
TheContentandAccessDynamicsof aBusyWebServer

Abstract

In this paper, we presenta detailedstudyof thedynamicsof

a busyWeb server, at presentoneof the largestin the Inter-

net. We analyzethedynamicsof boththeserver contentand

theclientaccessesmadeto theserver. Theformerincludesa

characterizationof thecontentcreationandmodificationpro-

cesswhile the latterconsiderspagepopularity, andthe tem-

poral stability andspatiallocality in client accesses.Some

of our key resultsare: (a) file modification,thoughmorefre-

quentthanfile creation,oftenresultsin little changein thefile

beingmodified,(b) a small setof files tendsto getmodified

repeatedly, (c) file popularityfollows a Zipf-lik e distribution

with a parameter� that is muchlarger thanreportedin pre-

vious, proxy-basedstudies,and(d) thereis significanttem-

poralstability in file popularitybut not muchstability in the

domainsfrom which clientsaccessthe popularcontent.We

pointoutseveralbroadimplicationsof thesefindings.

1 Intr oduction

Therapidgrowthof theWorld WideWebhasspawnedseveral

researchefforts aimedat characterizingthe Web workload

andtraffic. Sucha characterizationis vital in many ways. It

enablesidentificationof existingor potentialbottlenecks,and

the designandthe evaluationof new algorithmsto improve

theWeb.

TheWeb basicallyconsistsof servers,clients,andprox-

ies.Theserversaretypically theoriginatorsof contentwhile

the clients are the consumersof content. Proxies, when

present,mediatethecommunicationbetweena setof clients

anda subset/allof the servers. As such,eachof thesethree

componentsprovidesauniqueperspectiveon thefunctioning

of the Web. However, by far the majority of Web charac-

terizationstudieshave focusedon datagatheredat a proxy

host (or by a network packet sniffer placedat a location

wherea proxy hostmight have been). Proxy-basedstudies

areuseful for many purposes:the designandevaluationof

cachingand prefetchingalgorithms,the characterizationof

server popularity, etc. However, proxy-basedstudieshave

their limitationsbecausethey offer only a limited perspective

on thegoings-onat clientsandat servers,i.e., a proxy is not

in a positionto observe all of the eventsoccurringeitherat

clients(e.g.,scrollingup anddown in a browserwindow) or

at servers(e.g.,theservers’ communicationwith clientsthat

donotconnectvia theproxy).

A significantdifficulty that researchersface in doing a

server-basedstudy is the very limited availability of server

traces.The few pioneeringstudiesin this area [2] [3] have

hadto make do with datafrom relatively smalldepartmental

servers, typically at universities. While they have certainly

beenvaluable,themainlimitation of thesestudiesis that the

bulk of Webtraffic is servedoutby largecommercialservers.

It is unclearhow well inferencesdrawn from the studyof a

small departmentalserver would scaleto the largecommer-

cial sitesin therealworld.

We have beenfortunateto have obtainedaccessto de-

tailed tracesfrom a large commercialserver site, which, to

preserveanonymity, we will referto simply asFooBar. Foo-

Baris alargecommercialsitein thesamecategoryasthelikes

of CNN [7], MSNBC[21], andABCNews [1], andis consis-

tently rankedamongthetop sitesin theWeb[20]. Thetrace

datawe obtainedwasof two kinds: (a) contentlogs, which

recordfile creationandmodificationevents,andalsoinclude

copiesof successive versionsof (a subsetof the) files, and
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(b) accesslogs, which recordclient accessesto the HTML

content(but not to theinline images).Thus,wearein aposi-

tion to study(certainaspectsof) boththeback-end(i.e.,con-

tentdynamics)andthefront-end(i.e.,accessdynamics)of the

FooBarsite.

A detaileddiscussionof theresultsappearslaterin thepa-

per, butherearesomeof ourmoreinterestingfindings:(a)file

modification,althoughmorefrequentthanfile creation,often

tendsto changelittle in the file beingmodified,(b) a small

subsetof the files tendsto get modified repeatedly, (c) file

popularity follows a Zipf-lik e distribution with a parameter� that is muchlargerthanreportedin previous,proxy-based

studies,and(d) thereis significanttemporalstability in file

popularitybut not muchstability in thedomainsfrom which

clientsrequestthepopularcontent.

A limitation of ourstudyis thatit is difficult to determine

how well theresultsderivedfrom theFooBarsitegeneralize

to the otherlargesitesin the Internet. Nevertheless,we be-

lieve our studyis a valuablesteptowardscharacterizingthe

workloadof large,commercialservers.

The rest of this paperis organizedas follows. In Sec-

tion 2, we survey previous work. We presenta discussion

of the architectureof the FooBar site, our tracecollection

methodology, andthe tracesthemselvesin Section3. Then

in Sections4 and 5, we presenta detailedanalysisof the

contentlogs andthe accesslogs, respectively. In Section6,

we summarizeour key resultsanddiscussthebroaderimpli-

cationsof our findings. Finally, in Section7, we touchupon

ongoingandfuturework.

2 PreviousWork

As discussedabove,muchof thework thusfar in Webwork-

load characterizationhasfocussedon proxies,often with a

view to evaluatingtheeffectivenessof proxycaching.Thehit

rateof proxy cacheshave beenfound to be quite low, often

not muchhigherthan50% [9] [11]. A substantialfraction

of themissesarisefrom first-timeaccessesto files (i.e.,com-

pulsorymisses).Proxylogshave alsobeenusedto studythe

effectivenessof cooperativecaching.In thiscontext, a recent

study [26] [27] reportsthat the organizationalmembership

of clientsis significantin that clientsbelongingto the same

organizationaremorelikely to requestthe samedocuments

thanclientspickedat random.Our analysisof spatiallocal-

ity (Section5.5) shows this significancecanbe diminished,

for instance,by theoccurrenceof a ”hot” news event that is

popularglobally, acrossorganizationalboundaries.

Therelativepopularityof Webpagesaccessedvia aproxy

hasalsobeenstudiedextensively. Thealmostuniversalcon-

sensusis thatpagepopularityfollowsa Zipf-lik edistribution

wherethe popularityof the
�
th mostpopularfile is propor-

tional to 1/
���

. Thevalueof � is typically lessthan1, which

makespopularitydistributionasseenby theproxy ratherflat

(e.g., [5] reportsthat it takes25-40%of pagesto draw 70%

of the client accesses).Our results(Section5.2 ) show that

while the Zipf-lik e distribution holds for the FooBarserver

siteaswell, � tendsto bemuchlarger, typically 1.4-1.6.

Proxylogshavealsobeenusedto studytherateof change

and agedistribution of files (e.g., [8]). Thesehave been

deducedindirectly usingthe last-modifiedtimestampin the

HTTP responseheader, which opensup the possibility of

missedupdates.In contrast,weusefile modificationlogsob-

taineddirectly from theFooBarsiteback-endin ourstudy, so

thepossibilityof missedupdatesis diminished/eliminated.

Server-basedstudiesarefar fewer in number. A few of

thesehave focusedprimarily on the network dynamicsof

busyWebservers [18] [4]. Theseareinterestingbut orthog-

onalto thefocusof thispaper.

A few of the server-basedstudieshave beenalonglines

similar to this paper. [2] studiedaccesslogs from a setof

Webservers,thebusiestof which saw under50000accesses

in a day. They showed that file popularity followed Zipf ’s

distribution (i.e., Zipf-lik e with ����� ). They alsodemon-

stratedthepresenceof temporallocality in file accesses.[3]

studiedvariousaspectsof server behavior usingdatafrom a

setof servers. They reportedthat 10% of the files accessed

accountedfor 90% of the server requests,and that 10% of

the(client)domainsaccountedfor over75%of theserver re-
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quests.However, thebusiestof theserversthey studiedonly

saw a total of around350,000accessesin a day. In contrast,

the FooBarserver clustersees,on average,over 25 million

accesseseachdayto theits HTML contentalone(imageac-

cesses,which arenot includedin our traces,would increase

thisnumbersignificantly).

In summary, we seeourstudyof theFooBarsiteascom-

plementingthe existing bodyof literatureon Web workload

andtraffic characterization.We believe both the sizeof the

datasetwehaveanalyzedandtheuseof back-endlogstochar-

acterizethecontentdynamicsmakeourstudyvaluable.

3 Experimental Setup and Methodol-

ogy

In thissection,webriefly describetheessentialaspectsof the

FooBarserversite,anddiscussthetracedatathatwegathered

andprocessed.

3.1 Server SiteAr chitecture

The FooBar server site comprisesa cluster of over 40

server nodes,eachrunning the Microsoft InternetInforma-

tion Server (IIS) [17]. Theseserver nodesaregroupedto-

gether into sub-clusterscontainingapproximately6 nodes

each. Load balancingis done at two levels. First, each

sub-clusteris assigneda virtual IP (VIP) addressesandDNS

round-robincyclesthroughthe6 VIP addressesfor theentire

FooBar site. Second,within eachsub-clusterthat sharesa

VIP address,theWindows LoadBalancingService(WLBS)

[17] is usedto spreadload evenly acrossthe nodes. The

mainpoint to take away is thatatdifferenttimes,a particular

client’s requestmaybeservedby any of the40nodes.

3.2 Server AccessLogs

Eachserver nodemaintainsa standardHTTP accesslog that

recordsseveral piecesof informationfor eachclient access:

a timestamp,the client’s IP address,the URL accessed,the

responsesize,theserver statuscode,etc. For administrative

reasons,theserver siteoperatorchoseto turn off loggingfor

imageaccesses.So the logs only recordaccessesto HTML

content. While the absenceof imageaccesslogs is a lim-

itation of our dataset, we do not believe it interfereswith

our studyin any significantway sinceour analysisof access

dynamicsfocuseson Web pages (asdefinedby the HTML

content)ratherthanon theindividualfiles.

Table1 summarizestheoverall statisticsof theserver ac-

cesslogswe usedin our study. For our analysis,we picked

tracesfrom several different periods,eachspanninga few

consecutive days. In someperiods,we hadonly an hour’s

worth of tracesper day, while in otherswe hadtracesfrom

theentireday. Thetraceson12/17/98and12/18/98� werees-

peciallyinteresting,becausethey correspondto a ”hot” news

event,namelythe launchingof Operation DesertFox by the

USmilitary againstIraq.

TheFooBarserver sitesaw, on average,over 25 million

client accessesfor its HTML contentalone(imagehits were

over andabove this). Due to disk andmemorylimitations,

weonly usedlogsfrom 9 or 12 (i.e.,22.5–30%)of theserver

nodesout of theclusterof 40 whenanalyzingthe logs from

a wholedayperiod. Sincerequestsarerandomlydispatched

to the server nodes,consideringonly a subsetof the server

nodesis unlikely to significantlybiasor otherwiseimpactthe

resultsof ouranalysis.

In someof ouranalyses,weclusteredclientstogetherinto

domains, whichwedefinedto beall but thehostnamepartof

theclients’ DNS names(e.g.,the domainfor foo.bar.comis

bar.com).We determinedtheDNSnameof ahostvia reverse

DNS lookupon its IP address.We hada fairly high success

rate — typically over 70% — as reportedin Table 1. For

the analysesthat involved domaininformation, we ignored

clientsfor which the reverseDNS lookup failed. We realize

thatourdefinitionof adomainis simplistic,andarecurrently

looking at moresophisticatedalternativesthat alsoconsider

network topology.

	
Throughoutthispaper, datesappearin theformatmonth/day/year.
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12/17- 12/18(1998) 8/1 - 8/5 8/3 - 8/5 9/27- 10/1 10/7- 10/11 10/14- 10/18

Period 9 AM - 12AM 10- 11AM 9 AM - 12AM all all day all day

% totalserver logsused 100 100 100 30 22.50 22.50

HTTPRequests 10413866 7061572 14183820 38191388 28102751 30000981

Objects 34443 30199 35359 57053 60323 52429

Clients 253484 440151 656449 1948609 1831027 1938437

% Domaindiscovered
 58.587 - 76.227 78.967 78.344 -

Domains 41025 - 75569 117615 396528 -

% GET 99.818 99.050 99.065 99.065 99.008 99.059

% POST 0.088 0.448 0.464 0.474 0.512 0.475

% HEAD 0.082 0.406 0.392 0.327 0.350 0.336

% Othermethods 0.012 0.096 0.079 0.134 0.130 0.130

% status=200 58.084 55.913 57.104 56.195 55.088 54.744

% status=302 4.554 15.017 15.267 17.647 16.047 18.443

% status=304 36.946 27.529 26.231 23.812 26.517 24.501

% status=400 0.010 0.023 0.025 0.031 0.029 0.026

% status=403 0.003 0.024 0.018 0.013 0.015 0.018

% status=404 0.327 1.347 1.241 1.738 1.654 1.661

% status=500 0.012 0.089 0.070 0.131 0.125 0.126

% Otherstatus 0.064 0.058 0.044 0.433 0.525 0.481

Table1: Overall tracestatistics
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3.3 Content Creationand Modification Logs

Theback-endof theFooBarsiteusestheMicrosoft Content

ReplicationSystem(CRS) [17] to replicatecontentfrom a

stagingserver to eachof the 40 server nodes.Eachreplica-

tion eventis logged,specifyingthetimeof replicationandthe

file beingreplicatedtogetherwith its size. However, all that

a CRSlog entry saysis that a file was replicated,so by it-

self it doesnotenableusto determinewhethera new file was

createdor anexistingonewasupdated.We disambiguatebe-

tweenfile creationandmodificationby using several days’

worth of CRSlogs to prime our list of files that alreadyex-

ist, andthereafter(oncethespike in thenumberof file ”cre-

ation” eventshassubsided)treatingCRSreplicationevents

for files not seenbeforeasfile creations� . TheCRSsystem

did not log file deletions,although,in general,it couldhave.

The CRSlogs we analyzedcorrespondedto the 4-weekpe-

riod from 10/1/99through10/28/99.

3.4 Content Logs

For asmallfractionof thecontenthostedby FooBar, wewere

ableto obtaina log of HTML contentitself, i.e., successive

versionsof thefiles asandwhenthey weremodified.A new

versionof thefile wasloggedon thehourif thefile hadbeen

modified(at leastonce)in thepasthour. Thesubsetof files

loggedin thismannerwasdeterminedby theserversiteoper-

ator � . Thecontentlog, althoughlimited in scope,enablesus

to getsomeinsightinto theevolutionof files asthey undergo

modification.

3.5 Proxy Logs

In someof our analyses(Section5.2), we comparechar-

acteristicsof the FooBar server accesslog with that of a

busy cachingproxy. We obtainedlogs from a proxy cache

thatservesa largecampuspopulationwith over 50000client
As a validationof this heuristic,we confirmedthat the numberof file

creationeventsbeyond the priming perioddoesnot diminish with time, as

wouldhave happenedhadthefile creationeventsbeen”bogus”.�
Oneof the reasonsthey generatedthe contentlog was to feed it into

varioussearchenginesfor re-indexing thecorrespondingpages.

hosts.Thelogsweregatheredovera2-dayperiod— 10/6/99

and10/7/99.

4 Server Content Dynamics

In this section,we analyzethedynamicsof file creationand

modification.

4.1 File Creationand Modification Processes

We studiedthe dynamicsof file creationand modification

using information derived from the CRS logs. Figure 1(a)

shows the numberof file creationand modificationevents

(computedhourly) over a one-weekperiod(midnightSatur-

day, 10/9/99throughmidnight Friday, 10/15/99local time).

Not surprisinglythereis a cleardiurnalcycle in thefile cre-

ation andmodificationprocess.Thereis a troughat night-

time, andseveral peaksduring the daytime. We believe the

reasonfor thesepeaksis thatevenif theactualcontentgener-

ation/modificationprocessis spreadout uniformly, the CRS

replicationprocessis only scheduledto runfrom timeto time

(i.e., it replicatesa bunchof files at a time ratherthanindi-

vidualfiles; theonly exceptionis a ”hot” file thatneedsto be

updatedimmediately).Thetime of replicationis whatreally

mattersbecauseonly beyondit doesthenew contentbecome

availableto clients.

A weekly cycle is alsoevident from Figure1(a). There

tend to be fewer eventson the weekend(the first two days

shown in thefigure)thanduringtheweek.

In Table2, we tabulatea moredetailedbreakdown of the

event counts. We note therearenearly four timesasmany

file modificationeventsascreationeventsduring the course

of theweek.A closerexaminationof themodificationevents

revealsthatthey tendto beconcentratedonasmallnumberof

files. On average,therewerearound10 modificationevents

perfile (onlyconsideringfilesthatweremodifiedatleastonce

duringtheweek).

The large numbersof creationand modificationevents

have broad implications. The creationof new files poses
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Figure1: (a)An hourlycountof file creationandmodificationeventsovera one-weekperiod(SaturdaythroughFriday). (b)

CDFof thetime interval betweensuccessivemodificationsof a file (conditionedon thefile beingmodified).

a challengeto latency/bandwidthsaving schemessuch as

prefetching [22] [10] or server-initiated”push” [24]. These

schemesdependonthepasthistoryof accessesto thefile. But

for anewly createdfile, thereexistsnosuchhistory. Thelarge

numberof modificationeventssuggeststhatit maybeworth-

while to deploy efficientprotocolmechanismsfor thevalida-

tion/invalidationof filescachedatproxiesand/orclients(e.g.,

citeCKR98[23]).

Table2 alsorevealsthat around1% of the modification

eventscorrespondedto GIF/JPEGimagefiles. Intuitively,

we would not expectimagesto getmodifiedvery much; in-

steadwewouldexpectnew imagestobeassignednew names.

On closerexamination,we discoveredthat the imagesbeing

modified were almostexclusively maps,primarily weather

mapsbut alsomapsof otherkinds (e.g.,a weekly ”health”

mapindicatingthe currentstatusof diseaseoutbreakin the

country).

4.2 Distribution of Modification Inter vals

Next, we turn to Figure 1(b), which shows the cumulative

distributionfunction(CDF)of thetimedurationbetweentwo

successive modifications(i.e., themodificationinterval) of a

file. (Note that we only consideredfiles that weremodified

duringthe4-weekperiodof ourCRSlogs.In otherwords,the

CDF is conditionedon the file beingmodifiedduring the 4-

weekperiod.)TheCDF exhibits two distinctknees.Thefirst

is aroundthe 5% level andoccursat a modificationinterval

of around3000seconds(about1 hour).Thesecondis around

the95%level andoccursata modificationinterval of around

80000seconds(approximately1 day). Both of theseobser-

vationsarein agreementwith our intuition. By default, the

CRS replicationprocessis scheduledto run approximately

onceanhour. More frequentupdateshappenonly whenthere

are ”hot” news events,which is typically an infrequentoc-

currence.Hencethereareonly a small numberof instances

of modificationhappeningin within anhourof theprevious

one. At the otherend of the spectrum,a day seemslike a

natural”upperbound”for theupdateperiod. Of course,it is

certainlypossiblefor filestobemodifiedonlongertimescales

suchasweekly, monthly, etc. (or evenaperiodically),but this

is likely to beaninfrequentoccurrence.

4.3 Implications of Modification History

We now turn to examiningthe relationshipbetweensucces-

sive modificationintervalsof a file. Themotivationis to de-

terminewhetherthe modificationdynamicsof a file in the

pastis agoodpredictorof thefuture.Thisfindingwouldhave

significant implicationsfor Web cacheconsistency mecha-
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Figure2: (a)A scatterplot whereapoint ��������� representstwo successivemodificationintervalsfor afile, thefirst of duration� andthesecondof duration � . (b) A scatterplot of points ��������� where � is themeandurationof themodificationinterval

for afile (computedusingpasthistory),and � is thedurationof anew modificationinterval for thatfile.

nismssuchasadaptiveTTL [13].

Figure 2(a) shows a scatterplot of pairs of successive

modification intervals for a file. If duration of the previ-

ous modification interval were indicative of the next one,

we would have expectedthe points to be clusteredalong a

positively-slopedline. It is clearfrom the figure that this is

not thecase.Thereareseveral instanceswherea shortmod-

ification interval for a file is followedimmediatelyby a long

one,andviceversa.Indeed,thecoefficientof correlation[14]

is only mildly positive— 0.23.

We thenexploredthepossibilityof usinga longerhistory

than just the durationof the previous modificationinterval.

Wedividedthe4-weekdurationof ourCRSlogsinto roughly

two halves.Usingthedatafrom thefirst half, wedetermined

the meanmodificationinterval for eachfile. In the end,we

only retainedthe set of files for which the meanwas com-

putedover 10 or more samples(i.e., therewas ”sufficient”

modificationhistory).Thenin usingthesecondhalf of thelog

data,wedeterminedthelengthof thefirst modificationinter-

val for eachof thefiles in theset.Thequestionwewantedto

answerwashow gooda predictorthemeanwasof thedura-

tion of thenew modificationinterval. Figure2(b) shows the

scatterplot of thesetwo quantities.We observe that thereis

afairly strongpositivecorrelationbetweenthemeanduration

of themodificationinterval from thepastandthedurationof

the new interval. The valueof the coefficient of correlation

— 0.79— confirmsthis.

Thus,we believe it may beappropriateto usethe modi-

fication interval from thepastasa predictorof the futureso

longasasufficientnumberof samplesfrom thepastareaver-

aged.

4.4 Extent of Changeupon File Modification

We now examinemorecloselyjust how mucha file changes

when it is modified. First, we computehow much the file

sizechangeswhenit is modified.Figure3(a)showstheCDF

for the changein file size(unsignedmagnitude)in termsof

bytes.Weobservethatthereis little changein file sizedespite
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the modification. Over 70% of the modificationscauseless

thana 1% changein the file size (due to spacelimitations,

wehavenotshown thegraphof file sizechangeexpressedas

a percentage).While it is certainlypossiblefor the file size

to remainvirtually unchangedbut for the contentto change

significantly, intuitively it seemstoocoincidentalto belikely.

Theanalysiswepresentnext shedsmorelight on this.

We usedthe contentlogs (which, as describedin Sec-

tion 3.4,wereavailablefor a subsetof theHTML content)to

exploremorecarefully how mucha file changesuponmod-

ification. Sincewe wereexaminingjust HTML content,we

decidedto focuson the visible textual content,i.e., text that

would bedisplayedby a client browser. To this end,we ex-

tractedthevisible text by strippingout theHTML tagsfrom

eachversionof a file. We thenquantifiedhow similar two

successive versionsof a file wereusingthecosinesimilarity

metric [12]. For eachdocument,aterm(i.e.,word)frequency

vectoris constructed.Thecosinesimilarity metricis thenjust

theinner-productof thetwo vectorsdividedby theproductof

their lengths,i.e., thecosineof theanglebetweenthevectors.

The moresimilar the files are, the closerto 1 the metric is.

Thesimilarity metricis simplein that it only considersword

frequency without caringabouttheorderin which thewords

appear. To prevent”insignificant”wordssuchas”and”, ”the”,

etc.from overwhelmingthemoresignificantones,wecreated

a list of commonwordsto disregardin thesimilarity compu-

tation.

Figure 3(b) shows the CDF of the text similarity met-

ric computedover successive versionsof files. We seethat

the metric tendsto be closeto 1, which indicatesthat little

changesin termsof thevisible textual content.On closerex-

amination,we found (at least)a coupleof commonmodes

of (minor) textual change: (a) a date/timestring contained

within theTITLE HTML tagsis updatedfrom time to time,

and(b) the links to relatedpagesareupdatedwhile leaving

thebulk of thepageunchanged.

In conclusion,our analysissuggeststhat successive ver-

sionsof files are very similar, both in termsof size and in

termsof content.This impliesthat techniquessuchasdelta-

encoding[19] wouldbeveryuseful.

5 Server AccessDynamics

In thissection,wediscussthedynamicsof theclientaccesses

madeto theFooBarserversite.

5.1 Typeof Access

As shown in Table 1, over ����� requestsemploy the GET

method. Moreover, amongall the requests,the oneswith

HTTP responsestatuscode200 (actionsuccessful)account

for ����� . Around � ��� to �! �" �#� of the requestshave re-

sponsestatuscode302(movedtemporarily),andaround$&%��
to %�'�� have responsestatuscode304 (not modified). The

latter implies that the potentialbenefitof an efficient Web

objectsconsistency protocol could be large. Unlessother-

wise specified,in our analysisof the accessdynamics,we

donotdistinguishamongdifferentHTTPmethods(i.e.,GET,

HEAD, andPOST)anddifferentstatuscode.Insteadwetreat

themequallyasWebaccesses.

5.2 TheApplicability of Zipf ’sLaw to WebRe-

quests

Several prior studieshave investigatedthe application of

Zipf ’s law to web accessesand arrived at differentconclu-

sions. [5] givesa comprehensivesummaryof previouswork

on this issue.Their studiesshows thedistribution of webre-

questsfrom a fixedgroupof usersfollows a Zipf-lik e distri-

bution, (*) ��� , very well. Thevalueof � variesfrom traceto

trace,rangingfrom 0.64to 0.83.

We investigatethis issuefurtherby studyingaccesslogs

from boththeserverandtheproxy. Dueto spacelimitations,

we show the graphof documentaccessesversusdocument

rankingonly for theserver traces(Figure4).

We make thefollowing observations:+ The curves for both the server tracesand the proxy

traces(not shown) fit a straightline reasonablywell.

The straightline on the log-log scaleimplies that the
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requestfrequency is proportionalto � ) ��� . Thevalues

of � areobtainedusingleastsquarefitting, excluding

thetop 100documents(asin [5]), andalsoexcluding

theflat tail.+ Thevalueof � variesfrom traceto trace.Thevaluesof� in theserver tracesareconsistentlyandsignificantly

higherthanthosein theproxy traces.

More specifically, Thevaluesof � in theserver traces

aremostlyaround1.4 - 1.6, with lowestbeing1.3970

andhighestbeing1.816. In comparison,the � in the

proxy tracesaremuch lower, around1.0 for both the

dayswehadproxy logsfor.

We think that it is not coincidentalthat the tracescol-

lectedat a popularweb site hashigher � than proxy

trace,but is likely to bea commonphenomenon.This

can be explainedas follows: A numberof previous

studies [5, 26] show popularwebpagesarespreadal-

mostevenly acrosshot webservers. This implies that

theproxy aggragatingrequeststo a numberof popular

serversshouldhave a slower decayin popularitythan

any individualserver. Thiscanbeillustratedby thefol-

lowing simplifiedexample:

Supposea proxy accesses- web servers. The web

server
�

has .0/ documents,with decaycoefficient � / .
In addition,it receives 12/ accessesto its mostpopular

webpage.Thenaccordingto theZipf-lik edistribution,

wehave 3�4!5 ��16/7� �8� /:9 3;4!5 ��.0/;�
Thedecaycoefficientat theproxy canbecomputedas

follows: �0<>=@?BADCE� 3;4!5 ��FHG����;1 � �B1 
 � "I"I" �J12K>�B�3;4!5 ��. �ML . 
NL "I"O" L . K �
For a simplecasewhen 1 � � 1 
 �P"I"O"Q� 1 K � 1 ,. � � . 
 �R"I"O":� . K � . , and � � �S� 
 �R"O"I":�T� K �� K�U =JV U = , wehave

�0<>=@?BADCE� 3�4!5 ��12�3�4!5 �;-N9W.�� �8� K�U =JV U = 9
3�4!5 ��.��3;4!5 �7-W9W.��YX � K�U =JV U =

The exact differencebetween� <Z=J?BA!C and � K�U =BV U = de-

pendson - (the total numberof popularservers). Of

course,thingsaremuchmorecomplicatedin practice:

(i) the Web accessesdoesnot strictly follow Zipf like

distributionespeciallyfor themostpopulardocuments;

(ii) Webserversareveryheterogeneous.It is veryhard

to compute� exactly. On the otherhand,as long as

it is true that thepopularwebpagesarespreadalmost

evenly acrosshot web servers, the � at the proxy is

lower thanateachindividualpopularwebserver.+ Thevalueof � is higheston 12/17/98,whentherewas

an unusualglobal event interestingto peopleall over

theworld. This is whatwewouldexpect.Sinceduring

suchperiodusersall over the world are interestedin

a small set of pagesrelatedto the event, makinghot

documentsextremely hot and cold documentscolder

thanusual,thedifferencein thehitscountof hotpages

andcold pagesarethusenlarged,which contributesto

a larger � value.

To furtherstudytheimpactof different � values,wealso

plot thecumulative distribution of requeststo populardocu-

ments. Figure5 shows the cumulative probabilityof access

for thetop [�� of documentsfor theserver traceson12/17/98

(thehighest� ) andthe proxy traceson 10/6/99. As we can

see,the top $#� documentsaccountfor �#\�� accessesin the

server traces.In contrast,it takes %�]�� to %���� documentsto

accountfor �#\�� accessesin theproxy traces.So,as [5] dis-

covered,10/90rule (i.e. ��\�� accessesgoto � \�� documents)

doesnot apply for thewebaccessesseenat theproxies. On

the otherhand,accordingto our server traces,the web ac-

cessesobservedat the server sidearesometimesevenmore

concentratedthanthe10/90rule.

In summary, we observe the accesspatternsat both the

serverandtheproxyexhibit Zipf-lik edistribution. Thevalue

of � is muchhigherfor theserveraccessesthanfor theproxy.

In somecases,the top $#� documentsaccountfor ��\�� ac-

cesses.In contrast,the accessesseenat the proxy tracesis

moreheterogeneous,which takesup to ^�\�� to accountfor��\�� accesses.
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5.3 AccessPattern at Lower-level Proxies vs.

Higher-level Proxies

In theprevioussection,wehaveshowntheaccesspatternseen

at the Web server hasZipf like distribution, with ��_`� for

server tracesand �bac� for proxy traces.Giventhe increas-

ing widespreaddeploymentof Webcachingbothat theedges

andin thecoreof network, aninterestingquestionariseshow

suchdeploymentaffectsthe web accesspattern. In particu-

lar, we want to answerthefollowing questions:(i) giventhe

accesspatternof thelower level proxies(or end-users),what

is the accesspatternat the higher- level proxies(HP) look

like? (ii) If the accesspatternat the lower level proxiesex-

hibitsaZipf-lik edistribution,will theaccesspatternstill have

aZipf-lik edistributionatthehigherlevel? If so,whatwill the

valueof � at the higherlevel proxiesbe? Answersto these

questionsdependon how lower-level proxiesareassignedto

higher-level proxies(By assigninga lower-level proxy 1 to

a higher-level proxy d , we meanwhenever thereis a cache

missat thelower-levelproxy 1 , therequestwill beforwarded

to thehigher-level proxy d for service.)To make our analy-

sissimple,hereweconsiderrandomassignmentsfrom lower-

level proxiesto higher-level proxies.

5.3.1 Analysis

We formulatetheproblemasfollows:

Supposewithout hierarchicalcaching,a pagereceives F
numberof accesses.Whenwe employ a two-level caching

hierarchywith � numberof higher level proxies,shown in

Figure6, whatis theaveragenumberof higherlevel proxies,e , thataccessthepage?

To simplify our analysis,we ignoredocumentinvalida-

tion, and also assumeinfinite cachesize at all the proxies

(both higher-level andlower-level proxies). Thereforemul-

tiple requestsfor a singledocumentwill beforwardedup to-

wardstherootonly onceby ahigher-level proxycache(basi-

cally, uponreceiptof therequestfor thetime from any of its

children).

Basedontheseassumptions,wecanderive

ef� �Y9WF� L Fhg �
Thedetailedanalysisis shown in AppendixA.

Using the above result,we know if the
�
th popularpage

has (E) ��� accessesfrom the lower level proxies,thenit will

have (*)�� ��� L i A � accessesfrom thehigherlevel proxies(ig-

noringthe g � in thedenominatorsince� L F is likely to be

muchlarger).When
i A is muchsmallerthan

���
, equivalently

when
�

is largeenough,thentheaccesspatternat thehigher

level proxieslooks very similar to the accesspatternat the

11
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Figure6: Two-level cachinghierarchy

lower level. So the � valuesin both casesarecloseto each

otherfor large
�
.

5.3.2 Validation usingTraces

We use our server traces to validate the above analysis.

Specifically, we considerthe requestsrecordedin the server

tracesarefrom thelower-level proxies.(Notethatin thecon-

text of theserver traces,the”lower-level proxies”arejust the

client hostsidentifiedin the traces.Someof thesemayhave

beenrealproxieswhile theremainingwerejustend-hosts;we

werenot in a positionto tell onefrom theother.) We thenin-

sertanumberof higher-level proxiesbetweenthelower-level

proxiesandtheserver, wherelower-levelproxiesareassigned

randomlyto somehigher-level proxy. Again,asin ouranaly-

sis,weignorethepageinvalidation,andassumeinfinite cache

sizeatall theproxies(bothhigher-level andlower-level).

The graphin the left of Figure7 shows the accesspat-

ternseenat theWebserverwhen2-level hierarchicalcaching

is employed. As we cansee,thecurveswith differentnum-

bersof higher-level proxiesonly differ in theinitial portions.

The fewer higher-level proxies,the longerthe flat region is,

wheretheflat region occurswhenalmostall thehigher-level

proxiesaccessthedocument.This is intuitive,becausegiven

randomassignmentfrom lower-level proxiesto higher-level

proxies,as long asthe popularityof a documentis above a

certainthreshold,almosteveryhigher-levelproxywill request

it. Furthermore,thethresholddependson thetotalnumberof

higher- levelproxies.Thefewerhigher-levelproxieswehave,

the smallerthe thresholdis. As the documents’popularity

decreases,the differencein the accesspatternwith different

numberof higher-level proxiesdiminishes. As predictedin

our previousanalysis,thedecaycoefficients � with different

numberof higher-level proxiesareverycloseto eachother.

To further explore the accessespatternat higher-level

proxies,wealsoconsideramorenaturalmappingfrom lower-

level proxiesto higher-level proxieswhereinall lower-level

proxies(i.e., clients)within a domainsharea domain-wide

higher-level proxy. In particular, we studythenumberof re-

questingdomainsfor eachwebobject. As shown in right of

Figure7, thecurve on the log-log scalematcheswell with a

straightline, which impliesa Zipf-lik edistribution. However

thevalueof � becomesa little lower: 1.5006,asopposedto

1.6511whenconsideringthenumberof references.

To summarize,we examine the accesspattern at the

higher-level proxiesthroughbothmathematicalanalysisand

tracesstudies.Ourresultsshow thattheZipf-lik edistribution

alsoholdsat the higher-level proxies,andthe valueof � is

likely to bea little lower thanat thelower-level proxies.

5.4 Temporal Stability

In this section,we presentour analysisof temporalstability

of Webaccesses.In particular, weareinterestedin answering

thefollowing key questions:+ How muchdoesthewebpagesrankingvarywith time?

That is, do popularwebpageson onedayremainpop-

ularon thefollowing days?+ For eachwebpage,how muchdoesthesetof domains

interestedin it vary from onedayto thenext?

Answersto thesequestionsareverycritical for designing

sensibleprefetchingor server-initiatedpushalgorithms.Any
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Figure7: Frequncy of documentaccessesversusdocumentrankingwhentwo-level cachinghierarchyis employed

prefetchingalgorithmsbasedonpasthistoryrely onsomede-

greeof stability (bothin rankingandin theinterestgroup(ie.

the setof domainsrequestingthe pages)).Our traceanaly-

sishelpsto shedlight on how well suchreactive prefetching

algorithmscanperformin practice.

5.4.1 Stability of WebPagesRanking

We studythe stability of web pagesrankingasfollows: We

usethewebaccesslogsof severalconsecutivedays.For each

day, we pick . mostpopulardocuments.We thencompare

theoverlapin themostpopularpagesselectedfrom oneday

to thenext. Our resultsareillustratedin Figure8. We make

the following observations:First, theoverlapis mostlyover]#\�� , which essentiallymeansmany documentsare hot on

both days. Second,for the several consecutive daysperiod,

theoverlapis mostly thesame.For example,theamountof

overlapbetween8/1/99 vs 8/2/99 is quite closeto that be-

tween8/1/99 vs 8/5/99. This implies the web accessesin

thesameshorttime-frame(within 1 weekperiod)areequally

goodfor predictingwhichWebpageswill bemostpopularin

thenearfuture.Thatis, lastweektraceis almostasusefulas

yesterdaytracefor predictingwebpagesranking.Thereason

for this is thatmany of theverypopularpagesareindex pages

(suchasthedefault front pagefor theFooBarsite) thatcon-

tainpointersto otherpages.Third, therankingstability tends

to decreaseasthe numberof documentsselectedincreases.

This indicatesthatvery hot documentsaremorelikely to re-

main hot thanmoderatehot documents.Similar resultsare

observedin otherperiodsof traces.

We alsostudythe rankingstability in a larger time win-

dow. Namely, we considertheoverlapbetweenthetwo days

that are more widely separated.Our resultsare shown in

Figure9. As we would expect,the overlapdecreasesasthe

time interval getslonger. For example,the overlapbetween

12/17/98and10/18/99,whichare10monthsapart,is consid-

erablysmaller, mostlybelow $&\�� . On theotherhand,even

for thetwo monthsseparation(8/1/99and10/18/99),though

the overlapis lower thanoneday separation,it is still quite

significant.For the top 100documents,theoverlapis above]�\�� . Howevercomparedto theonedayseparation,theover-

lap in thetwo monthseperationdecreasesmuchfasterasthe

numberof documentsselectedincreases.

Wefurtherexploretheissueby breakingdowntheoverlap

anddisjointregionsinto four groups(assumingDay1 is prior

to Day2):+ Common& unmodified:documentsthatarepopularon

bothdaysandhavenotbeenmodifiedsinceDay1+ Common& modified: documentsthat arepopularon

bothdays,andhavebeenmodifiedsinceDay1+ Different & old: documentsthat that are popularon
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onlyoneof thedays,butwerein existenceonbothdays+ Different & new: documentsthat were createdafter

Day1, andarepopularonly onDay2

Our resultsareshown in Figure10. We observethatmany of

thepopularfiles in commonbetweenthetwo daysareremain

unmodifiedthroughbothdays.Moreover thedisjoint region

in thesetof popularfilesontwo daysaremostlynotdueto the

creationof new files,sincemostof thedisjointregionconsists

of theaccessesto Web pagesthatwerein existenceon both

days.Evenif thenumberof modifiedfiles is small,designing

agoodinvalidationtechniquesfor webdocumentsis still very

desirablebecauseof the frequentupdatesmadeto the small

setof files (asobservedin Section4.1).

To summarize,in thissection,westudytherankingstabil-

ity of webpages,andfind thestability is reasonablyhigh on

thescaleof days.Therankingtendsto changeonly gradually

over time. We alsoexaminewhatcontributesto the overlap

anddisjoint regionsof populardocumentson two days.Our

resultsshow thedisjoint regionmostlyconsistsof old pages,

notnewly createdpages.In theoverlapregion,thenumberof

modifieddocumentsexceedsthenumberof unmodifieddoc-

uments,althoughbothcountsareof thesameorderof magni-

tude.

5.4.2 Stability of Inter estGroup

We now considerhow the interestgroupfor eachweb page

changesover time. Our approachis as follows: For every

webpagethatreceivesover100accesseson theearlierof the

two daysunderour study, we find the setof domainswhich

accessthepageoneachday, andcomparetheoverlapregion.

As mentionedin Section3.2,we ignorerequestsfrom clients

for which thereverseDNSlookupfails. Sincethepercentage

of failure (Table1) is reasonablylow, it shouldnot make a

significantdifferencein our results.

Figure11showsthepercentageof overlapregionfor sev-

eralpairsof dayswestudied.Aswecansee,theoverlapis not

very large. Only a few documentsthathave over half of the

domainsmakingrequestson both days. We observe similar

resultsduring otherperiodsof tracesaswell. Oneexplana-

tion for thismaybethattheinterestgroupsfor thedocuments

do not stabilizewithin a day, possiblybecauseour definition

of domainsis too fine-grained.Anotherexplanationcouldbe

thatemploying proxy cachecanreducethe likelihoodof re-

questingthewebpagesmultiple times. As partof our future

work, we will further investigatethis issue,andfind out the

reasonthat accountsfor the large variationin the setof do-

mainsthatrequestthewebpage.

5.5 Spatial Locality

In this section,we presentour analysisof web traceswith

respectto spatial locality, i.e., the extent to which there

is sharing of requests(i.e., accessesto the sameobject)

within a domain(intra-domain/local), acrossdomains(inter-

domain/global), or both. Our analysisis similar in flavor to

that in [26], althoughthey analyzedproxy traceswhile we

analyzeserver logs.

[26] examinesthesharingof webdocumentsfrom anor-

ganizationalpoint of view. Their analysisis basedon a one-

weekproxy traceat University of Washington(UW), USA

taken in mid-May 1999. Their resultsshow that organiza-

tion membershipappearsto besignificant.However thevast

majority of the requestsmadeareto objectsthat areshared

amongmultipleorganizations.

We exploretheorganization-basedsharingusingtheweb

server tracesasbefore. The server tracesdiffer from proxy

tracesin the following ways: (i) The clients in the server

tracesaremoreheterogeneous.They are from all over the

world. (ii) Requestsseenin theserver tracesarefor theob-

jectsat that server only, while in theproxy tracesrecordre-

questsmadeto differentservers.

Figure12 shows the distribution of clients,objects,and

requestsin differentdomains.As we cansee,thereis large

variation in the domain size: the largestdomain has over

10,000clientsmakingrequeststo thewebserver, whichgen-

erateover100,000requestsfor around10,000objects.In con-

trast,somedomainshaveonly oneclientmakingonly onere-

questto theserver. In thecumulativedistributionplot, wesee
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in the12/17/98trace,the top 10 domainsaccountfor ' "  %��
requests,the top 100 domainsaccountfor �D �" ]�%�� requests,

andthe top 1000domainsaccountfor ^�% " ]�%�� requests.In

the 10/17/99trace,the top 10 domainsgenerate����"  ]�� re-

quests;the top 100 domainsgenerate$�% " \�\�� requests,and

thetop1000domainsgeneratê#^ " ^#%�� requests.

Figure13showstheextentintra-domain(local)andinter-

domain(global)sharing.For eachdomain(onthex-axis),the

graphsshow thepercentageof all requests,andseparatelythe

percentageof all objectsrequested,by clientsin thatdomain,

that wereshared.The curve marked ”first sharedrequests”

countsjust the first requestto a sharedobjectasa percent-

ageof all requests.As wecansee,theinter-domainsharingis

significantlyhigherthanintra-domain,whichmeansmostob-

jectsareglobally popular. Moreover comparedto theproxy

study in [26], the sharingin the server traceshereis con-

sistentlyhigher. We believe this is not surprising.Sincethe

proxy aggregatesrequeststo different servers, the requests

in the proxy tracesaremoreheterogeneous,which possibly

leadsto a lowerdegreeof sharing.

As in [26], we also categorize the sharingobjectsand

requestsbasedon the way in which they areshared:shared

globally only, sharedlocally only, sharedboth globally and

locally, andnotshared.Table3 shows themeanandvariance

of thepercentageof objectsandrequests(computedover all

the domains)that fall into eachcategory. We observe that

most objectsare sharedeither globally only or both glob-

ally and locally. Thereareno objectsthat are only shared

locally. This is not surprising,becauseit is very unlikely to

haveobjectsrepeatedlyaccessedby asingledomainbut have

noaccessesfrom any otherdomain(i.e., locally sharedonly).

Thepercentageof objectsthatarenotsharedis alsovery low.

Theseareobjectsthatreceivedonlyoneaccessin all andthere

areusuallynotverymany of them.

Figure14 plots the numberof objectsthat were shared

by exactly � organizations.As it is shown, a large number

of objects(over10,000)areaccessedby a singledomain.On

theotherhand,thereis asignificantportionof objectsthatare

accessedby many domains. Someobjectsreceive requests

from over10,000domains.

Finally, we computethe degreeof sharing(both intra-

domain and inter-domain) when clients are assignedran-

domly to domainsrather than basedon their DNS names.

(Thenumberof clientsassignedto eachdomainin this man-

neris thesameasbefore.)We comparethedegreeof sharing

with randomassignmentwith thatwhenclientsareassigned

to their true domains. The goal is to determineif domain

membershipis significant.

The top two graphsin Figure15 show the intra-domain

and inter-domain sharingon 12/17/98,and the lower two

graphsshow theresultsfor 10/7/99. In bothcases,the inter-

domainsharingis with randomassignmentis comparableto

that with the true assignment,aswe would expect. In con-

trast,intra-domainsharingwith trueassignmentis noticeably

higherthanwith randomassignmentfor 10/7/99.This is also

observed in the tracesof many otherperiods. On the other

hand,the intra-domainsharingon 12/17/98(the day of Op-

erationDesertFox) is comparablewith bothtrueandrandom

assignment.From theseresults,we concludethe following.

In mostcasesdomainmembershipis significant,i.e., clients

belongingto the samedomainare more likely to sharere-

queststhanclientspickedat random.However, whenthereis

a”hot” event,theglobalinterestcanbecomesodominantthat

even clientspicked at randomtend to sharemany requests,

thusdiminishingthesignificanceof domainmembership.

5.6 Other Results

5.6.1 Corr elation betweendocumentageand popularity

We examinedthecorrelationbetweendocumentage(i.e., the

time elapsesinceit’s creation)and popularity. Our results

areshown in Figure16,wherex-axisdenotesthetimeelapse

sincethedocumentcreation,andy-axisdenotesthedocument

ID sortedin increasingorderby thetotalnumberof accesses.

It is evident from the graphsthat mostdocumentsreceive a

lot more accessessoonafter their creationthan afterwards.

Ontheotherhand,thereareanumberof documents(theones

denotedwith a large documentID) that remainhot for the
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Figure13: Intra-domainandinter-domainsharing

Globallysharedonly Globallyandlocally shared Locally sharedonly Not shared

mean variance mean variance mean variance mean variance

Objects 0.6774 0.0846 0.3202 0.0844 0 0 0.0023 0.0009

Requests 0.4965 0.1362 0.5018 0.1364 0 0 0.0017 0.0008

Table3: Breakdown of objectsandrequestsaccordingto theway in which they aresharedfor 10/7/99traces
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ments
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Figure16: WebAccessesTimeSeries

entirefive-dayperiodunderstudy.

5.6.2 Classify accesses according to

modification/creation

Previous research [25] shows that up to ^#\�� of accesses

could to the objectsthat have not beenaccessedbeforeby

clientsin a domain. In a cachingcontext, theseleadto first-

time (i.e., compulsory)misses.We arevery interestedin un-

derstandingwhat composethesefirst-time accesses/misses.

Usingbothaccesslogsandmodificationlogs,wehave found

that mostfirst-time accesses(which we determineon a per-

domainbasis)are to old objectsthat were createdat least

a day ago. This is shown in Table4. We believe suchac-

cessesarevery hardto predict. This is becauseobjectsthat

haven’t beenaccessedby a certaindomainseveraldaysfol-

lowing its creationare consideredunpopular. Accessesto

unpopulardocumentsare relatively hard to predict. More-

over becausethesedocumentsareunpopular, the benefitof

prefetchingthemin advanceis notcost-effective.

Wealsostudytherepeatedaccessesto theobjectsaccord-

ing to its modificationhistory. More specifically, we divide

the accessesinto two groups: accessesto objectsthat are

modifiedon thedayof access,andthosethatnot. As shown

in Table4, over half the repeatedaccessesareto the modi-

fied objects.This impliesthepotentialbenefitof goodobject

invalidationalgorithmsis large.

6 Conclusions

In this paper, we have studiedthedynamicsof a largecom-

mercialWebsite,whichis consistentlyrankedamongthebus-

iest in theWeb. We have analyzedthedynamicsof both the

contentandtheclientaccessesat thissite.

6.1 Summary of KeyResults

Ourmainfindingsare:

1. The server contenttendsto be highly dynamicwith

around6000filescreatedand24000filesmodifiedover

aone-weekperiod.For thesubsetof files thataremod-

ified, the time gap betweensuccessive modifications

tendsto lie betweenanhourand24hours(i.e.,a day).

2. Pastmodificationbehavior of a file, if averagedover a

sufficient numberof samples,tendsto bea reasonably

goodpredictorof futuremodificationbehavior.

3. Most (HTML) file modificationstendto beminorboth

in termsof thechangein thefile sizeandin thevisible

textual content.

4. File popularity tendsto be distributed accordingto a

Zipf-lik e distribution. However, theparameter� tends
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Date First& New First& Old Repeated& Mod Repeated& Unmod

10/8/99 72362 240119 1317246 1014821

10/9/99 14652 96167 697338 576113

10/10/99 15156 99248 758626 610435

10/11/99 47619 206743 1163424 919085

Table4: Breakdown thewebaccessesaccordingto themodification/creation

to be in the range1.4–1.6,which is muchlarger than

hasbeenreportedin the literature(basedon the anal-

ysisof proxy logs). The large valueof � implies, for

instance,thatjust thetop2%of documentsaccountfor

90%of theaccesses.

5. The popularity of files tends to be stable over a

timescaleof days. Of the top 100documentsin terms

of popularityon a givenday, 60–100%tendto remain

amongthe top 100 for up to 5 days. However, theset

of domainsfrom which accessesto the populardocu-

mentsaremadetendsto changesignificantlyfrom day

to day. For example,thereis only a 40%overlapwhen

consideringthetop100documents.Thismaybeacon-

sequenceof our (fine-grained)definitionof a domain,

andwearecurrentlyexploring this further.

6. Organizational(i.e., domain) membershipof clients

tends to have a significant (positive) impact on the

degree of local sharing, unlessthere is a globally-

interestingevent(suchasOperationDesertFox in De-

cember1998) that cuts acrossorganizationalbound-

aries.

7. In the caseof mostdocuments,their popularitytends

to drop off with age. However, somedocumentstend

to maintaintheir popularityfor a significantlengthof

time.

8. First-timeaccesses(i.e., thefirst accessto a document

by any client in a domain)generallytendto beto doc-

umentsthatareat leasta dayor moreold andareun-

popular.

6.2 Broad Implications

Webelieveourfindingshavebroadimplicationsfor thefuture

evolutionof theWeb:

1. Thefrequency of file modificationunderscorestheim-

portanceof having efficient cacheconsistency mecha-

nisms(e.g., [6] [23]).

2. File creationalsotendsto be a frequentevent. When

a popularnews story is updated,it may be assigneda

new file name.Theabsenceof pastaccesshistory for

this new file maymake the taskof prefetchingor pre-

emptively pushingoutsuchcontentchallenging.

3. Sincethedegreeto whichfilesaremodifiedtendsto be

small, techniquessuchasdeltaencoding [19] appear

promising.

4. Thelargevalueof � in theZipf-lik edistributionof file

popularitytogetherwith thestabilityof thepopularset

of filesovertimesuggeststhatcachingjustasmallfrac-

tion of the files at proxiesmay help eliminatea large

fractionof therequests.

5. Sincefirst-time accessestendto be to old andunpop-

ular documents,it appearsthat it will be hard to cut

down on the (significantnumberof) first-time misses

experiencedby Web cachesusing techniquessuchas

prefetching.

7 Ongoingand Future Work

Wearecurrentlyanalyzingalargercontentlog set,investigat-

ing betterheuristicsfor identifyingclientdomains,andexam-

ining why thestability in interestgroupis low. For thelonger

term,wewould like to studydatasetsfrom otherlargeserver
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sitesto confirm or refutethe findingsreportedin this paper.

We alsoplan to developprefetchingand/orpreemptive push

algorithmsthatareoptimizedbasedon the insightswe have

gainedfrom thispaper.
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A Appendix

Given thereare F lower-level proxiesrequestingtheobject,

and � higher-level proxies, derive the averagenumberof

higher-level proxiesthataccessthepage.

Let .on bethenumberof differentwaysapageis accessed

by p Higher-level proxies,and e be the averagenumberof

accessesthepagereceivesfromthehigherlevelproxies.Then

wehave

eq�cr AnBs � p*9W.onr AnBs � . n
Now let’s compute. n . As we know, . n denotesthetotal

numberof ways of assigningF accessesfrom lower level

proxiesto p (outof F ) higherlevel proxies.Thismeans

. n �
tu �p

vw
9Nx

wherex is thenumberof waysof putting F ballsinto p bins.

By definition, x is thetotal numberof waysof assigningG�/
suchthat G �yL G 
2L "I"O" L G�n � F , where G�/ _ \ . This is

equivalentto the numberof waysof assigning-D/ suchthat- � � G � , - 
 � G �6L G 
 , ... , -zn � G �2L G 
*L "I"I" L G�n �F . Since G�/ _ \ , -!/ is an increasingserie. Thereforex �tu Fhg �p{g �
vw

. Sowehave

. n �
tu � p

vw
9
tu Fhg �p|g �

vw

So

eq� r AnBs � p*9
tu �p

vw
9
tu F`g �p|g �

vw

r AnBs �
tu � p

vw
9
tu Fhg �p|g �

vw

Notethat A}
nBs �

tu �p
vw
9
tu Fcg �p{g �

vw

� A}
nBs �

tu ��~g�p
vw
9
tu F`g �p|g �

vw

� tu � L Fhg ��~g �
vw

A}
nBs � p*9

tu � p
vw
9
tu Fhg �p|g �

vw

� �Y9 A}
nBs �

tu �~g �p{g �
vw
9
tu Fcg �p{g �

vw

� �Y9 A}
nBs �

tu �~g ��~g�p
vw
9
tu Fcg �p{g �

vw

� �Y9
tu � L Fhg�$�~g �

vw

With simplealgebraicmanipulations,weimmediatelyget

ef� �Y9WF� L Fhg �
23


