Group Priority Scheduling*

Simon S. Lam and Geoffrey G. Xie

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712-1188
{lam,zie} @cs.utezas.edu

Abstract

For many applications, the end-to-end delay of an
application-specific data unit is a more important per-
formance measure than the end-to-end delays of indi-
vidual packets within a network. From this observation,
we propose the idea of group scheduling. Specifically,
consecutive packet arrivals in a flow are partitioned
into groups, and the same deadline (called group pri-
ority) is assigned to every packet in a group. In this
paper, we first present an end-to-end delay guaran-
tee theorem for a network of guaranteed-deadline (GD)
servers. The theorem can be instantiated to obtain
end-to-end delay bounds for a variety of source con-
trol mechanisms and GD servers. We then specialize
the delay guarantee theorem to group scheduling for a
subclass of GD. servers. We work out a detailed exam-
ple to demonstrate how to use group scheduling in a
particular class of networks. The advantages of group
scheduling are discussed and tllustrated with empirical
results from simulation ezperiments.

1 Introduction

Consider packet-switching networks delivering pack-
ets from sources to destinations. A flow is modeled
as a sequence of packets. Some flows traversing the
network are said to be guaranteed, because the net-
work ensures an end-to-end delay upper bound for each
packet in these flows. Conceptually, a network pro-
vides end-to-end delay bounds by implementing each
communication channel as a guaranteed-deadline (GD)
server. At a GD server, each packet arrival from a
guaranteed flow is given a deadline (also called prior-
tty), and the server ensures that the packet departs by
the deadline. Many GD service disciplines have been
proposed [1, 2, 3, 4, 9, 13].

For most applications, a flow is generated by its
source as a sequence of messages, each of which is then
segmented and transported as a sequence of packets by
the network.! To these applications, the end-to-end
delay of a message is a more important performance
measure than the end-to-end delay of a packet. This
observation motivated the idea of group scheduling,

*Research supported in part by National Science Foundation
grants no. NCR-9004464 and NCR-9506048.

1The terms packet and message are interpreted generally
herein. For examples, a packet may be an IP datagram or an
ATM cell. A message may be a file or a video picture.

namely: packets arriving at a GD server from a guar-
anteed flow are partitioned into groups. The same
deadline (called group priority) is assigned to every
packet in the same group.

Group scheduling has two advantages. First the pri-
ority of a flow changes less frequently, i.e., from one
group to the next rather than from one packet to the
next. Hence, the channel scheduler’s work in updating
its priority data structure (e.g., a heap) would be much
reduced for large groups. (An empirical investigation
quantifying this reduction can be found in {11].) Sec-
ond, group scheduling offers more flexible deadlines;
consequently, channel schedulers can better cope with
temporary overloads.

The balance of this paper is organized as follows.
In Section 2, we introduce the class of GD servers and
prove an end-to-end delay guarantee theorem. The the-
orem can be instantiated to obtain end-to-end delay
bounds for a variety of source control mechanisms and
GD servers; in particular, different GD servers can co-
exist in the same end-to-end path. With the theorem,
the problem of deriving an end-to-end upper bound
for a guaranteed flow is reduced to a set of single-node
problems.

In Section 3, we introduce and develop the concept
of group scheduling. We prove a relaxed deadline the-
orem for a subclass of GD servers, called the priority
subclass. The delay guarantee theorem in Section 2 is
then specialized to group scheduling for a subclass of
GD servers.

In Section 4, we work out a detailed example for
a particular class of networks [7]. We derive end-to-
end delay bounds for messages (called bursts in [7]),
and illustrate how to choose group sizes such that the
end-to-end delays of messages are unaffected by group
scheduling.

In Section 5, we present empirical results from
simulation experiments for MPEG video flows. We
show that group scheduling, aside from reducing the -
channel scheduler’s work, has another advantage, i.e.,
when some channels in a network are severely over-
booked (heavily utilized), the relaxed deadlines of
group scheduling actually improve the statistical per-
formance (loss rates, delays, and queue sizes) of the
network.

11a.1.1

1346

0743-166X/96 $5.00 © 1996 IEEE

2 End-to-End Delay Guarantee

Consider a packet switching network in which each
packet is of variable, bounded length (in number of
bits). Each communication channel in the network is
statistically shared and will be referred to as a server.

We will focus upon a flow, say f, which is a sequence
of packets. Packets in the flow traverse a path of K +2
nodes. Node 0 is the source of the flow, and node K +1
the destination. Nodes 1 through K are servers. The
network is to provide an end-to-end delay guarantee to
the flow. Such a flow will be called a guaranteed flow.
(We do not care whether or not the network also pro-
vides delay guarantees to other flows that statistically
share the same servers.)

Packets in flow f traverse the path in FIFO order.
Specifically, the ordering of packets in flow f is pre-
served at every node along the path.

Notation for server k

Br a nonnegative time constant associated
with node k (seconds)
channel propagation time from node k to
node k + 1 (seconds); each channel is as-
sumed to be reliable and FIFO
ar = Bk + Tk k+1 (seconds)

szzaa:

Th,k+1

maximum packet size at node k (bits)

C; transmission rate of channel from node k to
node k + 1 (bits/second)
p an arbitrary packet served (the packet may
belong to any flow)

Notation for flow f
7,j indices of flow f’s sequence of packets

Al(3) arrival time of packet i at node k (time

when last bit of packet arrives)

P,f (!) packet-dependent component of packet #’s
deadline at node k
L (1) departure time of packet ¢ at node k (time
k .
when last bit of packet leaves)
sf (i) size of packet i (bits)

Af(i), Pkféi), and Lf(i), for ¢ > 1, are positive real
numbers. Indices ¢ and j are positive integers. Addi-
tionally, we also use m, n, and ! as positive integers
whose meanings depend upon context.

2.1 Guaranteed-deadline servers

A GD server provides the following service to each
guaranteed flow f it serves:

o packets in flow f depart in FIFO order
e server ensures that the departure time of packet ¢ is
bounded as follows:
L{(i) < Pl(3)+ Bx (1)

where the deadline on the right hand side has two com-
ponents: (i) a packet-dependent component, Pkf (%),
which depends on packet ¢ (its arrival time, flow,

length, priority, etc.), and (ii) a nonnegative constant,
Bi. Note that each component may vary from one
server to another, and Sx may be zero.

The function P{(-) is not yet specified. Any func-
tion may be used so long as for a guaranteed flow, the
server can ensure that, for all 7, packet ¢ departs by its
deadline.

Many service disciplines in the literature belong to
this class. They differ in packet deadlines, scheduling
algorithms, and admission control conditions. Some
examples and references are given in Section 2.4.

2.2 Delay guarantee theorem

Consider a guaranteed flow f traversing the path from
node 0 to node K + 1. Nodes 1 to K are GD servers
(different service disciplines may be used at different
nodes). The following lemma is immediate from the
definition of ag.

Lemma 1. For packet i = 1,2,...1in flow f and node
k = 1,2,...,K, the arrival time of packet ¢ at node
k + 1 is bounded as follows:

Al{+1(i) < P;{(i) +ak (2)

We next present a general delay guarantee formula
for flow f. The formula makes use of reference clock
values at nodes 1 to K, which are described below.

Notation for flow f

v/ (i) a time constant associated with packet i
{seconds)
V/ (i) reference clock value of packet i at node k

v/ (4) and V{ () are positive real numbers, for i > 1.
The time constant, v/ (i), can be interpreted as the
service time of packet i (excluding waiting time) guar-
anteed by each node in the path. ka (7) is determined

as follows for ¢ > 1, with ka (0) defined to be 0 :

VI (i) = max{V) (i - 1), AL} +0'G) 3

Thus ka (%) can be thought of as the ezpected finishing
time of packet i at node k, and is to be used as a time
reference in our delay guarantee formula for flow f. As
such, reference clock values are neither computed nor
actually implemented by the nodes.

Node k ensures that packet ¢ departs before its dead-

line, which is Pkf (i) + Bx. Therefore, AJ +1(?) depends
upon P{ (i) as shown in (2), and vl +1(%) depends upon
Af (i) as shown in (3).

A concrete way to interpret v/(i) is to assume
that packet ¢ has been allocated a throughput of
M (i) bits/second at each node, such that: /(i) =
sf(i)/M (i). We note that adaptive throughput al-
location on a per packet basis is unrealistic in prac-
tice. However, adaptive throughput allocation on a

per burst basis has been proposed (7], where each burst
consists of a number of packets; see Section 4.

11a.1.2

1347

Lemma 2. For packet ¢ = 1,2,...in flow f and node
k=12,...,K—-1

V(i) S V() + max o/)+ (Pl (G) - VL ()} +en (4)

Theorem 1. For packet i = 1,2,... in flow f, the
arrival time of packet ¢ at the destination is bounded
as follows:

A.{<+1(") <
K-1

V) + 3 max o () + (PL() = V(DY +

(PLG) = VL) + D o (5)

k=1

This is our delay guarantee theorem. By definition,
the end-to-end delay for packet i is A% +1(9) - Al(3).
The delay guarantee in (5) can be instantiated to ob-
tain end-to-end delay upper bounds for a variety of
source control mechanisms and different service disci-
plines at nodes 1 through K. Specifically, the delay
guarantee in (5) provides an upper bound on the end-
to-end delay of packet 7 if

e a source control mechanism is chosen such that
Vlf(i) - A{ (7) at node 1 has a finite upper bound,
and

e a GD server is chosen for node k, 1 < k¥ < K, such

that the term, P,;f () - ka (4), has a finite upper
bound.

Note that different service disciplines may be chosen
for different nodes, and the term, P,{ (7)) - V}f (7), may
be positive or negative. With Theorem 1, the prob-
lem of deriving an end-to-end delay upper bound for a
guaranteed flow traversing a network path is reduced to
a set of single-node problems.

2.3 Examples of source control

The goal of source control is to upper bound V{ (i) —
Al (4). A widely used mechanism is leaky bucket con-
trol. If the source of flow f is controlled by a leaky
bucket with token rate p and bucket depth o, then for
all packet 7 in the flow [5],

V() < AL G) + % (6)

To obtain an end-to-end upper bound for flow f, VllF (2)

is instantiated to A (i) + o/p in the delay guarantee
formula of Theorem 1.

Another example of source control is the separation
timing constraint between consecutive bursts in a flow
[7]; see Section 4 for more details.

2.4 Examples of GD servers
The GD class of servers is general and includes many
service disciplines in the literature. There are differ-

ences in their P/ (+) functions, Bk constants, scheduling
algorithms, ande admission control conditions. We next
discuss four well-known examples.

For a VG server, the P values are virtual clock values
computed as follows [13], for all j > 1,

P{(j) = max{P{(j - 1), AL} + Y (5) (1)

where P/(0) = 0, and v/ (j) is equal to s/ (§)/M (j).
Under certain admission control conditions, the VC
server provides the guaranteed deadline in (1) with
B = s /Cy [10]. From (3) and (7), it is trivial
to show that, for all j,

ANEAHOEN)

For a PGPS server, s the virtual-time finish-
ing time of packet j. Under certain admission control
conditions, the PGPS server provides the guaranteed
deadline in (1) with B = s /Cj [9). It is shown in
[5] that if the server allocates a minimum rate of A

to every packet of flow f, such that v/ (j) = s/ (j)/A7,
then the following holds for all j,

PlG)-V{(G) <0 9)

For a Delay-EDD server [2], the P values of packets
are computed as follows [12], for all j > 1,

PL(j) = max{A[(j) +d], PL(i - 1) + '} (10)

where Pg (0) = -/, d}: is a local delay bound for every
packet in flow 7, and v/ (j) = v/ = s/ /A, with s and
M being the same for all j. If certain schedulablity
conditions are met, then a Delay-EDD server provides
the guaranteed deadline in (1) with 8 = 0 [2]. By
induction, it is easy to show that for all j > 1

PLG)-V{G) =d] - (11)

For a leave-in-time server [3], the P values of packets
are computed as follows? for j > 1,

PL(G) = max{A{G),W{ (-1} +dG) (12)
V(@) = max{A{(7),W(-D}+"() (13)

where Vi (0) = 0, d[(j) is the local delay bound of
packet j, and v/(j) = s/(j)/\, with the reserved
rate A/ the same for every packet in flow f. Under

certain admission control conditions, a leave-in-time
server provides the guaranteed deadline in (1) with

2The packet arrival time, A}: (7), should beinterpreted as the
time when packet ¢ becomes eligible in [3].

11a.1.3

1348

Simon Lam
Line

Simon Lam
Sticky Note
the guaranteed deadline

Br = s**/Cy [3]. Subtracting (13) from (12), we
have for all j:

PL(5) - VI () = d[(G) — ' (5) (14)

For example, suppose every server in the path of
flow f is one of the four GD servers described above.
In this case, to obtain an end-to-end delay upper bound
for f, we simply replace the term P,{) - 174 (4), for
1 <k < K, in the delay guarantee formula of &‘heorem
1 by the appropriate term on the right hand side of (8),
(9), (11), or (14).

In summary, we have shown how to obtain end-to-
end delay upper bounds for source control mechanisms
and GD servers that are known. In the next section,
we illustrate how to apply the delay guarantee formula
in Theorem 1 to a new scheduling idea.

3 Group Scheduling

In this section, we introduce and develop the concept
of group scheduling. We first prove a theorem about
relaxing deadlines for a subclass of GD servers. We
then generalize the previous model of a flow, which
is a sequence of packets, by adding some structure to
the sequence. Such generalization allows the model-
ing of message segmentation and specification of jitter
constraints (see Section 4). We then illustrate how
to specialize the delay guarantee theorem to group
scheduling for a subclass of GD servers.

3.1 Relaxed deadline theorem

Consider a subclass of GD servers, called the priority
subclass, with the following additional properties:

o work conserving—The server does not idle when
there are bits to send.

o nonpreemptive—The transmission of a packet cannot
be preempted.

o priority service—In selecting the next packet to
serve, the packet in queue with the smallest deadline
is chosen. Ties between packets of different flows are
broken arbitrarily, and ties between packets of the
same flow are broken by arrival times (to preserve
the FIFO property).

Note that each service discipline in the priority
subclass is almost completely specified. Only the P

functions—P/ (-) for all f—remain to be specified.
Also, since (1s a constant, the server can use the
P values of packets, rather than their deadlines, as
priorities.

The following theorem is about two related systems,
an original system and a modified system; we use the
term system to refer to a particular implementation of
a server k in the priority subclass. The arrival times
and lengths of packets are the same in each system.
The arrival time of an arbitrary packet p at server k
is Ax(p). In the original system, the deadline and de-
parture time of packet p are Px(p) + Bx and Lg(p),
respectively. In the modified system, the deadline and
departure time of packet p are Pj(p) + B« and Li(p),

respectively. Furthermore, for all p, it is assumed that
Pl(p) > Pk§p); the modified system is said to have
relazed deadlines compared to the original system.

Theorem 2. If, for all packet p, the deadline Pi(p) +
B is met in the original system, that is,

Li(p) < Pi(p) + B (15)

then, for all packet p, the relaxed deadline Pl(p) + B
is met in the modified system, that is,

Li(p) < Pi(p) + B (16)

3.2 Messages and groups

Depending upon whether the packet switching network
is an ATM network or an IP network, a packet may rep-
resent an ATM cell or an IP datagram. In any case,
the end-to-end delay of a packet may not be the de-
sired performance measure for many applications. For
example, a video picture (or file) being sent by an ap-
plication over an IP network may be segmented into a
sequence of IP datagrams. The delay incurred to de-
liver the entire video picture (or file) is much more
important to the application than the delays of in-
dividual IP datagrams. As another example, an IP
datagram encapsulating some email message may be
segmented into a sequence of cells for delivery over an
ATM network. The delay incurred to deliver the en-
tire email message is more important than the delays
of individual cells.

Motivated by these observations, we introduce the
concept of a message which is a data unit of variable,
bounded length (in number of bits). Consider the same
network path of K + 2 nodes in Section 2. We assume
that the source generates a traffic flow as a sequence of
messages. Each message is segmented into one or more
packets which are sent to the network (namely, node
1 on the path). Subsequently at the destination, each
message is reassembled from its packets.

Note that a message is primarily a source-

destination concept. We next introduce the concept
of a group of packets, which is meaningful only to the
packet switching network (nodes 1 through K on the
path) but not to sources and destinations. Within the
network, a guaranteed flow is represented as a sequence
of packet groups. For each group, the largest of the
group’s packet deadlines is chosen to be the group pri-
ority. Each packet is scheduled on the basis of its group
priority.
Notation for groups. We will use h as the sequence
index which identifies a particular group of packets in
flow f, and the notation h(z) to denote the group that
includes packet 3.

The sizes of groups in a flow are parameters to be
adaptively controlled for optimizing network perfor-
mance (see Section 4.2). In the balance of this paper,
we will consider the end-to-end delay of a message to be
the performance measure of interest. For this reason,
group size is chosen to be less than or equal to message
size (number of packets). Specifically, a message’s se-
quence of packets is partitioned into one or more groups

11a.1.4

1349

of packets. This model subsumes two special cases: (i)
one-packet-per-group, which is the same as the previ-
ous flow model, and (ii) one-message-per-group, i.e., all
packets of a message constitute a group.

We can also specify group sizes such that a group
may consist of the packets of multiple messages. Such
large groups would be appropriate for messages that
are actually segments of some application-specific data
unit, and the end-to-end delay of the application data
unit is the performance measure of interest.

3.3 Advantages of group scheduling

Consider a group of consecutive packet arrivals from
flow f to node k. For each packet i in the group, its
deadline is supposed to be. P,f (?) + Bx. With group
scheduling, however, the largest deadline in the group
is assigned to all packets of the group. Such deadline
will be referred to as the group deadline or group prior-
ity. Note that all except one packet in the group have
relaxed deadlines. :
Group scheduling has two advantages. First, within
a network node the channel scheduler’s work is much
reduced. This is because the scheduler needs to up-
date its priority data structure whenever the priority
of a flow changes. With group scheduling, a flow’s pri-
ority changes only once per group rather than once per
“ packet; see [11]. Second, we discovered that the flex-
ibility of relaxed deadlines results in better statistical
performance (i.e., delay, queue size, and loss proba-
bility) for networks where some channels are heavily
utilized. We will provide some empirical results to sup-
port this claim in Section 5.

3.4 End-to-end delay guarantee

The delay guarantee in Theorem 1 can be specialized
to group scheduling. First, we need to specify the ser-
vice discipline at each network node on the path. In
the balance of this paper, we will consider servers in
the priority subclass that use virtual clock values as
priorities [13]. More specifically, the virtual clock val-
ues of a flow f are computed assuming that packet ¢ in
the flow is allocated a thoughput of A/ (i) bits/second
at each server on the path, and that some admission
control mechanism ensures that the capacity of each
server is not exceeded [10].

From Section 2.4, we see that the virtual clock value
of packet ¢ in flow f at server k is equal to its reference

clock value ka (£). Under group scheduling, the packet-

dependent deadline of 1, P,f (7), is assigned the virtual
clock value of the last arrival in group A(i). Thus, at
node k, for k =1,2,..., K, we have®

PlG)-Vi) < D v (17)

neh(s) , n#i

31t is assumed that the interarrival time between packets ¢
and i + 1 in the same group is less than or equal to s (1)/\f(4).
A somewhat weaker jitter constraint on packet arrival times can
also be used; see Section 4.

Corollary 1. For group scheduling using virtual clock
values, the end-to-end delay guarantee is:

Aen@ < WO+ (K -1) max {o)(5)}

= |
+OI6) - @)+ e (18)

k=1

where for 1 < j < i, v[(j) = X, epy v (n) and
o = (7% [Ck) + Tk kg1

4 A Detailed Example

We next illustrate how to apply group scheduling and
the delay guarantee in Corollary 1 to a particular class
of networks [7], where a guaranteed flow is generated as
a sequence of bursts. We will assume that all packets
have a fixed size. End-to-end delay bounds are derived
for the path of K+2 nodes in Section 2. In this section,
we focus upon a particular guaranteed flow, f, and will
omit the superscript f in the following notation for
clarity.

Notation for bursts
(m,1) the lth packet in the mth burst of flow f
Agm, I% arrival time of packet (m, le at a node
D(m,l) end-to-end delay of packet (m,) (from ar-
rival at node 1 to arrival at node K + 1)
b size of burst m (packets)
0m maximum duration of burst m (seconds)

An = bm/dm, average rate of burst m
(packets/second)

g9m < by , group size chosen for burst m
(packets)

For burst m, the group size g,, is chosen at the
network entrance such that g,, < b,,. The burst’s se-
quence of packets is partitioned into groups such that
each group consists of g,, packets except for the last
group whose size may be smaller.

A burst is the same as a message in Section 3.2 but
with additional properties. Specifically, the sequence
of bursts is required to satisfy the following when its
packets arrive at the network entrance (node 1):

Flow Specification

o The first packet of burst m carries information? on
Am, bm, and gp,.

® Packets in burst m satisfy a jitter timing constraint,

namely: for [=1,2,...,b,,,

0 < A(m, 1) - A(m, 1) < I_A—:l (19)

o Bursts in the flow satisfy a separation timing con-
straint, namely: for m > 1,

A(m+1,1) - A(m,1) > bm (20)

*This set of parameter values is implementation-dependent.

11a.1.5

1350

The information carried in the first packet. of each
burst allows every server in the path to allocate a re-
served rate to the flow adaptively on a per burst basis.
The group size used in scheduling also changes from
burst to burst.

The jitter timing constraint requires that packets of
the same burst arrive at the network entrance within
some bounded duration. Note that without this re-
quirement, it would be impossible for the network to
provide an end-to-end delay upper bound to the burst.
This is a rather weak constraint and can be easily sat-
isfied if the packets of a burst are derived from the
same application data unit at the source. The jitter
timing constraint can be exploited to compute virtual
clock values very efficiently for each flow at a server
[7]; specifically, the main steps of the computation are
performed only once per burst.

The separation timing constraint is a sufficient con-
dition for a VC priority server to allocate reserved
rates to flows adaptively on a per burst basis and pro-
vide guaranteed deadlines [10]. The constraint also
ensures that each active flow contains at most one ac-
tive burst—a server can make use of this information
to check that its capacity has not been depleted by al-
locations to flows. Lastly, the constraint is a source
control mechanism that ensures that at node 1 the dif-
ference between the virtual clock value and arrival time
of (m, 1), the first packet of burst m, is upper bounded
by 1/An, for all m.

To ensure that the jitter and separation timing con-
straints are preserved when the packets of a flow arrive
at node k, for k = 2,..., K, the packets pass through
a flow regulator before they arrive at the queue of the
server. If a packet arrives ahead of schedule, it is de-
layed by the flow regulator to the extent that the packet
is ahead of its deadline; such delays increase the end-to-
end delay lower bound for packets, but do not impact
the end-to-end delay guarantee of Corollary 1. Note
that Corollary 1 is applicable because the server at
node k (excluding the flow regulator) is work conserv-
ing.

4.1 Delay bounds

If the channel capacity, for every channel on the path,
is not exceeded by the aggregate reserved rate of active
flows [10], a tight end-to-end delay upper bound for the
first packet of every burst can be derived as a special
case of Corollary 1.

Corollary 2.

K
gm _ gn
D(m,1) < 5™ + (K 1) max {$"} + ; ax (21)

Corollary 2 generalizes a theorem in [7] for the spe-
cial case of individual priority (that is, g,, = 1 for all
m). A tight end-to-end delay lower bound is the fol-
lowing:

Since flow regulators preserve the jitter timing con-
straint for each burst in a guaranteed flow [7], the delay
of packet (m,!) is bounded as follows:

D(m,1) < D(m, 1) + XI: (23)

The end-to-end delay of burst m, denoted by D,,, mea-
sured from the time when packet (m, 1) arrives at node
1 to the time when packet (m, b,,;) arrives at node K+1,
is bounded as follows:

Dum < D(m,1) + %’L =D(m,1)+6m (24)

4.2 How to determine group sizes

The source of a guaranteed flow negotiates with the
network to agree upon QoS parameter values, which
determine flow characteristics and service guarantees.
(For a commercial network, the cost of flow delivery
would depend upon these negotiated values.) In this
example, we consider the following QoS parameters.

Amar maximum rate to be reserved for a burst
(Am < Amaz for all m), to be guaranteed
by source

Omar Mmaximum burst duration (6 < bpmae), to
be guaranteed by source

Dyqr maximum end-to-end delay of any burst in

flow, to be guaranteed by network

Note that A, is an average rate determined by by,
and d,. Thus, to conform to the negotiated value of
Amaz, it is sufficient that the source controls its burst
sizes, such that, for all m,

b < Amas (25)
Om

If the flow conforms to Flow Specification at its
network entrance, the network will ensure that burst
delays do not exceed D,,,4,. The negotiated values of
Dynyr and gy are used to determine the group sizes
for bursts, as described below.

We first derive a uniform upper bound on D(m, 1)
for all m. Let mx* denote the index of the slowest burst
in the flow, that is, for all m,

Ame < Am (26)

Suppose each burst is allocated a reserved rate equal
to its average rate. For the special case of individual
priority (g = 1 for all m) the slowest burst in the
flow determines the uniform upper bound of D(m, 1),
which is:

K &
D(m,1) < ot ;ak (27)

For the general case of group priority, if gp,. is chosen

K Lo
D(m,1) > (K — 1)%1 + Za" (22) to be 1 and g, a posmye mtelger such that
" k= gm o 1 (28)
AYIIr - Arnn
11a.1.6

1351

it is easy to observe, from (21), that the same uniform
upper bound in (27) applies. This observation sug-
gests that subject to (28), group scheduling can be used
without increasing the worst-case delay of any burst in
the flow. To illustrate the potential benefit of group
scheduling, consider interframe-encoded pictures in a
video flow, which have very large size fluctuations, e.g.,
for MPEG sequences studied in [6], an I picture is up
to 30 times the size of a B picture. From (28), ¢, can
be as large as 30 for an I picture. Thus we see that for
such video traffic, the frequency of priority changes for
the flow can be significantly decreased, which reduces
the work of the channel scheduler. (We believe that
reducing the channel scheduler’s work is essential to
high-speed packet switch design.)

We next consider the QoS parameter, Dpyar. In
order for the network to provide the bound Dy,q5 to
every burst, the reserved rates of bursts in the flow
must be lower bounded to avoid having a burst that
travels too slowly. Specifically, the minimum reserved
rate for a burst should be

K
Amin = K/(Dmaa: —dmaz — Zak) (29)
k=1

Note that if A,,;y, is larger than A, 4z, there is a conflict

between the negotiated values of Apgr and Dygr. A
renegotiation between source and network would be
required. Suppose that this is not true. To derive a
condition for determining group sizes for bursts, we
consider two possible scenarios.

First, one or more bursts in the flow may be so slow
that the uniform upper bound is very large, in fact, it
is larger than the value of Dy, negotiated between
source and network. To ensure that the uniform upper
bound is less than Dj,q., €ach burst in the flow must
be allocated a reserved rate not less than Apin at each
server, i.e., the reserved rate of burst m is chosen to be
max{Am, Amin }-

Second, the value of Dy,;, negotiated between
source and network is larger than the uniform delay
upper bound. In this case, a group size larger than 1
may be used for scheduling even for the slowest burst
in the flow. This group size, denoted by gy, is chosen
to be a positive integer such that the following holds:

gmin 1
<
Amt - Amin

In this case, the condition for selecting group sizes for
bursts can be relaxed from (28) to the following;:

(30)

am Gmin
gm . Gmin

From the above discussion, the general condition for
selecting the group sizes of bursts is:

gm < min{b,, [%J} (32)

which follows from (30) and (31), and the requirement,
Im < bm.

7-9 1-8 10-12

N4
SR

\ 20%2)

- 10 (0.5) 6@

L2 (9

- 10 (0.3) @@ 15 (0.3) -

B3

SWa) 15 (0.4) @

Figure 1: Simulated network.

5 Empirical Results

The end-to-end delay upper bound in (24) is provided
by the network to every burst in flow f and is referred
to as a deterministic bound. It is based upon the as-
sumption that the capacity of every channel in the path
has not been exceeded by the aggregate reserved rate
allocated to active flows [10]. For many multimedia
applications, however, statistical guarantees are accept-
able, such as: 99% of the pictures in a video sequence
are delivered with delays less than the upper bound.
We designed a set of experiments to investigate the ex-
tent to which the channels in a network path can be
overbooked before some bursts encounter delays larger
than the bound in (24).

From the same experiments, we discovered that
group scheduling, aside from reducing the scheduler’s
work, has another advantage. Specifically, when some
channels in a network path are severely overbooked
(heavily utilized), group scheduling improves the net-
work’s statistical performance &i}.e., loss rates, end-
to-end delays, queue sizes). This is because group
scheduling offers more flexible deadlines for schedul-
ing packets. Consequently, schedulers can better cope
with temporary overloads.

5.1 Network configuration

The experiments were conducted using a discrete-event
simulator from [7]. The network simulated is illus-
trated in Figure 1. There are six switches labeled SW.
Each switch has a buffer pool for 1200 packets, which
is shared by all video flows.

Each thin arrow in Figure 1 represents a channel,
which (except for L2 and L3) is labeled by its ca-
pacity in megabits per second (Mbps). The channel
propagation delay, in milliseconds (ms), is shown in
parentheses. Channels L2 and L3 have the same ca-
pacity C. The value of C can be changed from one
experiment to another.

11a.1.7

1352

MPEG Gmin = 1 Imin = Imin =
sequence max | ave || max | ave max | ave
Terminator 27 1 7.1 55 | 14.4 110 | 29.3
ParentsSon 16 | 34 32 7.3 64 | 146
RedsNightmare 40 | 7.3 81 | 145 162 | 294
Student 5 2.0 10 4.8 20 9.4
Driving 51 | 9.3 102 | 20.0 205 | 36.7
Airwolf 2 23 | 5.4 47 1 11.2 94 | 23.0
[Simpsons [18 | 5.5 37 | 11.5 74 | 23.5
Canyon 9 2.6 18 5.9 36 10.8
FlowerGarden 9 2.8 19 6.2 38 | 13.3
UnderSiege 12 | 2.8 24 6.1 48 | 11.6
StarTrek IT 4| 1.6 8 3.7 16 7.8
Energizer 14 | 3.6 28 7.9 56 | 15.0

Table 1: Group sizes for three gmin values

Each thick arrow represents a set of channels, one
for each video flow. Each such channel has a capacity
larger than Amas of the flow it carries; the capacity
varies from 10 to 15 Mbps, and the propagation delay
also varies.

5.2 Video flows and ABR traffic

The simulated network carries twelve video flows, as
well as some ABR traffic. In Figure 1, the source of
each video flow is labeled VS, and the destination VD.
The video flows travel from their sources through three
different switches (SW1, SWa, SWb) to SW2. From
there, they all travel through SW3 and SW4 to their
destinations. The video flows were generated using
traces obtained from MPEG video sequences.’

Pictures are represented as bursts in Section 4. The
average rate of a picture is computed as follows. Each
packet is 53 bytes long with a 48-byte payload. Let
b, be the number of packets needed to carry the
bits of picture m. The average rate of picture m is
53 x 8 X by, X 30 bits per second, where we have used
1/30 second as &y, for all m. For most of our experi-
ments (all of the performance results illustrated in this
section), the packets in a burst were generated with a
fixed interpacket gap.

We did not try to identify values for the QoS pa-
rameters, Amaz and Dmaz, appropriate for a particular
multimedia application. We used average rates of the
largest and smallest pictures in the sequence as values
for Amaz and Amin, respectively.

The group size for each picture in a video sequence
was calculated to be the largest integer that satisfies
the inequality in (31); we experimented with several
values of gmin. The maximum and average group sizes
for each of the twelve video sequences are shown in
Table 1.

In addition to the video flows, the network carried
two ABR traffic flows: a flow from CS1 to CD1 via L2,
and the other from CS2 to CD2 via L3. Each was a
Poisson source whose rate was set to be between 0.20
and 0.21 of the capacity C of channel L2 (also L3) for
each experiment.

For L2 and L3, 0.2 of the channel capacity C was
allocated to ABR traffic by assigning virtual clock val-
ues to ABR packets as priorities [7]. Whenever there

5See [8] for a more detailed description of the experiments
and empirical results.

was nothing to send from the video flow queues, the
entire channel capacity was available to ABR traffic.
We ran each experiment for 10 seconds of simulated
time. About 300 pictures were delivered for each video
flow. Three of the MPEG sequences were not long
enough, and their traces were wrapped around.

5.3 Overbooking to increase utilization

A source can misbehave and generate packets at a rate
higher than the reserved rate of its flow. Such behavior
will cause its own packets to incur large delays. How-
ever, it will not affect the deterministic delay bounds
provided by the network to other flows, so long as, for
every channel, the channel capacity is not exceeded by
the aggregate reserved rate allocated to active flows.

We designed a set of experiments to evaluate net-
work performance when the channel capacity at L2
and L3 is intentionally overbooked by not implement-
ing any admission control mechanism based upon the
maximum reserved rate Ama.r of each flow. Since the
reserved rate of a flow changes from burst to burst, it
is possible that the largest pictures of all video flows
are served by L2 (or L3) at the same time. The sum of
Amaz over all twelve video flows is equal to 49.77 Mbps.
Since only 0.8 of the channel capacity C is allocated to
video flows, to ensure that the channel capacity of L2

L3) is not exceeded, we must have C' = 62.21 Mbps.

e refer to this case as 0% overbooking.

In the experiments described below, we actually
used a value of C smaller than 62.21 Mbps. If C is
chosen for an experiment such that 49.77 Mbps ezceeds
0.8C by n%, the channels in the experiment are said
to be n% overbooked. The experiment is referred to as
n 9% overbooking.

5.4 Channel utilization and loss rate

The objective of overbooking is to increase channel uti-
lization. We performed a series of experiments from
32% to 208% overbooking. Figure 2 shows that the
utilization of channel L2 increases almost linearly with
overbooking. Three cases of group priority were inves-
tigated, for gmin equal to 1, 2, and 4. At 208% over-
booking, the channel utilization was 0.958 for group
priority with gmin = 2 and 0.952 for individual prior-
ity. The utilization for individual priority was smaller
geca,)use some packets were dropped (due to buffer over-
ow).

In Figure 3, we show the percentage of packets
dropped due to buffer overflow at L2 which has space
for 1200 packets shared by all twelve video flows. Note
that the loss rate was zero for group priority with gmin
equal to 2 or 4. It was fairly low for the other two cases,
considering that the channel utilization exceeded 0.95.

5.5 Impact on delay bound

We measured the sum of reserved rates of active flows
as a function of time, and compared it with the chan-
nel capacity of L2 (L3). For the experiments at 32%
overbooking, the channel capacity was not exceeded by
the aggregate reserved rate of active flows at any time.
But for experiments at 76% overbooking, and higher,
the channel capacity was exceeded frequently.

11a.1.8

1353

individual priority -e—
80 g min=1 -
g-min=2 -o--

Channel Utiization (%)
3

60
50 Channel L2
40
(] 50 100 180 200 250
Overbooking (%)

Figure 2: Channel utilization versus overbooking

v
3 18 F individual priority ——
2 gmin=1 -+
in=2 -a-
§ g min =4 —=—
= 1
@
3
o
3 o5t
$
H
a
° . .
o 50 100 150 200 250

Overbooking (%)
Figure 3: Packet loss rate versus overbooking

80

3 individual priority —s—
70 group priority {(g_min = 1) —-—

60 |
50 |
40 |
3o |
20 |
10 |

°

Percent of Pictures Exceeding Delay Bound (%)

o 50 100 150 200 250
Overbooking (%)

Figure 4: Impact of overbooking on delay bound

The delays of individual pictures (bursts) were mea-
sured and compared to the upper bound given by (24)
for each video sequence. The results were plotted in
Figure 4 for two cases: (i) individual priority and (ii)
group priority with gmi, = 1. These two cases have
the same delay upper bound for each video sequence,
determined by the slowest picture in the sequence.

As illustrated in Figure 4, the delay bounds held for
all pictures in all video sequences up to 120% overbook-
ing. At 134% overbooking, the delays of a small num-
ber of pictures (less than 1%) exceeded their bounds.
In all experiments, the fraction of pictures violating
their delay bounds was smaller for group priority (with
gmin = 1) than for individual priority.

5.6 End-to-end delay performance

We observed that the delay performance of group pri-
ority with g, = 1 was slightly better than individual
priority in almost all experiments. However, group pri-
ority with gmin equal to 2 and 4 performed better than
individual priority only when the network was heavily
loaded. At 164% overbooking, all three cases of group

3 164% overbooking PP und - 1

Picture Delay (ms)
88868538358

o 50 100 200 260 300

150
Picture Number
80 — — - . -
sr 164% overbooking upgé';" b::;\g e j
70

Picture Delay {ms)

o] 50 100 150 200 250 300
Picture Number

Figure 5: End-to-end picture delays of Energizer se-
quence

:

1100 [individual priofity ~e—

Channel L2 1

Maximum Queue Length (packets)
~
8

200 250

Channel L2

Average Queue Length (packets)

L
200 250

Overbooking (%)

Figure 6: Video queue length versus overbooking

priority had better performance than individual pri-
ority (see [8]). In Figure 5, we show the end-to-end
picture delays of the Energizer video sequence at 164%
overbooking, for individual priority and group priority
with gmin equal to 2.

5.7 Queue sizes

In Figure 6, we show the maximum and average video
queue length at L2 versus overbooking, where video
queue length denotes the aggregate size of all twelve
video flow queues. In Figure 7, we show the video

11a.1.9

1354

: 164% overbooking individual priority ——

1

Video Queus Length (packets)
~N
83

o 10002000300040005000600070008000900010000
Time (ms)

184% overbooking g.min =2

Video Queus Length (packets)

[+] 10002000300040005000600070003000900010000
Time (ms)

Figure 7: Video queue length at L2 over time

queue length at L2 as a function of time at 164% over-
booking, for individual priority and group priority with
Imin = 2.

6 Conclusions

We introduced the class of GD servers and proved an
end-to-end delay guarantee theorem. The theorem can
be instantiated to obtain end-to-end delay bounds for a
variety of source control mechanisms and GD servers;
in particular, different GD servers can coexist in the
same end-to-end path. With the theorem, the prob-
lem of deriving an end-to-end delay upper bound for
a guaranteed flow is reduced to a set of single-node
problems.

We then introduced and developed the concept of
group scheduling. We proved a relaxed deadline theo-
rem for the priority subclass of GD servers. The delay
guarantee theorem is then specialized to group schedul-
ing for a subclass of GD servers.

We worked out a detailed example for a particu-
lar class of networks [7]. We derived end-to-end delay
bounds for bursts (messages), and illustrated how to
choose group sizes such that the end-to-end delays of
bursts are unaffected by group scheduling.

Group scheduling has two advantages. First the pri-
ority of a flow changes less frequently, i.e., from one
group to the next rather than from one packet to the
next. Hence, the channel scheduler’s work in updating
its priority data structure (e.g., a heap) would be much
reduced for large groups. (An empirical investigation
quantifying this reduction can be found in [11].) Sec-
ond, group scheduling offers more flexible deadlines;
consequently channel schedulers can better cope with
temporary overloads.

References

[1] Alan Demers, Srinivasan Keshav, and Scott Shenker. Anal-
ysis and simulation of a fair queuning algorithm. In Proseed-

ings of ACM SIGCOMM ’89, pages 3-12, August 1989.

[2] Domenico Ferrari and Dinesh Verma. A scheme for real-
time channel establishment in wide-area networks. IEEE
Journal on Selected Areas in Communications, pages 368—
379, April 1990.

[3]

—_

Norival R. Figueira and Joseph Pasquale. Leave-in-time:
A new service discipline for real-time communications in
a packet-switching network. In Proceedings of ACM SIG-
COMM ’95, pages 207-218, August 1995.

[4] S. Jamaloddin Golestani. A self-clocked fair queueing
scheme for high speed applications. In Proceedings of IEEE
INFOCOM ’94, pages 636-646, March 1994.

[5] Pawan Goyal, Simon S. Lam, and Harrick M. Vin. Deter-
mining end-to-end delay bounds in heterogeneous networks.
In Proceedings of NOSSDAV, Durham, New Hampshire,
April 1995.

Simon S. Lam, Simon Chow, and David K.Y. Yau. An algo-
rithm for lossless smoothing of MPEG video. In Proceedings
of ACM SIGCOMM ’94, pages 281-293, London, England,
August 1994.

[7] Simon S. Lam and Geoffrey G. Xie. Burst Scheduling: Ar-
chitecture and algorithm for switching packet video. Techni-
cal Report TR-94-20, University of Texas at Austin, Austin,
Texas, July 1994. An abbreviated version in Proceedings of
IEEE INFOCOM ’95, April 1995.

[8] Simon S.Lam and Geoffrey G. Xie. Group priority schedul-
ing. Technical Report TR-95-28, University of Texas at
Austin, Austin, Texas, July 1995; revised, January 1996.

Abhay K. Parekh and Robert G. Gallager. A generalized
processor sharing approach to flow control in integrated ser-
vices networks: The single node case. ITEEE/ACM Trans.
on Networking, pages 344-357, June 1993.

[10] Geoffrey G. Xie and Simon S. Lam. Delay guarantee of Vir-
tual Clock server. Technical Report TR-94-24, University
of Texas at Austin, Austin, Texas, October 1994. To appear
in IEEE/ACM Trans. Networking, December 1995,

[11] Geoffrey G. Xie and Simon S. Lam. An efficient scheduler
for real-time traffic. Technical Report TR-95-29, University
of Texas at Austin, Austin, Texas, July 1995. Available
from http://net.cs.utezas.edu/users/~lam/NRL/.

[12] Hui Zhang and Srinivasan Keshav. Comparison of rate-
based service disciplines. In Proceedings of ACM SIG-
COMM ’31, pages 113-121, August 1991.

[13] Lixia Zhang. VirtualClock: A new traffic control algorithm
for packet switching networks. In Proceedings of ACM SIG-
COMM ’90, pages 19-29, August 1990.

—_
2

[

—

Appendix
Proof of Lemma 2. We use induction on i.
Base case. From (3), for i =1,

ka+1(1) = k+1(1) + ”f(l) (33)
{by Lemma 1}
< Pl)+an+0'(D) (39)

Vi) + o' () + (PL) - V(1)) +ar (35)

Thus the inequality in (4) holds for i = 1.

Inductive step. Assume that the inequality in (4) holds
for 1 £ i < n. A proof that the inequality holds for
i =n+ 1 follows.

11a.1.10

13556

From (3), fori=n+1,
Vk{|-1("+1) = max{ka_*_l(n),A£+1(n+1)}+vf(n+1) (36)

¢ Case 1. ka+1(n) > A£+1(n +1):

ka+1(n+1)=v;cf+1(n)+vf("+1) (37)
{by induction hypothesis}
< Vi (n) + max {07 (5) + (PLG) - VI)} +

ar+vi(n+1) (38)
{by (3) and FIFO property}

Vin+1)+

max 070) + (PLG) - Vi) +on @9)
V(n+1)+

anax, {07 ()+ (PLG) = VG e (40)

IA

[7AN

e Case 2. V;cfﬂ(n) < A£+1(n +1):

Vintn+1) =4, (n+1)+v/(n+1) (41)
{by Lemma 1}
< Pln+D)4ar+vi(n+1) (42)
= Vin+1)+ert+o (n+1)+
Pl(n+1)-V{(n+1) (43)
< Vin++
. s?é‘fu{”f () + (PLG) = VL ()} + o (49)

Proof of Theorem 1. From Lemma 1,

Afeys(8) < PL() + ax (45)
= VLG) + (PLG) - VEG) +ax (46)
{applying Lemma 2}
< VO mes () + (P ()~ Vi +
axes + (PLG) - VE()) +ax (7

{applying Lemma 2 repeatedly}
K—1

Vi () + }: max {v () + (PLG) W ()} +

K

(PL() = VE@) + D ene (48)

k=1

IA

Proof of Theorem 2. The arrival times and lengths
of packets are the same in both systems. Since the
server is work conserving, each busy period begins
and ends at the same time in both systems. Without
any loss of generality, it suffices to consider an arbi-
trary busy period. Each packet in the busy period
1s identified by its index m in the sequence of depar-
tures in the original system. The sequence indices are

1,2,...,m1 — 1,my,...,mg,.... Indices m; and my
denote two special packets in the sequence, which are
introduced below.

The theorem is proved in two parts: (i) We prove
that the theorem holds for the special case of a mod-
ified system that has exactly one packet in the busy
period, say my, with a relaxed deadline, i.e., Px(m1) <
P/(my1), and Vm # my, P/(m) = Pi(m). (ii) The the-
orem in general is provecic by induction on the set of
packets in the modified system with relaxed deadlines.

A proof of part (ii) is trivial and is omitted. A proof
of part (i) follows. First, we note that if packets in the
modified system depart in the same order as they de-
part in the original system, part (i) holds because (from
work-conserving and nonpreemptive assumptions)

Li(m) = Li(m) < Pe(m) + Bk < Pi(m) +Bx (49)

Otherwise, there is a reordering of the departure se-
quence due to packet m; having a relaxed deadline.
Suppose packet mg is served behind my in the orig-
inal system (mz > my + 1 in the original departure
sequence) but that m; is served immediately after ma
in the modified system.

For all m # my, we have (from work-conserving and
nonpreemptive assumptions)

Li(m) < Li(m) < Pe(m) + B = Pe(m)+ Bx (50)

For packet mi, we have (from work-conserving and
nonpreemptive assumptions)

It

Li(mi) = Li(ma)+ i%’zi = Li(ma)

Pi(ma) + Bk = Pi(m2) + B
Pi(m1) + B (51)

The last inequality follows from Pj(m2) < P{(m1);
otherwise, there would be a contradiction as follows.
Suppose P;(m3) > Pj(mi). Since mg is served ahead
of my in the modified system, m; must have arrived
too late to be selected ahead of ms on the basis of a
smaller deadline, i.e.,

Ak (m1) > L;c (mgre (52)

INIA

where m}’® denotes the packet served immediately
ahead of ms in the modified system. There are two
possibilities for the identity of packet m§™®: (i) mb™® is
my — 1, in which case, L},(m}™®) = Lg(my —1), and (ii)

mb™® > my + 1, in which case,
Li(m5™) 2 Liy(m1 +1) = Li(m1+1) - (s(m1)/Ck)
> Li(mi—1) (53)
Combining the two cases, we have
Ar(mi) > Li(m5™®) > Lx(m1 — 1) (54)

Note that the inequality, Ax(mi) > Lg(my — 1),
contradicts the assumption that m; is served imme-
diately after m; — 1.in the original system. Therefore,

Ll (my) < P((my) + B follows from (51).

11a.1.11

1356

