
Greedy Distance Vector Routing
Chen Qian and Simon S. Lam

Department of Computer Science, The University of Texas at Austin
Email: {cqian, lam}@cs.utexas.edu

Abstract—Greedy Distance Vector (GDV) is the first geo-
graphic routing protocol designed to optimize end-to-end path
costs using any additive routing metric, such as: hop count,
latency, ETX, ETT, etc. GDV requires no node location informa-
tion. Instead, GDV uses estimated routing costs to destinations
which are locally computed from node positions in a virtual space.
GDV makes use of VPoD, a new virtual positioning protocol for
wireless networks. Prior virtual positioning systems (e.g., Vivaldi
and GNP) were designed for Internet hosts and require that
each host measures latencies (routing costs) to distant hosts or
landmarks. VPoD does not have this requirement and uses only
routing costs between directly connected nodes. Experimental
results show that the routing performance of GDV is better than
prior geographic routing protocols when hop count is used as
metric and much better when ETX is used as metric. As a
geographic protocol, the storage cost of GDV per node remains
low as network size increases. GDV provides guaranteed delivery
for nodes placed in 2D, 3D, and higher dimensions. We also show
that GDV and VPoD are highly resilient to dynamic topology
changes.

I. INTRODUCTION

Distance Vector (DV) is a well-known routing technique.
In DV forwarding, a node u chooses a physical (directly
connected) neighbor v as the next hop to destination t such
that it minimizes the distance c(u,x)+D(x, t) for x∈Pu, where
c(u,x) is the cost of link u-x, D(x,t) is the least cost from x to t,
and Pu is the set of u’s physical neighbors. Any additive metric
can be used for c(u,x) and D(x,t). If nodes have accurate
distance vectors, DV routing provides the least cost paths.

Geographic routing protocols [2] [9] [10] [15] [11] have
been proposed for large-scale wireless networks because the
routing state needed per node is independent of network size.
Geographic routing uses greedy forwarding as the basis, i.e.,
a node u selects, as the next hop to destination t, a physical
neighbor v that minimizes d(x,t) for x∈Pu, where d(x,t) is the
physical distance between x and t. Traditionally, geographic
routing protocols were evaluated using hop count or physical
distance as the routing metric. De Couto et al. [4] showed that
hop count provides poor throughput for routing in multi-hop
wireless networks. Instead, other routing metrics have been
proposed (e.g., ETX [4] and ETT [6]) to incorporate the effects
of link loss, capacity, asymmetry, and interference.

Normalized ADVance (NADV) [14] was proposed to make
geographic routing aware of link cost. In NADV, a node u
selects, as the next hop to destination t, a physical neighbor
v that maximizes d(u,t)−d(x,t)

c(u,x) for x ∈ Pu, which captures the
trade-off between the link cost and decrease in physical
distance. A similar idea, PRR×distance, was proposed [20]
for energy efficiency. Both PRR×distance and NADV improve

geographic routing by making it aware of link cost. However,
they only consider the cost of the next hop, and do not
have routing cost information for the remaining path. Another
remark about existing geographic routing protocols is that
localization protocols are needed to obtain node location
information. Localization protocols incur extra costs and may
have large location errors.

In this paper, we present Greedy Distance Vector (GDV), the
first geographic routing protocol designed with the objective of
providing near-optimal paths for any additive routing metric.
To apply GDV, each node assigns itself a virtual position
(position in a virtual space) such that the Euclidean distance
between any pair of nodes in the virtual space is a good
estimate the routing cost between them. Like DV routing,
GDV selects as the next hop to destination t, a neighbor v
that minimizes c(u,x) + D̃(x, t) for x ∈ Pu, where D̃(x,t) is
the estimated routing cost from x to t from locally computing
the distance between the virtual positions of x and t.1 Since
c(u,v)+ D̃(v, t)≈ c(u,v)+D(v, t), the quality of GDV paths is
expected to be close to that of optimal DV paths.

Many virtual coordinate schemes have been proposed for
wireless networks when node location information is unavail-
able [19] [7] [3] [17] [22] [16] [21]. Unlike GDV, these
schemes were not designed to predict routing costs between
nodes. Instead their main objective is to improve greedy
delivery rate.

The idea of embedding latencies (routing costs) in a virtual
space was used by many virtual positioning systems, such
as, GNP [18] and Vivaldi [5]. These systems, however, were
designed for hosts with Internet routing support. More specifi-
cally, GNP requires that each node makes RTT measurements
to a set of landmark nodes (some may be far away). Vivaldi
requires that each node receives latency measurements from
distant nodes from time to time.2 In wireless networks, each
node can communicate directly with its physical neighbors.
But to communicate with distant nodes, GNP and Vivaldi
require any-to-any routing support. Therefore, they cannot be
used to support GDV in wireless networks.

To illustrate the point that Vivaldi requires routing cost
measurements to distant nodes, consider the 121-node grid
network shown in Figure 1. Each node is only aware of
its local connectivity and has no location information. We
enhance the Vivaldi algorithm [5] with routing support such
that it can sample (measure routing cost to) two-hop neighbors

1For GDV, the neighbor set of node u will be generalized to include both
physical and Delaunay triangulation neighbors.

2In this paper, a node is distant iff the routing cost to that node is high.

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.39

857

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

(a) Connectivity graph

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

(b) DT graph

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

(c) MDT graph

Fig. 3. An illustration of connectivity, DT, and MDT graphs of a set of nodes in 2D

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77

78 79 80 81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120 121

Fig. 1. 121-node network in 2D physical space

1

2

3

45
6

7
8

9
10

11

12

13

1415
16

17

18
19

20

21

22

23
24

25
26

27
28

29

30

31

32

33

34

35
36

37

38

39
40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

5758

59

60

61

62

63
64

65

66

6768
69

7071

72

73

74

75

76

77

7879

80

81

82

83848586
87

88

89

90

91

92

93 94

95

96

97
98

99

100

101

102

103

104
105

106107

108
109

110

111

112

113

114

115

116

117

118

119

120

121

(a) After 10 adjustment periods

1

2

3

4
5

6

7

8

9

10

11

12

13

14
15

16
17

18 19

20

21

22

23
24

25
26

2728
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

4647

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

6768

6970

71

72
73

7475

76

77

78

79

80

81

82

83

8485
86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108
109

110

111

112

113 114

115

116

117

118

119

120

121

(b) After 20 adjustment periods

Fig. 2. Virtual positions constructed by 2-hop Vivaldi

as well as physical neighbors. In each adjustment period, a
node samples random nodes from its set of one-hop neighbors
100 times and its set of two-hop neighbors 100 times. Figure
2 shows the virtual positions of the nodes after 10 and 20
adjustment periods (hop count was used as routing metric). We
found that almost every node is close to its physical neighbors
in the virtual space. However, two nodes that are separated by
many hops may also be very close in the virtual space (such
as, many of the nodes near the center). Generally, there are two
kinds of relationships needed for virtual positions to predict
routing costs accurately [5]:

• Local relationships: nodes with low cost should be nearby
in the virtual space.

• Global relationships: nodes with high cost should be far
away in the virtual space.

Clearly, in this example, two-hop Vivaldi performs well for

local relationships but poorly for global relationships. Routing
support to sample two-hop neighbors is not sufficient for
Vivaldi to work properly for wireless networks.

In this paper, we present a novel virtual positioning protocol
for wireless networks, named Virtual Position by Delaunay
(VPoD). VPoD makes use of the multi-hop Delaunay trian-
gulation (MDT) of a set of nodes located in a Euclidean space,
which provides a distributed MDT graph for routing [11]. To
illustrate a MDT graph, consider Figure 3(a), which shows a
connected graph of nodes and physical links (to be referred
to as a connectivity graph). Figure 3(b) shows the Delaunay
triangulation (DT) graph computed from the locations of nodes
in Figure 3(a) [8]. In the DT graph, the dashed lines denote
DT edges between nodes that are not connected by physical
links. The MDT graph of the connectivity graph in Figure 3(a)
is illustrated in Figure 3(c). By definition, the MDT graph
includes every physical link in the connectivity graph and
every edge in the DT graph.

For nodes in 2D, Bose and Morin proved that greedy routing
in a DT always finds a given destination node [1]. Lee and Lam
[12] generalized their result and proved that in a d-dimensional
Euclidean space (d ≥ 2), given a destination location �, greedy
routing in a DT always finds a node that is closest to �.
This guaranteed delivery property holds for node locations
specified by arbitrary coordinates.

MDT protocols [11] were designed for a set of nodes to
construct and maintain a multi-hop DT such that each node,
say u, knows all of its DT neighbors and, if a DT neighbor, say
v, is not a physical neighbor of u, a forwarding path (virtual
link) is set up between u and v for them to exchange messages.
Each packet is forwarded greedily at a node u as follows (to be
referred to as MDT-greedy): For a packet with destination d, if
u is not a local minimum, the packet is forwarded to a physical
neighbor of u closest to d; else, the packet is forwarded, via
a virtual link, to a multi-hop DT neighbor closest to d.

For a set of nodes that maintain a correct multi-hop DT,
given a destination location �, it is proved that MDT-greedy
always succeeds to find a node that is closest to �, for nodes
located in 2D, 3D, and higher dimensions with node locations
specified by arbitrary coordinates [11]. In this paper, we
leverage this property to design VPoD, a virtual positioning

858

protocol for wireless nodes. Given a set of nodes running
VPoD, the nodes are initially located in a virtual space (2D,
3D, or higher dimension) fairly arbitrarily. Each node u then
uses an adjustment algorithm to move its position in the virtual
space by comparing D(u,v), its routing cost to node v in the
multi-hop DT, with D̃(u,v), the distance between u and v in
the virtual space, where node v is either a physical neighbor
or a multi-hop DT neighbor of u. Any additive metric can be
used for routing costs. While prior virtual positioning protocols
require routing cost information from some distant nodes to
be effective, we discovered that VPoD performs very well
using just routing costs from a node to its physical and DT
neighbors; such cost information can be piggybacked in MDT
protocol messages exchanged by neighbors.

The contributions of this paper are the following:

• GDV is the first geographic routing protocol designed to
optimize end-to-end path costs using any additive routing
metric, in particular, routing metrics that capture network
and link characteristics other than physical distances.

• GDV and VPoD are designed for wireless networks
without location information. Therefore, no localization
protocol is needed.

• As a geographic protocol, GDV’s storage cost per node
remains low as network size (N) increases. Routing cost
estimates are computed locally using virtual positions.
Unlike DV, there is no need for nodes to exchange
distance-vector messages of size O(N).

• VPoD performs very well in preserving both local and
global distance relationships between nodes in the virtual
space. Every node runs the same protocols. VPoD does
not require special nodes, such as, beacons and land-
marks, and does not use flooding.

The balance of this paper is organized as follows. In Section II,
we present the VPoD protocol. In Section III, we present the
GDV protocol. In Section IV, we present experimental results
to evaluate the performance of VPoD and GDV with respect
to the use of adaptive timeouts, virtual space dimensionality,
presence of large obstacles in physical space, and scalability to
a large number of nodes. We compare the routing performance
of GDV versus some existing geographic routing protocols.
We also compare the quality of virtual positions provided by
VPoD versus 2-hop Vivaldi. Lastly, we show that GDV and
VPoD are highly resilient to dynamic topology changes. We
conclude in Section V.

II. VIRTUAL POSITION CONSTRUCTION

We next present the Virtual Position by Delaunay (VPoD)
protocol to construct virtual positions for routing cost predic-
tion in a wireless network. Each node only knows the link
costs to its physical neighbors. The routing metric can be any
one that is additive, such as, hop count, latency, ETX, and
ETT, etc. Distances in the virtual space and routing costs are
measured in the same units. Hence comparison, addition, and
subtraction can be operated directly on distances and routing

Node a
J A AJ

Node b

token

Node c

token

J: Join period

A: Adjustment period
u

adj() adj() adj() adj() adj() adj()

J A AJ

adj() adj() adj() adj() adj() adj()

J A AJ

adj() adj() adj() adj() adj() adj()

init(): execute Initialization()

adj(): execute Adjustment()
: adjustment timeout of node u

a

b

c

init()

init()

init()

Fig. 4. Main structure of VPoD

costs.3

A. Main ideas of VPoD

To start VPoD, an arbitrary starting node generates a token
and broadcasts the token to the network.4 Each node with a
token runs the VPoD protocol. It first initializes its position
in the virtual space by a simple algorithm. It then runs MDT
protocols to participate in the construction of a multi-hop DT
of the nodes using their locations in the virtual space. We
modified the MDT protocols to record routing costs from each
node to its multi-hop DT neighbors. Each node then iteratively
adjusts its position by checking the positions of its physical
and multi-hop DT neighbors to reduce prediction errors. For
a node u, VPoD provides two types of adjustments:

1) Adjustments with physical neighbors to preserve local
relationships: If its distance to a physical neighbor v is
larger than its link cost to v, u adjusts its position so that
its distance to v is smaller.

2) Adjustments with DT neighbors to preserve global rela-
tionships: If its distance to a multi-hop DT neighbor v is
smaller (larger) than the routing cost from u to v, u adjusts
its position so that its distance to v is larger (smaller).

The main structure of VPoD is presented in Figure 4.
Each node runs the protocol upon receiving a token. After
initializing its position, it runs the MDT join and maintenance
protocols during a period of time, called J period, to participate
in constructing the multi-hop DT. In the subsequent adjustment
period, called A period, the node executes the adjustment
algorithm iteratively to change its position in the virtual space.
The multi-hop DT needs to be re-constructed after several
adjustment iterations because many nodes may have changed
their positions. In this manner, each node alternates between
execution of the MDT protocols and the adjustment algorithm.
The initialization, MDT join and maintenance protocols, and
adjustment algorithm will be described in more detail in the
sections to follow.

3Hereafter, whenever we say distance, we refer to the Euclidean distance
between two nodes in the virtual space rather than the physical distance
between the nodes.

4The starting node may be selected by any leader election protocol using
a simple criterion, e.g., largest ID. Duplicate tokens received by nodes are
ignored and do not affect VPoD.

859

1

2

3

4

5

6
7

8
9

10
11

1213
14

15

16

17
18

19

20
21

22

23

2425

26

27

28

2930
313233

3435

36

37

38

39

40

41
4243

44

454647

48
49

50

51
52

53
54
55

5657 58
59

60

61

62

63
64

65

66

67
6869

70 71

72

73
74

75
7677

78
79

80
81

8283

8485
86 8788

8990
91

92
93
94 95

96 97
9899

100101
102103104

105
106107108 109110

111
112

113114115116117118119
120
121

(a) Initial positions

1
2

3
4

5 6

7

8

9 10

11

12 13
14

15
16 17

18

19
20

21
22

23 24
25

26
27

28

29
30

31 3233

34 35 36
37 38

39

40
41

42
4344

45 46 47 48

49
50

51 52
53 54

55

5657 58 59

60
61

62
63 64 65

66

67 68 69
70

71
72

73
74 75

7677

78 79 80

81
82

83

84
85

86
87

88

89 90
91 92

93
94

95
96 97 98 99

100
101 102

103
104

105
106

107
108 109 110

111

112
113 114

115
116

117

118
119 120 121

(b) After 10 adjustment periods

1
2 3 4 5

6
7

8
9 10

11

12 13 14 15 16 17
18

19
20

21
22

2324 25 26 27
28

29 30
31 3233

34 3536 37
38

39
40

41 42 4344

4546 47
48

49
50

51 52 53 54 55

5657 58 59
60 61

62 63 64 65
66

67 68 69
70 71

72 73 74 75
7677

78 79 80
81

82
83

84 85
86 8788

89
90

91 92
93

94
95

96 97 98
99

100
101 102

103
104

105
106 107

108 109110

111112
113 114

115 116
117

118 119 120

121

(c) After 20 adjustment periods

Fig. 5. Virtual positions constructed by VPoD

Note that after receiving the initial token, each node runs
asynchronously. Different nodes may start their J and A
periods at slightly different times. Each node uses its own
timer to control the beginning and end of each period. After an
adjustment execution, each node sends its new virtual position
and estimated error to its physical neighbors and multi-hop DT
neighbors. After a number of alternating J and A periods, the
node positions in the virtual space converge and distances can
be used to predict routing costs between nodes. The MDT
protocols are then run one more time to update the multi-hop
DT. VPoD does not require any landmark or perimeter node
and uses no flooding. Every node in the network runs the same
VPoD protocol.

We ran VPoD for the 121-node grid network in Figure 1.
The results are shown in Figure 5. Note that the initial node
positions are quite arbitrary. After 10 adjustment periods, the
topology in the virtual space looks similar to that in the
physical space. After 20 adjustment periods, all local and
global relationships are preserved; compare Figure 5(c) with
Figure 1 where nodes are numbered. Note that adjustment
periods for VPoD and 2-hop Vivaldi are defined differently.
Experimental results in Figure 14 (to be presented) show that
2-hop Vivaldi uses much more storage and communication
costs per adjustment period than VPoD.

B. Position initialization

After receiving a token, each node initializes its position
in the virtual space before forwarding the token to others. In
our current implementation, the initial position of node u is
determined as follows.

• If u is the starting node, u sets its position to the

origin. Otherwise, at least one physical neighbor of u has
initialized its position, namely, the token’s sender.

• If only one physical neighbor, say v, of u has initialized
its position, u sets its position at a random position on
the circle or sphere centered at v. The radius is the link
cost between u and v.

• If two or more physical neighbors of u have initialized
their positions, u chooses the two that are farthest apart,
and computes the mid-point between the two nodes. In
order to avoid degenerate cases (three or more nodes on a
line), the actual position of u is set to a random position
a short distance to the mid-point.

TABLE I
NOTATION

Pu physical neighbor set of node u
Nu DT neighbor set of node u
Fu forwarding table of node u
xu virtual position of node u, a vector
eu estimated position error of node u
D̃(v,t) Euclidean distance between the virtual positions of v

and t
c(u,v) cost of the link from u to v
D(v,t) routing cost from node v to node t
Δu adjustment timeout value of node u
cc, ce tuning parameters to control the amounts of change

in node position and position error

C. Multi-hop DT with extensions to support VPoD

We first briefly introduce Delaunay triangulation (DT). A
triangulation of a set S of nodes (points) in 2D is a subdivision
of the convex hull of nodes in S into non-overlapping triangles
such that the vertices of each triangle are nodes in S. A DT in
2D is a triangulation such that the circumcircle of each triangle
does not contain any other node inside [8]. The definition
of DT can be generalized to a higher dimensional Euclidean
space using simplexes and circum-hyperspheres. In each case,
the DT of S is a graph to be denoted by DT (S).

The model of a distributed DT in [12], [13] assumes that
each node can directly communicate with every other node in
the system. For wireless routing, the multi-hop DT model [11]
was formulated as an extension of the distributed DT model
as follows:

Definition 1: A multi-hop DT is specified by {< u,Nu,Fu >
|u ∈ S}, where Fu is a soft-state forwarding table and Nu is u’s
set of DT neighbors locally computed by u from information
in Fu.

Definition 2: A multi-hop DT of S, {< u,Nu,Fu > |u ∈ S},
is correct if and only if the following conditions hold: i) for
every node u ∈ S, Nu is the same as the neighbor set of u in
DT (S); ii) for every neighbor pair (u,v) in DT (S), there exists
a unique k-hop path between u and v in the forwarding tables
of nodes in S, where k is finite.

A DT neighbor of node u may be a physical neighbor if
it is directly connected to u. If a DT neighbor of u is not a
physical neighbor, it is said to be a multi-hop DT neighbor.
In MDT protocols, each entry in u’s forwarding table Fu is
a 4-tuple, < source, pred,succ,dest >, where dest may be a

860

physical or DT neighbor. To meet the requirements of VPoD,
each entry in MDT protocols used by VPoD is extended to
a 6-tuple < source, pred,succ,dest,cost,error >, where error
is the estimated position error of the dest node. If dest is a
physical neighbor of u, cost is the link cost to dest. If dest is
a multi-hop DT neighbor, cost is the routing cost to dest. In
tuples where dest is neither a physical nor DT neighbor, both
cost and error are empty.

We made another change to MDT join and maintenance
protocols to accommodate VPoD as follows. In [11], nodes
are globally identified by their coordinates which do not
change. In VPoD, each node’s virtual position is arbitrary and
changes over time. Therefore, nodes in VPoD are identified
by globally unique identifiers which are included in MDT
messages. However, MDT protocols running under VPoD do
not require a location service to provide a mapping from
global identifiers to virtual positions. Nodes that are physical
neighbors exchange messages and learn the updated virtual
positions of each other. Also, during execution of the MDT
protocols, whenever node u learns a new node x from node v,
the message from v to u includes both the global identifier
and virtual position of x. When the MDT protocols finish
execution, each node knows the global identifiers and virtual
positions of all of its physical and DT neighbors.

Additionally, during execution of the MDT join and main-
tenance protocols, every pair of DT neighbors exchange two
messages, Neighbor Set Request and Neighbor Set Reply.
Each of these messages carries its source node’s position error
and is also used to record the routing cost of the reverse
path from its destination node to its source node. When the
MDT protocols finish execution, every node knows the cost
and error values of each of its DT neighbors. Also, a path
from the node to each of its DT neighbors has been stored in
forwarding tables of nodes along the path. The error values of
physical neighbors that are not DT neighbors are exchanged
by link-layer keep-alive messages.

Experimental results show that MDT protocols construct a
correct multi-hop DT very quickly at system initialization.
The protocols are highly resilient to churn, i.e., frequent
and dynamic topology changes due to addition and deletion
of nodes and links. They are also communication efficient
because they do not use flooding to discover multi-hop DT
neighbors [11].

D. Adjustment algorithm

During each execution of the adjustment algorithm (see
pseudocode in Figure 6 with notation defined in Table I), a
node u may change its position multiple times to find a position
in the virtual space with less prediction error. Before algorithm
execution, node u first computes its distances D̃(u,v) to its
physical and DT neighbors using their current virtual positions.
(Note that its DT neighbor set and routing costs to DT
neighbors do not change during algorithm execution.) Then,
u updates its position (executes lines 4-7 of pseudocode) with
respect to every multi-hop DT neighbor and some physical
neighbors. Specifically, for a physical neighbor v, u updates

Adjustment():
1. esum 0; // summed error of this adjustment, initialized to 0;
2. for all v in Pu Nu do
3. if (v Pu and (,) (,)D u v D u v) or v Nu – Pu then

4. t tuple in Fu such that t.dest =v;
5. ev t.error;
6. f eu/(eu+ ev); // confidence of this update
7. xu xu + cc×f×[D(u, v) – (,)D u v]× ˆ()u vu x x ;
 // ˆ()u vu x x is a unit vector in the direction of xu - xv

8. esum esum + |D(u, v) – (,)D u v | / (,)D u v ;
// add the error of this sample

9. end if
10. end for
11. enew esum/|Pu Nu|; // average error
12. eu eu×(1 – ce) + enew ×ce;
13. Send the updated xu and eu to all nodes in Pu Nu;

Fig. 6. Pseudocode of the VPoD adjustment algorithm at node u

its position with respect to v if u’s distance to v is larger than
u’s routing cost to v, that is, D̃(u,v) > D(u,v) (see line 3 of
pseudocode). During execution of the adjustment algorithm,
there is no message exchange between node u and other
nodes. At the end of algorithm execution, node u sends its
updated position and position error to all of its physical and
DT neighbors.

When node u makes a position adjustment with respect to
v, it moves its position in the direction of [D(u,v)− D̃(u,v)]×
û(xu−xv), where xu and xv are position vectors, and û(xu−xv)
is a unit vector in the direction of xu − xv. The magnitude of
the movement is proportional to the magnitude of D(u,v)−
D̃(u,v), where D(u,v) is routing cost from u to v and D̃(u,v) is
distance between them. If D(u,v) < D̃(u,v), u moves towards
v; if D(u,v)> D̃(u,v), u moves away from v. The magnitude of
the movement is also proportional to the confidence value f of
this adjustment computed as follows. If v has a large position
error, the position error of v may propagate to u. To mitigate
such error propagation, neighbors with large position errors
should have less influence in position updates than those with
small errors. Similar to Vivaldi, each node u maintains a local
variable eu for its estimated position error. The confidence
value f of the adjustment is defined to be

f =
eu

eu + ev

The update rule for each neighbor v that causes a position
change is:

xu = xu + cc × f × [D(u,v)− D̃(u,v)]× û(xu − xv)

where cc is a tuning parameter to be determined (see Section
IV-D). The value of D(u,v) is available to u in the cost field
of the tuple in Fu whose dest field is v. Note that for a multi-
hop DT neighbor v, the cost field does not always store the
minimum routing cost from u to v, because the path in the
multi-hop DT may not be the shortest one. However, since
the main goal of adjusting with a multi-hop DT neighbor v is
to move u away from v, we found that an over-estimate of the

861

routing cost works effectively (because if D(u,v) > D̃(u,v), u
moves away from v).

After updating its position, node u also needs to update its
estimated position error. For each update caused by neighbor
v, u computes the prediction error ẽv by

ẽv = |D(u,v)− D̃(u,v)|/D̃(u,v)

If v does not cause an update, ẽv = 0. After checking all
neighbors, u computes the average over all of its physical and
DT neighbors:

enew = ∑ ẽv/|Nu ∪Pu|
The position error of node u is then updated by a moving
average:

eu = eu × (1− ce)+ enew× ce

where ce is another tuning parameter in the range (0, 1). The
initial value of eu is 1. We use ce = 0.25 in our experiments.

At the end of the adjustment algorithm, node u sends the
updated values of xu and eu to all neighbors (physical and
DT).

E. Adaptive adjustment timeout

The number of Adjustment() executions for node u during
an adjustment period is determined by � Ta

Δu
�, where Ta is the

duration of the adjustment period and Δu is the adjustment
timeout period of node u. One challenge is the choice of a
proper value of Δu at different stages of the virtual position
construction process. At the beginning of an A period, using
small timeouts can help nodes rapidly find approximate posi-
tions. When node positions are relatively stable, the positions
should be refined slowly for them to converge. Also the multi-
hop DT constructed in the previous J period needs to be
updated after several Adjustment() executions. If Adjustment()
is executed too frequently with an outdated multi-hop DT,
node positions may oscillate and do not converge.

We use an adaptive timeout technique to achieve fast and
accurate convergence. The initial timeout Δu0 is set to a small
value, e.g., 2 sec. After that, each node calculates the average
position error of its physical and DT neighbors, denoted by ē.
The timeout is then changed to

Δu = min(Δu0/ē,Ta)

Note that position errors are initialized to 1 and will decrease
with time. When the virtual positions converge and become
relatively stable, ē trends towards 0 and results in a large
Δu. Experimental results for different values of timeout are
presented in Section IV-B.

III. GREEDY DISTANCE VECTOR (GDV) ROUTING

In GDV basic (see pseudocode in the left column of Figure
7), when node u has a packet to forward, it uses the virtual
positions of its physical neighbors and the destination t to
compute estimated routing costs. GDV basic does not use
MDT. Furthermore, GDV basic does not assume the use of
VPoD; virtual positions of nodes may be provided by any
virtual positioning protocol that can effectively embed routing

GDV_basic(u, t):
1. For each physical neighbor y,

Ry c(u, y) + (,)D y t ;
2. Let v be the physical neighbor

that minimizes Ry;
3. if Rv < (,)D u t then

 send the packet to v;
4. else

 GR(u, t);
// geographic routing

5. end if

GDV(u, t):
1. For each physical neighbor y,

Ry c(u, y) + (,)D y t ;
2. For each multi-hop DT neighbor y,

Ry D(u, y) + (,)D y t ;
3. Let v be the neighbor that minimizes Ry;
4. if Rv < (,)D u t then

 send the packet to v directly or by the
multi-hop path;

5. else
 MDT_greedy(u, t);

6. end if

Fig. 7. GDV pseudocode at node u to destination t

costs into a virtual space (like VPoD). For each physical
neighbor y ∈ Pu, the estimated routing cost from u to t via
y is Ry = c(u,y)+ D̃(y,t). Using GDV basic, node u selects
the physical neighbor v such that Rv = min

y∈Pu
Ry. To avoid routing

loops, GDV requires that D̃(v, t) < D̃(u, t), i.e., v is closer to
the destination than u in the virtual space. If Rv < D̃(u, t) is
satisfied, then D̃(v,t) < D̃(u,t) holds, and u sends the packet
to v. Note that lines 1-3 in left column of Figure 7 perform
DV routing with distance vectors computed locally rather than
communicated and stored.

In line 4 in left column of Figure 7, GDV basic switches
to a geographic routing protocol, GR, based upon greedy
forwarding with some recovery method to move packets out
of local minima. (Almost any existing geographic routing
protocol may be used as GR.) GR uses the virtual positions
of nodes for its forwarding decision without any consideration
of link costs. When a node, say w, receives a packet that is in
GR recovery, w skips lines 1-3 in the GDV basic pseudocode
and runs GR. (This detail is omitted in Figure 7.)

Since a multi-hop DT is already constructed by VPoD, the
version of GDV we use in this paper (see pseudocode in
the right column of Figure 7) also makes use of the set of
multi-hop DT neighbors to improve routing performance and
provide guaranteed delivery. We know that MDT forwarding
in a correct multi-hop DT provides guaranteed delivery in d-
dimensional spaces, d ≥ 2, as well as a routing stretch close
to 1.

Using GDV, when node u has a packet to forward, it uses the
virtual positions of its physical and multi-hop DT neighbors
and the destination t to compute estimated routing costs.
VPoD provides u with the virtual position, routing cost, and
a forwarding path to each of its multi-hop DT neighbors. For
every multi-hop DT neighbor y, node u computes the estimated
routing cost via y to t, Ry = D(u,y)+ D̃(y, t). Using GDV, u
selects the node v such that Rv = min

y∈Pu∪Nu
Ry. If Rv < D̃(u,t),

u sends the packet to v directly if v is a physical neighbor,
or by the multi-hop path to v if v is a multi-hop DT neighbor
(line 4 in right column of Figure 7).

If Rv < D̃(u,t) is not satisfied, node u runs MDT-greedy
using virtual positions of nodes without any consideration of
routing costs (line 5 in right column of Figure 7). When a
node, say w, receives a packet that is being forwarded in a
virtual link and w is not the virtual link’s destination, it skips

862

0 5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

Adjustment period number

R
ou

tin
g

st
re

tc
h

MDT on actual locations
GDV on VPoD (Δ

u
 = 2 sec)

GDV on VPoD (Δ
u
 = 10 sec)

GDV on VPoD (adaptive Δ
u
)

(a) metric is hop count

0 5 10 15 20 25
4

6

8

10

12

Adjustment period number

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y

NADV on actual locations
GDV on VPoD (Δ

u
 = 2 sec)

GDV on VPoD (Δ
u
 = 10 sec)

GDV on VPoD (adaptive Δ
u
)

(b) metric is ETX

Fig. 8. Routing performance for different timeout values

lines 1-4 in the GDV pseudocode and runs MDT-greedy. (This
detail is omitted in Figure 7.) Since executing line 4 in the
GDV pseudocode strictly reduces a packet’s distance to its
destination in the virtual space, it is straightforward to prove
that GDV provides guaranteed delivery because MDT-greedy
provides guaranteed delivery.

A. GDV for different routing metrics

GDV can use any routing metric that DV uses, such as,
hop count, latency, ETX, ETT, energy consumption, and
propagation distance, etc. Both GDV and DV require a metric
m that is positive and additive. The metric, however, may
be asymmetric, namely, it is not required that m(u,v) =
m(v,u) for two physical neighbors, u and v. The following
example illustrates GDV’s requirement of additivity and non-
requirement of symmetry. In MDT protocols, when node a
sends a Neighbor Set Request message to node b along the
path a-x-y-b, the message’s routing cost field is initialized to
zero at node a. Then node x adds c(x,a) to the field. Later,
node y adds c(y,x) to the field. Finally, node b adds c(b,y) to
the field. The cumulative value provides node b, the destination
of the message, its routing cost back to node a. Subsequently,
node b sends a Neighbor Set Reply message to a along the
reverse path and node a obtains from the message its routing
cost to b. Note that the costs of b-a and a-b paths may be
different.

When a routing metric captures more network and link
characteristics (such as, link quality by ETX [4] and both link
quality and capacity by ETT [6]) the metric can be used to
provide higher throughput for shortest-path routing. GDV is a
geographic routing protocol designed to take advantage of such
routing metrics. We found that even when hop count is used as
the routing metric, GDV has better routing stretch performance
than prior geographic routing protocols. This is because the
distance in virtual space is better than the geographic distance
in physical space for predicting routing stretch.

IV. PERFORMANCE EVALUATION

A. Methodology

We evaluate the performance of GDV using a packet-level
discrete-event simulator. Queuing delays are not simulated be-
cause we do not evaluate performance metrics that depend on

congestion, e.g., end-to-end throughput and latency. Instead,
random message delivery times from one node to the next
are sampled from a uniform distribution over a specified time
interval.

Performance criteria. GDV works for any routing metric
that is positive and additive. For this paper, we used two
common metrics in our experiments, namely, hop count and
ETX. When using hop count as metric, we evaluate the routing
stretch of each protocol. The routing stretch value between a
pair of source and destination nodes is defined to be the ratio
of the hop count in the selected route to the hop count in the
shortest route in the connectivity graph. When using ETX as
metric, we evaluate the average number of transmissions used
to deliver a packet from a source node to a destination node.
The routing stretch and number of transmissions shown in the
figures are the average values over all source-destination pairs
in the network. Using hop count as metric, we compare GDV
with MDT-greedy. Using ETX as metric, we compare GDV
with NADV [14].5 To give advantage to NADV and MDT-
greedy in the comparisons, we used accurate node locations
for NADV and MDT-greedy in our experiments.6

We measure the storage cost of a routing protocol by
counting the number of distinct nodes a node needs to know
(and store) to perform forwarding, and computing the average
value over all nodes. This represents the storage cost of a
node’s minimum required knowledge of other nodes. It has
been validated that the overall storage cost for forwarding is
linearly proportional to the number of distinct nodes stored
[11]. This metric, unlike counting bytes, requires no imple-
mentation assumptions which may cause bias when different
routing protocols are compared.

Creating general connectivity graphs and ETX values.
We used the link-layer simulator developed by the authors of
[20] to create connectivity graphs and link costs (ETX values).
Initially, N nodes are randomly placed in a 2D space. The
packet reception rate (PRR) between two nodes is computed as
a function of the distance, node density, and other parameters

5PRR×distance [20] is similar to NADV with PRR = 1/ETX.
6MDT-greedy provides guaranteed delivery for nodes with inaccurate

or arbitrary coordinates. However, its routing stretch is lower when node
locations are known more accurately.

863

1 3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Dimension number

N
or

m
al

iz
ed

 s
in

gu
la

r
va

lu
e N = 200

N = 600
N = 1000

(a) metric is hop count

1 3 5 7 9 11 13 15
0

0.2

0.4

0.6

0.8

1

Dimension number

N
or

m
al

iz
ed

 s
in

gu
la

r
va

lu
e N = 200

N = 600
N = 1000

(b) metric is ETX

Fig. 9. Normalized singular values for different network sizes

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Adjustment period number

R
ou

tin
g

st
re

tc
h

MDT on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)
GDV on VPoD (4D)

(a) metric is hop count

0 5 10 15 20 25
4

6

8

10

12

Adjustment period number

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y

NADV on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)
GDV on VPoD (4D)

(b) metric is ETX

Fig. 10. Routing performance for 2D, 3D, and 4D

including path loss exponent, shadowing standard deviation,
modulation and encoding schemes, output power, noise floor,
preamble and frame lengths, and randomness. We use the
default values for all parameters [20]. If the packet reception
rate between two nodes is greater than 0.1, a physical link is
placed between the two nodes in the connectivity graph. The
ETX value of the link (in each direction) is the inverse of the
PRR value.

For some experiments, we also randomly placed some large
obstacles in the 2D space. Nodes are not placed in space
occupied by obstacles. If the line between two nodes intersects
any obstacle, there is no physical link between the nodes.

We will first present experimental results for 200-node
networks. In section IV-G, the number of nodes is varied from
100 to 1000.

B. Adaptive adjustment timeout

We conducted many experiments for different values of
adjustment timeout. We show representative results for a 200-
node network in Figure 8. Nodes are in a 100m×100m 2D
physical space. The average number of physical neighbors per
node is 14.5. VPoD assigns node positions in a 3D virtual
space. Routing performance versus adjustment period number
(which represents time) is presented for hop count used as
metric in Figure 8(a) and for ETX used as metric in Figure
8(b). The duration of an adjustment period is Ta = 20 seconds.
Note that when the adjustment timeout is a small value (2
seconds), nodes can find their approximate positions after two

periods. However, the routing performance keeps oscillating
after that. On the other hand, using a large adjustment timeout
(10 seconds) slows down the convergence. Adaptive timeout
is the best strategy. Using adaptive timeout, the convergence
is as fast as using a small timeout and the quality of virtual
positions after convergence is similar to that from using a large
timeout. We used adaptive timeout for all other experiments
to be presented in this paper.

C. Choice of Dimensionality

We use Principal Component Analysis (PCA) to determine
whether a low-dimensional space can be used to effectively
model routing costs of wireless networks. We then use it
to find an appropriate dimensionality to use and we present
experimental results to validate the PCA results.

PCA relies on Singular Value Decomposition (SVD). The
input of SVD is an N ×N matrix M, where each element mi j

is the routing cost from node i to node j. SVD factors M into
the product of three matrices: M = U · S ·V T , where S is a
diagonal matrix with nonnegative elements si. The diagonal
elements are called singular values of M, which are ordered
non-increasingly.

From M = U ·S ·V T , we have mi j =
N
∑

k=1
skuikv jk. If singular

values s1, ...,sd are much larger than the rest, we may approx-

imate mi j by mi j ≈
d
∑

k=1
skuikv jk. This means that the routing

cost matrix M can be embedded in a d-dimensional Euclidean

864

0 5 10 15 20 25
1

1.2

1.4

1.6

1.8

2

Adjustment period number

R
ou

tin
g

S
tr

et
ch

MDT on actual locations
GDV on VPoD (c

c
 = 0.02)

GDV on VPoD (c
c
 = 0.1)

GDV on VPoD (c
c
 = 0.3)

(a) metric is hop count

0 5 10 15 20 25
4

6

8

10

12

Adjustment period number

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y

NADV on actual locations
GDV on VPoD (c

c
 = 0.02)

GDV on VPoD (c
c
 = 0.1)

GDV on VPoD (c
c
 = 0.3)

(b) metric is ETX

Fig. 11. Routing performance for different values of tuning parameter cc

0 5 10 15 20 25
1

2

4

8

16

Adjustment period number

R
ou

tin
g

st
re

tc
h

GDV on Vivaldi (2D)
GDV on Vivaldi (3D)
MDT on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)

(a) metric is hop count

0 5 10 15 20 25
4

8

16

32

64

Adjustment period number

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y GDV on Vivaldi (2D)
GDV on Vivaldi (3D)
NADV on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)

(b) metric is ETX

Fig. 12. Routing performance with four randomly placed obstacles

space with low errors.

Figure 9 shows our experimental results for networks of
200, 600 and 1000 nodes. Each data point represents the
average result from 20 different networks. The routing costs in
the input matrix are measured in hop count for experiments in
Figure 9(a), and in ETX for experiments in Figure 9(b). The
singular values shown are normalized. The first three singular
values are much larger than the remaining ones. Also as the
network size increases, the third singular value increases in
magnitude, which implies that the third dimension is more
important for a larger network size.

We have performed many experiments for different net-
works embedded in 2D, 3D, and 4D virtual spaces. Figure 10
shows representative results of routing performance for 2D, 3D
and 4D, using the same 200-node network for experiments in
Figure 8. After 10 adjustment periods, the routing performance
of GDV is better than MDT and NADV for all three virtual
spaces. For 4D, the routing performance is close to the
converged value after just one or two adjustment periods. 2D
requires many more adjustment periods to converge. Note that
the converged values of 4D are not much better than those
of 3D. This observation is consistent with the PCA results in
Figure 9.

From the PCA and experimental results, 2D or 3D are good
choices. As to be shown in Section IV-F, both the storage and
communication costs of VPoD in 4D are significantly higher
than those in 2D or 3D.

D. Impact of tuning parameter

The tuning parameter cc controls the size of movement
in position updates. We tried different values of cc using
the same network used for experiments shown in Figure 8.
A 3D virtual space is used for VPoD. Figure 11 shows
that a smaller value (cc = 0.02) causes slower convergence
in the first few adjustment periods but its convergence is
still quite fast and accurate. When a large value (cc = 0.3)
is used, the convergence is fast at the beginning, but there
are oscillations in the ETX experiments (see Figure 11(b)).
VPoD with cc = 0.3 still finds good virtual positions after
20 adjustment periods. Empirically, VPoD is quite robust to
different values of cc because VPoD uses two other adaptive
values to control adjustments, i.e., confidence and timeout. We
used cc = 0.1 for all other experiments presented in this paper.

E. Impact of obstacles

The physical space of practical wireless networks may
include large obstacles that block wireless transmissions. Thus
we also evaluated GDV for networks with obstacles. In these
experiments, each obstacle is a 10m×10m square. We ran-
domly placed four obstacles in a 100m×100m physical space
with the same 200-node network used for experiments in
Figure 8. We also quantitatively compared VPoD with Vivaldi,
by running GDV on virtual positions constructed by them.
Similar to the experiments in Figure 2, we allow each node of
Vivaldi to sample both one-hop and two-hop neighbors. The

865

0 2 4 6 8 10
1.1

1.3

1.5

1.7

No. of obstacles

R
ou

tin
g

st
re

tc
h

MDT on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)

(a) metric is hop count

0 2 4 6 8 10
0

5

10

15

20

No. of obstacles

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y

NADV on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)
Optimal

(b) metric is ETX

Fig. 13. Routing performance vs. number of obstacles

0 5 10 15 20 25
0

40

80

120

160

Adjustment period number

A
ve

. n
o.

 o
f n

od
es

 s
to

re
d

pe
r

no
de

GDV on Vivaldi
GDV on VPoD (4D)
GDV on VPoD (3D)
GDV on VPoD (2D)
MDT on actual locations
NADV on actual locations

(a) Storage cost

0 5 10 15 20 25
0

100

200

300

400

500

Adjustment period number

A
ve

. n
o.

 o
f m

sg
s

se
nt

 p
er

 n
od

e

Vivaldi
VPoD (4D)
VPoD (3D)
VPoD (2D)

(b) control message cost in an adjustment period

Fig. 14. Storage cost and communication cost of VPoD

results are shown in Figure 12. GDV on VPoD outperforms
both MDT and NADV on actual locations and it outperforms
GDV on Vivaldi by a very large margin. (We found the
performance of GDV on Vivaldi to be consistently poor. For
the sake of clarity of presentation, we will omit results for
GDV on Vivaldi in Figures 13, 15, and 16 to be presented.)

Next we varied the number of obstacles from 0 to 10
in the 100m×100m physical space for 200-node networks.
The results are shown in Figure 13. Each data point is the
average value of 20 simulation runs for 20 different networks.
For comparison, we also show the optimal values of shortest
path routing using ETX as metric in Figure 13(b). In the
same figure, the average number of transmissions of NADV
increases from 7.44 (0 obstacle) to 12.73 (10 obstacles), while
that of GDV on VPoD (3D) increases from 5.31 (0 obstacle)
to 6.57 (10 obstacles). Note that the routing performance of
GDV on VPoD is fairly close to that of optimal routing.

F. Storage and communication costs

A multi-hop DT requires extra storage for multi-hop DT
neighbors. The amount of extra storage varies during the
course of the VPoD construction. At the beginning, most
DT neighbors are not physical neighbors because the initial
positions are fairly arbitrary. When VPoD has converged,
the physical and DT neighbor sets have a large overlap. We
evaluated both storage and communication costs using the
same 200-node network for experiments in Figure 8. Figure
14(a) shows storage cost over time. The routing metric is hop

count. (Results for the ETX metric are similar and not shown.)
All three curves of GDV on VPoD start from high values and
then drop after two adjustment periods. The storage cost of
VPoD in 2D after convergence is very close to those of MDT
and NADV on actual locations. The storage cost of VPoD in
4D after convergence is much higher than those in 2D and 3D,
but still lower than that of two-hop Vivaldi. NADV requires
each node to store physical neighbors only and has the lowest
storage cost.

The average number of control messages sent per node in
each adjustment period for constructing virtual positions is
shown in Figure 14(b) for VPoD and Vivaldi. The message
cost of VPoD includes both the multi-hop DT construction
and adjustment update messages. The routing metric is hop
count. (Results for the ETX metric are similar and not shown.)
VPoD in 2D has the lowest message cost, which is about 20
messages per join-and-adjustment period. After convergence,
the message costs of VPoD in 3D and 4D are about 60 and 140
messages, respectively, per join-and-adjustment period. Two-
hop Vivaldi requires many more messages. We do not show
message costs for MDT and NADV on actual locations. Given
location information, they require a one-time construction with
low message costs. But they require localization methods
which have message and other costs to provide accurate
location information.

866

100 200 300 400 500 600 700 800 900 1000
1

1.2

1.4

1.6

1.8

No. of nodes

R
ou

tin
g

st
re

tc
h

MDT on actual locations
GDV on VPoD(2D)
GDV on VPoD(3D)

(a) metric is hop count

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

No. of nodes

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y NADV on actual locations
GDV on VPoD (2D)
GDV on VPoD (3D)
Optimal

(b) metric is ETX

Fig. 15. Routing performance versus N

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

No. of nodes

A
ve

. n
o.

 o
f n

od
es

 s
to

re
d

pe
r

no
de

GDV on VPoD(3D)
GDV on VPoD(2D)
MDT on actual locations
NADV on actual locations

(a) Storage cost

100 200 300 400 500 600 700 800 900 1000
0.9

0.92

0.94

0.96

0.98

1

No. of nodes

R
ou

tin
g

su
cc

es
s

ra
te

GDV on VPoD/MDT
NADV on actual locations

(b) Routing success rate

Fig. 16. Storage cost and routing success rate versus N

0 5 10 15 20 25
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Adjustment period number

R
ou

tin
g

st
re

tc
h

GDV on VPoD (2D)
GDV on VPoD (3D)
GDV on VPoD (4D)

(a) metric is hop count

0 5 10 15 20 25
4

6

8

10

12

14

16

Adjustment period number

A
ve

. n
o.

 o
f t

ra
ns

. p
er

 d
el

iv
er

y

GDV on VPoD (2D)
GDV on VPoD (3D)
GDV on VPoD (4D)

(b) metric is ETX

Fig. 17. Routing performance under churn

G. Varying the number of nodes

We evaluate the performance of GDV for network size (N)
from 100 to 1000 nodes. For 200-node experiments, the size
of the physical space is 100m×100m. For a smaller (or larger)
number of nodes, the size of the physical space is scaled down
(or up) proportionally such that the average number of physical
neighbors per node is kept at 14.5. No obstacles are placed.
Each data point shown is the average value of 20 simulation
runs for 20 different networks.

Figure 15(a) shows routing stretch versus N. GDV on VPoD
performs better than MDT on actual locations. (Note that MDT
has been shown to provide the lowest routing stretch when
compared to other geographic routing protocols [11].) The

routing stretch values of both GDV and MDT remain low as
N increases.

Figure 15(b) shows that the average number of transmis-
sions increases with N for all protocols (including optimal
routing). NADV increases a lot more than GDV. For N =1000,
the average number of transmissions of GDV is only half of
that of NADV.

Figure 16(a) shows storage cost versus N. NADV has the
lowest cost, followed in order by MDT, GDV on VPoD (2D),
and GDV on VPoD (3D). The storage costs for all protocols
remain low as N increases.

Figure 16(b) shows the routing success rates of different
protocols. GDV and MDT both provide guaranteed delivery
(the routing success rate was 100% in every experiment). The

867

routing success rate of NADV is below 100% and decreases
with N because NADV’s recovery method from local minima
does not work well for general connectivity graphs used in the
experiments.

H. Resilience to dynamic topology changes

GDV and VPoD are highly resilient to dynamic network
topology changes (churn) because VPoD uses MDT which is
highly resilient. For the same 200-node network used for the
experiments in Figure 10, we introduced node churn after the
10th adjustment period and at the beginning of the 11th join
period. At the same time, 150 nodes (out of 200 nodes) failed
and 150 new nodes joined. Each failed node became silent.
Each new node chose its position in the virtual space to be
the center of the positions of its physical neighbors that have
a position error less than 1. Its own position error is set to 1.

Figure 17 shows the routing performance of GDV using
VPoD in 2D, 3D, and 4D. Note that the routing performance
for each routing metric (hop count or ETX) becomes worse im-
mediately after churn. However, routing performance quickly
converges to a low value after several adjustment periods (just
2-3 periods for 3D). The routing performance after 20 periods
in total is as good as the performance shown in Figure 10 for
experiments with a static topology. These and similar results
from other churn experiments show that GDV and VPoD are
very resilient to dynamic topology changes.

V. CONCLUSION

GDV is the first geographic routing protocol designed to
optimize end-to-end path costs using any additive routing
metric, such as, latency, ETX, and ETT which capture network
and link characteristics. GDV provides guaranteed delivery
and much better routing performance than existing geographic
routing protocols using accurate location information. As a
geographic protocol, GDV’s storage cost per node remains
low as network size increases.

GDV uses virtual positions of nodes provided by a new
virtual positioning protocol, VPoD, which assumes that each
node can measure its routing costs to directly-connected
neighbors only. GDV and VPoD are designed for wireless net-
works without location information. Therefore, no localization
protocol is needed. Unlike prior virtual positioning systems
designed for hosts with Internet routing support (e.g., Vivaldi
and GNP), VPoD does not require routing cost measurements
to distant nodes or landmarks. VPoD is also communication
efficient because it does not use flooding.

ACKNOWLEDGMENT

This research is sponsored by National Science Foundation
grant CNS-0830939.

REFERENCES

[1] P. Bose and P. Morin. Online routing in triangulations. SIAM journal
on computing, 33(4):937–951, 2004.

[2] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with
Guaranteed Delivery in Ad Hoc Wireless Networks. In Proc. of the
International Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications (DIALM), 1999.

[3] A. Caruso, S. Chessa, S. De, and R. Urpi. GPS Free Coordinate
Assignment and Routing in Wireless Sensor Networks. In Proceedings
of IEEE INFOCOM, pages 150–160, 2005.

[4] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A High-
Throughput Path Metric for Multi-Hop Wireless Routing. In Proceedings
of ACM MobiCom, 2003.

[5] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A Decentralized
Network Coordinate System. In Proceedings ACM SIGCOMM, 2004.

[6] R. Draves, J. Padhye, and B. Zill. Routing in Multi-radio, Multi-hop
Wireless Mesh Networks. In Proceedings of ACM Mobicom, 2004.

[7] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and
I. Stoica. Beacon-Vector Routing: Scalable Point-to-Point Routing in
Wireless Sensor Networks. In Proc. of NSDI, 2005.

[8] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E.
Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry. CRC Press, second edition, 2004.

[9] B. Karp and H. Kung. Greedy Perimeter Stateless Routing for Wireless
Networks. In Proceedings of ACM Mobicom, 2000.

[10] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic Routing
Made Practical. In Proceedings of USENIX NSDI, 2005.

[11] S. S. Lam and C. Qian. Geographic Routing in d-dimensional Spaces
with Guaranteed Delivery and Low Stretch. In Proceedings of ACM
SIGMETRICS, June 2011.

[12] D.-Y. Lee and S. S. Lam. Protocol design for dynamic Delaunay
triangulation. Technical Report TR-06-48, The Univ. of Texas at Austin,
Dept. of Computer Science, December 2006 (an abbreviated version in
Proceedings IEEE ICDCS, June 2007).

[13] D.-Y. Lee and S. S. Lam. Efficient and Accurate Protocols for
Distributed Delaunay Triangulation under Churn. In Proceedings of
IEEE ICNP, November 2008.

[14] S. Lee, B. Bhattacharjee, and S. Banerjee. Efficient Geographic Routing
in Multihop Wireless Networks. In Proceedings of ACM MobiHoc, 2005.

[15] B. Leong, B. Liskov, and R. Morris. Geographic Routing without
Planarization. In Proceedings of USENIX NSDI, 2006.

[16] B. Leong, B. Liskov, and R. Morris. Greedy Virtual Coordinates for
Geographic Routing. In Proceedings of IEEE ICNP, 2007.

[17] Y. Liu, L. M. Ni, and M. Li. A Geography-free Routing Protocol for
Wireless Sensor Networks. In Proceedings of HPSR, 2005.

[18] T. S. E. Ng and H. Zhang. Predicting Internet network distance with
coordinates-based approaches. In Proceedings of INFOCOM, 2002.

[19] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic Routing without Location Information. In Proceedings of
ACM Mobicom, 2003.

[20] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-
efficient forwarding strategies for geographic routing in lossy wireless
sensor networks. In Proceedings of ACM SenSys, 2004.

[21] M.-J. Tsai, H.-Y. Yang, B.-H. Liu, and W.-Q. Huang. Virtual-Coordinate-
Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Net-
works. IEEE/ACM TRANSACTIONS ON NETWORKING, 17, 2009.

[22] Y. Zhao, Y. Chen, B. Li, and Q. Zhang. Hop ID: A Virtual Coordinate
based Routing for Sparse Mobile Ad Hoc Networks. IEEE Transaction
on Mobile Computing, 2007.

868

