with the same noti-set belong to th
same C-set tree and the C-set trees for all nod&8 fiorm

a forest. In the above example, W = {10261, 00261,

If condition (1) is satisfied, then itset(V, W), each leaf
node whose suffix corresponds to a node’s ID must include
Shat node. Therefore, the union of all C-setgdat(V, W)
is W. If condition (2) is satisfied, then all entries.M (V)

that need to be updated are updated. If condition (3) is satis-
67320, 11443, then 10261 and 00261 belong to a C-set fied, then for any node i/, it can reach every other node

tree rooted avy, 67320 belongs to a C-set tree rootedat in W. Hence, these three conditions, together with each

and 11445 belongs to a C-set tree rootgﬁ’alEach C-set joining node’s copying neighbors from nodestin ensure
tree can be treated separately. Hence, in the balance of th'%wat the network is consistent after the joins

subsection, our discussion is focused on a single C-set tree.

Definition 3.9 Suppose a set of nodd&, = {z1, ..., }, 4. Specification of Join Protocol
m > 1, join a consistent networkl, N'(V)), and for any | our protocol, each node keeps its own status, which could
nodez, z € W, VY = V,,, where|w| = k. Thenthe pecopying waiting, notifying andin_systemWhen a node
C-settree templateassociated with” and W, denoted by starts joining, its status is set twpying Each node also
C(V,W), is defined as follows: stores the state of each neighbofasr S in its table, where

e V, is the root of the tree (the root is not a C-set);

. . “For instance, in Figure 2(c), fronfpp261 to Vi, there are two
o If W0 7’5 0,0 € [b], _then Secll-w is a child ofV,,, branches with suffix 10261 and 51 respectively. Then, eventually, 00261
and/; - w is the associated suffix 6, .,,; should store a node with suffix 10261 and a node with suffix 51.

S indicates that the neighbor is in stainssystemwhile T
means it is not yet.

A node with statusn_systemis called anS-nodeother-
wise, it is aT-node Figure 3 describes the state variables
of a joining node. Variables in the first part are also used
by nodes inV, where for each nodg, y € V, y.status =
in_system y.table is populated in a way that satisfies the
conditions in Definition 3.8, andV, (i, j).state = S if
Ny(¢,j) # null for all ¢ and j. Figure 4 presents the

protocol messages. Figures 5 to 14 present the pseudo

code of the protocol, in which, y, « andv denote nodes,
and 7, 7 and k denote integers. Note that when any
node,z, setsN;(i,j) = vy, y # z, = needs to send a
RvNghNotiMsgy, N, (3, j).state) to y, andy should reply

to z if N, (¢,7).state is not consistent withy.status. For
clarity of presentation, we have omitted the sending and re-
ception of these messages in the pseudo-code.

State variables of a joining node

z.status € {copying waiting, notifying in_systen}, initially copying
Nz (i,7): the ¢, 5)-neighbor ofz, initially null.
Ng(i,7).statec {T', S}.

R, (3, j): the set of reversé(j)-neighbors of, initially empty

z.noti_level: an integer, initially 0.

Q. a set of nodes from which waits for replies, initiallyempty
Qn: a set of nodeg has sent notifications to, initiallgmpty

Q;: a set of nodes that have sana JoinWaitMsg initially empty
Qsr, Qsn: aset of nodes, initiallempty

Figure 3. State variables

Messages exchanged by nodes:

CpRstMsgsent byz to request a copy of receiver’s neighbor table
CpRIyMsg¢.table), sent byz in response to £pRstMsg
JoinWaitMsg sent byz to notify receiver of the existence af
whenz.status is waiting.
JoinWaitRlyMsgf, u, z.table), sent byz in response to
aJoinWaitMsg r € {negative, positivg u: a node.
JoinNotiMsgg.table), sent byz to notify receiver of the
existence ofe, whenz.status is notifying
JoinNotiRlyMsgf, z.table, f), sent byz in response to
aJoinNotiMsg r € {negative, positivl, f € {true, falsg.
InSysNotiMsgsent byx whenz.status changes tin_system
SpeNotiMsgg, y), sent or forwarded by a node to inform receiver
of the existence of, wherez is the initial sender.
SpeNotiRlyMsgf, y), response to &peNotiMsg
RvNghNotiMsgy, s), sent byz to notify y thatz is a reverse
neighbor ofy, s € {T, S}.
RvNghNotiRIlyMsgy), sent byz in response to &vNghNotiMsg
s = S if xz.status is in_systemotherwises = T'.

Figure 4. Protocol messages

4.1. Action in statuscopying

In this status,z constructs its table level by level until it
stops at levek, k € [b], where after copying levet-neigh-
bors of nodey;,, = could not find a nodegy; that shares
the rightmostt + 1 digits with it, or z finds such a4

but g5 is still a T-node. In the former case, sends a
JoinWaitMsgto g, while in the latter case; sends aloin-
WaitMsgto g;+1. Meanwhile,z sets its status tavaiting.
Figure 5 depicts the action in this status. (For clarity of pre-
sentation, we have omitted the sending @fERstMsdrom

z to g, and the reception of @pRlyMsgfrom g to z.)

Action ofz on joining (V, N'(V')), given nodeo, go € V:
¢: initially 0. p, g: a node, initiallygo. s € {T", S}, initially S.

z.status = copying
while (g # null ands == S) { // copy levels neighbors ofy
for (j=0;5 < b; j++) {
Ng(i,5) = Ng(4,7); Nz(3,7).state = Ng(3, 7).state;

p=g; 9= Np(i, z[i]); s = Np(i, z[i]).state; i++;

for (i =0;¢ < d; i++) {Ng (¢, z[i]) = ; N (¢, z[3]).state =T}
z.status = waiting;
if (g ==null) {

SendJoinWaitMsgto p; Qn = Qn U {p}; Qr = Q, U {p};
}else{SendJoinWaitMsgto g; Q» = Qn U{g}; Qr =Qr U {g}:}

Figure 5. Action in status copying

4.2. Action in statuswaiting

The JoinWaitMsgz sends tog, (or gx+1) notifies g; (or
gr+1) thatz is waiting to be stored in its table. I (or
gr+1) has already stored; in the entryz can be filled into

by the time it receives the message, it sends a negative reply
to z with w; and its own tablexz then sends anothdpin-
WaitMsgto u;. This process may be repeated (for at most
d times) until some node fillg into its table and sendsa
positive reply. Note that a node can only replyztavhen it

is an S-node; otherwise, it has to delay its reply. On receiv-
ing a positive replyx changes status tootifying and sets
z.notilevel = |csuf(z.ID,y.ID)|, wherey is the node
that sends the positive reply to Figures 6 and 7 present
actions upon receivingoinWaitMsgand JoinWaitRlyMsg
respectively.

Action ofy on receiving JoinWaitMsg from:

k=|csuf(z.ID,y.ID)|;
if (y.status == in_system {
if (Ny(k,z[k]) #null A Ny (k,z[k]) #z) {
SendJoinWaitRlyMsg(negativeyy (k, z[k]), y.table) to z;
} else{ // it must be thatVy, (k, z[k]) is null
Ny (k,z[k]) = x; Ny(k,z[k]).state = T
SendJoinWaitRlyMsg(positivez, y.table) to z;

}
telseQ; = Q; U {z};

Figure 6. Action on receiving JoinWaitMsg

4.3. Action in statusnotifying

As shown in Figure 8, in this statusiffinds a node such
that |csuf(z.ID,y.ID)| > z.noti_level, z sends aloin-
NotiMsg which includese.table, to y if it has not done so.

Action ofz on receiving JoinWaitRlyMsg(u, y.table) fromy:

Qr=Qr — {y}; k=|esuf(z.ID,y.ID)|;
if (N (k, y[k]) == y) No (k, y[k]).state = 5;
if (r == positive {
z.status = notifying z.noti_level = k;
Ry (k, z[k]) = Ry (k, o[k]) U {y};
}else{ SendJoinWaitMsgto u; Qn = Qn U {u}; Qr = Qr U {u};}
CheckNgh_Tablefy.table);
if (x.status ==notifyingA Q, ==0 A Qsr ==10)
Switch.-To_S_Node();

Figure 7. Action on receiving JoinWaitRlyMsg

On receiving the&doinNotiMsgfrom z, y fills z into its table
if the corresponding entry is empty and replies wittuble.
x then checkg.table level by level to send mordoinNo-
tiMsg if necessary. Also, it finds a nodeu in y.table that
can be filled into an empty entry, it storasin that entry.
Figures 9 and 10 present the actions on receidimigNo-
tiMsg andJoinNotiRlyMsgrespectively.

CheckNgh.Tableg.table) at :

for eachNVy (3, 5) {
if (Ny (4, 5) #null A Ny (,5) # z){

u=Ny(¢,5); k=|csuf(x.ID,u.ID)|;
if (Nz(k,u[k])==null) {
Nz (k,ulk]) = u; Nz (k,ulk]).state = Ny (3, j).state;

if (z.status == notifying A k > z.noti_level A\ u ¢ Qn){
SendJoinNotiMsg.table) to u;
Qn=0QnU {u}, Qr=QrU {u},

Figure 8. Subroutine: Check _Ngh_Table

Action ofy on receiving JoinNotiMsgf.table) from z:

k=|csuf(z.ID,y.ID)|; f =falsg

if (Ny(k, z[k]) ==null) {Ny (k, z[k])=z; Ny(k, z[k]).state=T; }
if (Nz(k,y[k]) # y A y.status == in_system f =true;

if (Ny(k, z[k]) ==) SendJoinNotiRlyMsg(positivey.table, f) to z
elseSendJoinNotiRlyMsg(negativey.table, f)to x;
CheckNgh.Table.table);

Figure 9. Action on receiving JoinNotiMsg

In what follows, we use “notification” to refer to either
a JoinWaitMsgor a JoinNotiMsg So far, three cases for a
nodezx to know another nodg have been presented: (i)
copiesy in statuscopying (ii) = receives a notification from
y, and (iii) z receives a message, which includes:ble,
from z andy is in z.table. There is one more case, as
shown in Figures 9 and 10: Suppose in statasfying
sends aloinNotiMsgto y. Wheny receives the message,
if y is an S-node and finds thaf, (k, y[k]) = w1, where
k = |esuf(z.ID,y.ID)| andu; # y, theny sets a flag
in its reply. Seeing the flag in the reply,sends é&SpeNo-
tiMsg to u; to inform it abouty if has not done so and

Action ofz on receiving JoinNotiRlyMsg(y.table, f) fromy:

Qr=Qr —{y}; k=|esuf(z.ID,y.ID)|;
if (r == positivg Ry (k, z[k]) = Rz (k, z[k]) U {y};
if (f ==true A k > z.noti-level Ay & Qsn){
SendSpeNotiMsg¢,y) to Nz (k, y[k]);
Qsn =Qsn U {y}, Qsr =Qsr U {y},

}
CheckNgh_Tabley.table);
if (Qr ==0 A Qsr ==0) Switch.To_S Node();

Figure 10. Action on receiving JoinNotiRlyMsg

k > x.noti_level. If u; has setu. instead ofy as the cor-
responding neighbor, it forwards the message4o This
process stops when a receiver stores or has stpiedts
table and sends a reply o (The process can be repeated
at mostd times.) Figures 11 and 12 depict the actions on
receivingSpeNotiMs@ndSpeNotiRlyMsgespectively.

Action ofu on receiving SpeNotiMsg(y) from v:

k=|csuf(y.ID,u.ID)|;

if (N (k, y[k])==null) { Ny (k, y[k]) = y; Nu(k, y[k]).state = S;}
if (Nu(k,y[k]) # y) SendSpeNotiMsgg, y) to Ny (k, y[k]);
elseSendSpeNotiRlyMsg, y) to z;

Figure 11. Action on receiving SpeNotiMsg

Action ofz on receiving SpeNotiRlyMsg(y) from u:

Qsr = Qsr— {y}; if (Qr == 0 A Qqr == 0) Switch.To_S_Node();

Figure 12. Action on receiving SpeNotiRlyMsg

4.4, Action in statusin_system

When z has received replies from all of the nodes it has
notified and finds no more node to notify, it changes status
to in_system Next, z informs all of its reverse-neighbors
and nodes inY;, which have sent it doinWaitMsg that

it has become an S-node. Figures 13 and 14 present the
pseudo-code for this part.

5. Protocol Analysis

In this section, we present a consistency proof of the join
protocol, and analyze the communication cost of each join.
Due to space limitation, we only present important lemmas
and proof outlines. Proof details can be found in [7].

5.1. Correctness of join protocol

We present two theorems. Theorem 1 states that when a set
of nodes use the join protocol to join a consistent network,
then at the end of the joins, the resulting network is also con-
sistent. Theorem 2 states that each joining node eventually
becomes an S-node. We begin by presenting Lemmas 5.1
to 5.4. Recall thatt denotes the time when a joining node

x becomes an S-node. In what follows, we és& denote
max(t5, ,...,t5).

Switch To.S.Node() atz:

z.status = in_system
for (¢ =0;¢ < d; i++) { Nz (4, z[7]).state = S; }
for eachw of z's reverse neighbors, SetuSysNotiMsgto v;
for eachu, u € Q;{
k=|csuf(x.ID,u.ID)|;
if (Nz(k,ulk])==null) {
Ny (k,ulk]) = u; Nz (k,ulk]).state = T;
SendJoinWaitRlyMsg(positivey, z.table) to u;
}elseSendJoinWaitRlyMsg(negatival, (k, u[k]),z.table) to u;
}

Figure 13. Subroutine: Switch _To_S_Node

Action ofy on receiving a InSysNotiMsg from

k=l|csuf(y.ID,z.ID)|; Ny(k,z[k]).state = S,

Figure 14. Action on receiving InSysNotiMsg

Lemma 5.1 Suppose node joins a consistent network
(V,N(V)). Then, attimes, (V U {z}, N(V U {z})) is
consistent.

Lemma 5.2 Suppose a set of node®/ = {zi,...2m},
m > 2, join a consistent networkV, V'(V')) sequentially.
Then, at time¢, (V U W, N (V U W)) is consistent.
Lemma 5.3 Suppose a set of node®/ = {zi,...2m},
m > 2, join a consistent networkd/, N'(V')) concurrently.
If the joins are independent, then at tittfe (V UW, N (V U
W)) is consistent.

Lemma 5.4 Suppose a set of nodeB/ = {zi1,...2m},
m > 2, join a consistent networkd/, N'(V')) concurrently.
If the joins are dependent, then at tinfe (V U W, N (V U
W)) is consistent.

To prove Lemma 5.4, first consider any two node8in
z andy. If VNotifv = y Notify thenz andy belong to the

same C-set tree rooted BfV°!v | otherwise they belong to

different C-set trees. We consider nodes in the same C-se

tree first. We next present the definitionatt(V, W), the
C-set tree realized at timg. The definition is based on a
snapshot of neighbor tables at tirife

Definition 5.1 Suppose a set of nodés, = {z1, ...,z },
m > 1, join a consistent networky, A'(V')), and for any
nodez, z € W, VNotfy =V, |w| = k. Then the C-set
tree realized at time®, denoted agset(V, W), is defined
as follows:
e V,, is the root of the tree.
e (},., isachild ofV,,, whereC}, ., = {z,z € Wi,., A
(Fu,u € Vy, ANy (k,l1) =)}, 11 € [b)].
o Cj;. 1,.w isachild ofCy,_, 4.0, whereCy; 1, =
{CD,CE S le...lyw A (E|'LL,’U, € Clj—l--.ll'w A Nu(k‘ +
L) =2)}2<j<d—kl,..J; € b

Intuitively, in cset(V, W), Cy,., is the set of nodes in
Wi, .., each of which is stored as &,({;)-neighbor by at
least one node i, by timet°; C,;, .., is the set of nodes

in Wi, .., each of which is stored as A { 1, [)-neighbor

by at least one node i@, ., by timet®, and so on. Next, we
prove a few propositions abottet(V, W) and AN (V UW),
given that nodes i’ belong to the same C-set tree. Propo-
sitions 5.1, 5.2 and 5.3 state that condition (1), (2) and (3),
stated in Section 3.3, are satisfied at tithgrespectively,
while Proposition 5.4 concludes that by titfe nodes in the
same C-set tree as well as node¥ican reach each other.
Then, Proposition 5.5 extends the result to nodes in differ-
ent C-set trees. Our proofs of these propositions are based
upon induction on C-set trees. Note that Propositions 5.1 to
5.4 make the following assumption:

Assumption 5.1 (for Propositions 5.1 to 5.4)
AsetofnodesyV = {zi,...,z,n}, m > 2, join aconsistent
network (V, N'(V')) concurrently and for any, z € W,
VNotify =V, |w| = k.

Proposition 5.1 f Wy, .0 #0,1<j <d—k,l1,...]; €
[b], thenCy; . 4,0 # 0.
Proposition 5.2 Let u be a node inV,,. If W;,., # 0,
Iy € [b], then there exists a nodg =z € W,,.,, such that
N, (k,11) = z by timet©.
Proposition 5.3 Forany nodec, z € W, if Wy.;, 1.0 # 0,
wherel € [b]and!;...l;-wisasuffixofe.ID,1 < i < d—k,
thenN, (i + k,1) = y by timet®, y € Wiy, 1,.0; if Wi, #
0,1 € [b], thenN,(k,l) =y, y € Wi.,.
Proposition 5.4 For any two nodes andy, z € V U W,
y € VUW, (z — y)q by timete.
Proposition 5.5 Suppose a set of nodé¥, = {z1,...2m },
m > 2, join a consistent networkd/, N'(V')) concurrently.
Let G(V,,) = {z,z € W,V Notifv =V, }, G(V.,,) =
{y,y € W,V oty =V, }, w1 # w,. Then by time?,

o Vz,Vy,z € G(V,,),y € G(V,,), (x — y)a.

Proof of Lemma 5.4: First, separate nodes iV into
roups{G(V.,;), 1 < i < h}, wherew; # w; if ¢ # j, such
hat for any node: in W, = € G(V,,,) iff V.Notity =/, |

1 < ¢ < h. Then, by Propositions 5.4, 5.5 and Lemma 3.1,

the lemma follows. |

Lemma 5.5 Suppose a set of node®/ = {z1,...2m},
m > 2, join a consistent networld/, N'(V)) concurrently.
Then attime®, (V U W, N(V U W)) is consistent.

Proof of Lemma 5.5: First, separate nodes iV into
groups, such that joins of nodes in the same group are de-
pendent and joins of nodes in different groups are mutually
independent, as follows (initially, lét= 1 and put an arbi-
trary nodez, z € W, in G1): '
o For each nodg, y € W— U;_, Gj, if there exists a
nodez, z € G, such tha(V,Norfv n v Netifv £ ()
or (Fu,u € W= U2 G, (VNetifv c v Netify)
(VNotifs Y Nottn)), puty in Gi;
e Pick any node’, z' € W— U;_, Gj, putz' in Giy1,
increment and repeat these two steps until there is no
node left.

Then, by Lemmas 5.4 and 5.3,thelemmaholds. N Hence, it is sufficient to analyze the number of messages for

Theorem 1 Suppose a set of NodéE, = {z1,...2 }, m > these three types. Theorem 3 presents an upper bound of
1, join a consistent networky, ’(V)). Then, at time®, the total number ofCpRstMsgand JoinWaitMsgsent by a
(V UW,N(V UW)) is consistent. joining nodez. Next, letJ be the number adoinNotiMsg

sent byz. The expectation of when onlyz joins is given

by Theorem 4, and an upper bound of the expectation of
J whenz joins concurrently with other nodes is given by
Theorem 5. Proofs of the theorems are presented in [7].

Proof of Theorem 1: According to their joining peri-
ods, nodes iW can be separated into several groygs;,

1 < ¢ <1}, such that nodes in the same group join concur-
rently and nodes in different groups join sequentially. Let
the joining period ofG; be [t’éi, G.h 1 <i <[, where Theorem 3 Suppose a set of nodég, = {z1,...xm }, m >

ty,, = min(th,z € G;) andty,, = max(ts,z € G;). We 1, join a consistent networkV, N'(V)). Then, for anyz,
number the groups in such a way thigt < t%‘m' Then, z € W, the number of CpRstMsg and JoinWaitMsg sent by
by Lemma 5.1 and Lemma 5.5, we conclude that at time = is at mostd + 1.

(VUW,N(V UW)) is consistent. [] Theorem 4 Suppose node: joins a consistent network
Theorem 2 Suppose a set of NOd&E, = {&1,...2}, m > <V,N(V)>, V| = . Th(?irl,lthe expected number of Join-
1, join a consistent networl/, A'(V)). Then, each node, ~ NOtIMsSg sent byz is >7;_, §: Pi(n) — 1, where P;(n)

z € W, eventually becomes an S-node. is ymin(nB) C(B7k)g((b”dd:lb;i7”’k) forl < i <d-—1,

Proof of Theorem 2: First, consider a joining node;, in whereB = (b — 1)b¢~1~* and C (B, k) denotes number of
. L _)) . . d_pd=1 o

statusc'opylng x eventually changes statusmmnmg be k-combinations ofB objects, Py(n) is C(Cb bdlil) and

cause it sends at mostCpRstMsgand each receiver of a) do (b?=1,n)

CpRstMsgeplies toz with no waiting. Second, consider Fa-1(n)is1— 377 Pj(n).

a joining node, in statuswaiting. In this statusz sends ~ Theorem 5 Suppose a set of nodeB/ = {z1,...wm},

JoinWaitMsgo at mostl nodes. We next show that foreach ™ > 2, join a consistent networkV, N'(V))). Then for

JoinWaitMsgit sends outz eventually receives a reply. If ~any noder, z € W, an upper bOljnd of the expected num-

. H H H —1 n+m
the receiver of doinWaitMsgy, is an S-node, thepireplies ber of JoinNotiMsg sent by is 3 i, (“37*) Pi(n), where
with no waiting; ify is not yet an S-node, then itis a joining " = |V/|andP;(n) is defined in Theorem 4.

node in statusiotifying and will wait until it becomes an Figure 15(a) plots the upper boundBfJ) when a set of
S-node before replying to. Thus, to complete the proof, nodes join concurrently, where= V| andm = |W|. We
it suffices to show that any joining node in statstify- have implemented our join protocol in detail in an event-

ing eventually becomes an S-node. Last, consider a joiningqriven simulator. Figure 15(b) shows simulation results of
node,z, in statushotifying There are two types of messages the number ofloinNotiMsgsent by each joining node. We
sent byz in this status,JoinNotiMsgand SpeNotiMsg 2 yse the GT-ITM package [1] to generate network topolo-
only sendsloinNotiMsgto a subset of nodes WU W that gies. The topology used in Figure 15(b) has 8320 routers.
share the rightmostdigits with itself,i = z.noti_level, and There are two simulation setups. In one setup, 4096 nodes
each receiver of aoinNotiMsgreplies toz with no waiting. (end-hosts) are attached to the routers randomly, 3096 of
Also, z only sendsSpeNotiMsgo a subset of nodes W \yhich form a consistent network initially and the remain-
that share the rightmost+ 1 digits with it® EachSpeNo- jng 1000 nodes join concurrently. In the other setup, 8192
tiMsg is forwarded at most times before areply is sentt0 oges are attached, and 1000 nodes join a consistent net-
z,and each receiver of the message can rephoidorward york formed by the other 7192 nodes. (In the simulations,
the message to another node with no waiting. Therefore, 4| joins start at the same time.) For the simulations shown
eventually becomes an S-node. u in Figure 15(b), average number dbinNotiMsgsent by
joining nodes are 6.117, 6.051, 5.026, and 5.399, respec-
tively, while the upper bounds by Theorem 5 are 8.001,
Among the messages exchanged during a node’s join,8.001, 6.986, and 6.986, respectively. Also, results in Fig-
CpRstMsg JoinWaitMsg JoinNotiMsg and their corre- ure 15(b) indicate that the majority of joining nodes send

sponding replies could be big in size since a copy of aneigh-a small number ofloinNotiMsg Other simulation results
bor table may be included, while messages of other typesshow the same trend.

are small in size. We analyze the number of big messages
in this section. The analyses for numbers of small message$. Discussions
are presented in [7].

For each message of tyfgpRstMsg JoinWaitMsg or
JoinNotiMsg there is one and only one corresponding reply. The join protocol can be used for network initialization. To
initialize a network withn nodes, put one node, in V,
and construct.table as follows:

5.2. Communication cost

6.1. Network initialization

8In simulations, we observed th&peNotiMsgs rarely sent.

8 B 1 1
M=

5 |® S i
Tp 1 5
5 = E 88 8 g 2
S) =] =

T ¢ ag 8 g 8 ® g R]
< 6 4 °
3 % 8 e
o ® %] =

g 8 g 1
£5 8 8 1 &

g 5 8 ©]

al m=500, b=16, d=40 + | n=3096, m=1000, b=16, d=8 —+—
m=1000, b=16, d=40 x] n=3096, m=1000, b=16, d=40 ---%---
m=500, b=16,d=8 © 0.4 n=7192, m=1000 b=16, d=8 e~]
‘ ‘ ‘ ‘ ‘ m=1000, b=16,d=8 O ‘ ‘ ‘ _N=7192, m=1000 b=16, d=40 s
10000 20000 30000 40000 50000 60000 70000 80000 90000100000 0 5 10 15 20 25 30 35 40 45 50
Number of nodes n Number of JoinNotiMsg sent by a joining node
(a) Theoretical upper bound (b) Data from simulations

Figure 15. Number of JoinNotiMsg sent by a joining node
e N,(i,z[i]) = =, N, (i, z[i]).state = S, i € [d]. Acknowledgment

® N(i,j) =null,i € [d], j € [b] andj # z[d]. The authors would like to thank Greg Plaxton for valuable

Next, the other — 1 nodes join the network by executing discussions.
the join protocol, each is givento begin with. Eventually, = References

a consistent network is constructed.)
[1] K. Calvert, M. Doar, and E. W. Zegura. Modeling Internet

6.2. Message size reduction Topology. [EEE Communications Magazinéune 1997.
[2] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploit-

In the join protocol, some types of messages need to include ing network proximity in peer-to-peer overlay networks. In
a copy of the sender’s neighbor table. Several enhancements ~ Proc. of International Workshop on Future Directions in

can be made to reduce the size of such a message: Distributed Computing2002.
[3] Freenet. http://freenetproject.org.

e When noder sends aloinNotiMsgto nodey, it does [4] Gnutella. http://www.gnutella.com. _
not need to include its whole table in the message. [®] K.Hildrum, J.D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-
Only including levels, i = z.noti_level, to levelk tributed object location in a dynamic network. Rroc. of
k = |esuf(z.ID,y.ID)|, is enough. ?S:ol\g Symposium on Parallel Algorithms and Architectures

e Moreover,z can include abit vectorin the JoinNo- [6] X.Liand C. G. Plaxton. On name resolution in peer-to-peer
tiMsg it sends to a node, as suggested in [5]. Each networks. InProc. of the 2nd Workshop on Principles of
bit corresponds to an entry intable, with ‘1’ mean- Mobile Computing2002.

ing that the entry is already filled and ‘0’ meaning the [7] H. Liu a_md S. S. L_am. Neighbor table constructiqn and
opposite. Then, in its reply to, y only needs to in- update in a dynamic peer-to-peer network. Technical Re-

. . , . port TR-02-46, Dept. of CS, Univ. of Texas at Austin,
clude neighbors in levelentries that correspond to a http://www.cs.utexas.edu/users/lam/NRL/, Sept. 2002.

‘0’ in the bit vector,0 < i < z.noti_level, as well as [8] Napster. http://www.napster.com/.
all level<' neighborsg.noti_level <i' < d — 1. [9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
7. Conclusions ment. InProc. of ACM Symposium on Parallel Algorithms

.) and Architectures1997.
For the hypercube routing scheme used in several proposed10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

peer-to-peer systems [9, 13, 11, 6], we present a new join S. Shenker. A scalable content-addressable network. In
protocol that constructs neighbor tables for new nodes and Proc. of ACM SIGCOMM2001. o
updates neighbor tables in existing nodes. We present al11] A _Rowstrorj and P. Dru_schel. Pastry: Scalable, distributed
rigorous proof that the join protocol produces consistent object location and routing for large-scale peer-to-peer sys-
neighbor tables after an arbitrary number of concurrent tems. InProc. of IFIP/ACM International Conference on
. . Distributed Systems Platform2001.

joins. Furthermore, we present a conceptual foundation, C- [12

X .] 1. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
set trees, for reasoning about consistency. We plan to use jshnan. Chord: A scalable peer-to-peer lookup service for

this conceptual foundation to design protocols for leaving, internet applications. IRroc. of ACM SIGCOMM2001.

failure recovery, and neighbor table optimization. The ex- [13] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
pected communication cost of integrating a new node into An infrastructure for fault-tolerant wide-area location and
the network is shown to be small by both theoretical analy- routing. Technical Report UCB/CSD-01-1141, UC Berke-

sis and simulations. ley, Aug. 2001.

