The ContentandAccessDynamicsof a BusyWeb Sener

Abstract

In this paper we presenta detailedstudyof the dynamicsof

a busy Web sener, at presentone of the largestin the Inter-

net. We analyzethe dynamicsof boththe sener contentand
theclientaccessemadeto thesener. Theformerincludesa
characterizatioof the contentcreationandmodificationpro-
cesswhile the latter considergpagepopularity andthe tem-
poral stability and spatiallocality in client accessesSome
of our key resultsare: (a) file modification,thoughmorefre-

guentthanfile creationoftenresultsin little changen thefile

beingmodified, (b) a small setof files tendsto get modified
repeatedly(c) file popularityfollows a Zipf-lik e distribution
with a parameterx thatis muchlargerthanreportedin pre-
vious, proxy-basedstudies,and (d) thereis significanttem-
poral stability in file popularitybut not muchstability in the
domainsfrom which clientsaccesghe popularcontent. We

pointout severalbroadimplicationsof thesefindings.

1 Intr oduction

Therapidgrowth of theWorld Wide Webhasspavnedseveral
researchefforts aimed at characterizinghe Web workload
andtraffic. Sucha characterizatiofis vital in mary ways. It
enablesdentificationof existing or potentialbottlenecksand
the designandthe evaluationof new algorithmsto improve
theWeh

The Web basicallyconsistsof seners,clients,and prox-
ies. Thesenersaretypically the originatorsof contentwhile
the clients are the consumersof content. Proxies, when
presentmediatethe communicatiorbetweenra setof clients
anda subset/allof the seners. As such,eachof thesethree
componentprovidesa uniqueperspectie on thefunctioning

of the Weh However, by far the majority of Web charac-
terizationstudieshave focusedon datagatheredat a proxy
host (or by a network paclet sniffer placedat a location
wherea proxy hostmight have been). Proxy-basedtudies
are usefulfor mary purposes:the designand evaluationof

cachingand prefetchingalgorithms,the characterizatiorof

sener popularity etc. However, proxy-basedstudieshave

theirlimitationsbecaus¢hey offer only alimited perspectie

onthegoings-onat clientsandat seners,i.e., a proxy is not

in a positionto obsene all of the eventsoccurringeitherat

clients(e.g.,scrollingup anddown in a browserwindow) or

atseners(e.g.,the seners’ communicatiorwith clientsthat
donotconnectvia the proxy).

A significantdifficulty that researcher$acein doing a
sener-basedstudyis the very limited availability of sener
traces. The few pioneeringstudiesin this area [2] [3] have
hadto make do with datafrom relatively small departmental
seners, typically at universities. While they have certainly
beenvaluable the mainlimitation of thesestudiesis thatthe
bulk of Webtraffic is senedout by largecommerciakeners.
It is unclearhow well inferencesdrawvn from the studyof a
small departmentasener would scaleto the large commer
cial sitesin therealworld.

We have beenfortunateto have obtainedaccesdo de-
tailed tracesfrom a large commercialsener site, which, to
presere anorymity, we will referto simply asFooBar. Foo-
Baris alargecommerciakitein thesamecateyoryasthelikes
of CNN [7], MSNBC [21], andABCNews[1], andis consis-
tently ranked amongthe top sitesin the Web[20]. Thetrace
datawe obtainedwas of two kinds: (a) contentlogs, which
recordfile creationandmodificationevents,andalsoinclude
copiesof successie versionsof (a subsetof the) files, and



(b) accesdogs which recordclient accesseso the HTML
content(but notto theinline images).Thus,we arein aposi-
tion to study(certainaspect®f) boththebad-end(i.e., con-
tentdynamicsandthefront-end(i.e.,accesslynamicspf the
FooBarsite.

A detaileddiscussiorof theresultsappearsaterin thepa-
per, but herearesomeof ourmoreinterestingindings: (a)file
modification,althoughmorefrequentthanfile creationoften
tendsto changélittle in the file being modified, (b) a small
subsetof the files tendsto get modified repeatedly(c) file

effectivenes®of cooperatie caching.In this context, arecent
study [26] [27] reportsthat the organizationalmembership
of clientsis significantin that clientsbelongingto the same
organizationare morelikely to requesthe samedocuments
thanclientspicked at random. Our analysisof spatiallocal-
ity (Section5.5) shaws this significancecan be diminished,
for instancepy the occurrenceof a "hot” news eventthatis
popularglobally, acrossorganizationaboundaries.
Therelative popularityof Webpagesaccessetia aproxy
hasalsobeenstudiedextensiely. The almostuniversalcon-

popularity follows a Zipf-lik e distribution with a parameter sensuss thatpagepopularityfollows a Zipf-lik e distribution

« thatis muchlargerthanreportedn previous, proxy-based wherethe popularity of the ith mostpopularfile is propor

studies,and (d) thereis significanttemporalstability in file
popularitybut not muchstability in the domainsfrom which
clientsrequesthe popularcontent.

A limitation of our studyis thatit is difficult to determine
how well the resultsderivedfrom the FooBarsite generalize
to the otherlarge sitesin the Internet. Neverthelesswe be-
lieve our studyis a valuablesteptowardscharacterizinghe
workloadof large,commerciakeners.

The restof this paperis organizedasfollows. In Sec-
tion 2, we suney previous work. We presenta discussion
of the architectureof the FooBar site, our trace collection
methodologyandthe tracesthemselesin Section3. Then
in Sections4 and 5, we presenta detailedanalysisof the
contentlogs andthe accesdogs, respectiely. In Section6,
we summarizeour key resultsanddiscusshe broaderimpli-
cationsof our findings. Finally, in Section7, we touchupon
ongoingandfuturework.

2 PreviousWork

As discussedbore, muchof thework thusfar in Webwork-
load characterizatiomasfocussedon proxies, often with a
view to evaluatingthe effectivenesof proxy caching.Thehit
rate of proxy cacheshave beenfound to be quite low, often
not much higherthan50% [9] [11]. A substantiafraction
of the missesarisefrom first-timeaccessew files (i.e., com-
pulsorymisses).Proxylogshave alsobeenusedto studythe

tionalto 1/i*. Thevalueof « is typically lessthanl, which
makespopularitydistribution asseenby the proxy ratherflat
(e.g., [5] reportsthatit takes25-40%o0f pageso drav 70%
of the client accesses)Our results(Section5.2 ) show that
while the Zipf-lik e distribution holds for the FooBar sener
siteaswell, a tendsto be muchlarger, typically 1.4-1.6.

Proxylogshave alsobeenusedto studytherateof change
and age distribution of files (e.g., [8]). Thesehave been
deducedndirectly using the last-modifiedtimestampin the
HTTP responseheader which opensup the possibility of
missedupdatesin contrastwe usefile modificationlogsob-
taineddirectly from the FooBarsite back-endn our study so
the possibilityof missedupdatess diminished/eliminated.

Sener-basedstudiesare far fewer in number A few of
thesehave focusedprimarily on the network dynamicsof
busyWebseners [18] [4]. Theseareinterestingbut orthog-
onalto thefocusof this paper

A few of the sener-basedstudieshave beenalonglines
similar to this paper [2] studiedaccesdogs from a setof
Web seners,the busiestof which sav under50000accesses
in aday They shaved thatfile popularity followed Zipf's
distribution (i.e., Zipf-like with ¢ = 1). They alsodemon-
stratedthe presencef temporallocality in file accesses|3]
studiedvariousaspectof sener behaior usingdatafrom a
setof seners. They reportedthat 10% of the files accessed
accountedor 90% of the sener requestsand that 10% of
the (client) domainsaccountedor over 75%of thesenerre-



guests.However, the busiestof the senersthey studiedonly
sav atotal of around350,000accesses aday In contrast,
the FooBar sener clustersees,on average,over 25 million
accessesachdayto theits HTML contentalone(imageac-
cesseswhich arenotincludedin our traces,would increase
this numbersignificantly).

In summarywe seeour studyof the FooBarsiteascom-
plementingthe existing body of literatureon Web workload
andtraffic characterization We believe both the size of the
datasetve have analyzedandtheuseof back-endogsto char
acterizethe contentdynamicamale our studyvaluable.

3 Experimental Setup and Methodol-
ogy

In this sectionwe briefly describehe essentiahspect®f the
FooBarsenersite,anddiscusghetracedatathatwe gathered
andprocessed.

3.1 Sewer Site Ar chitecture

The FooBar sener site comprisesa cluster of over 40
sener nodes,eachrunning the Microsoft Internetinforma-
tion Sener (1IS) [17]. Thesesener nodesare groupedto-
getherinto sub-clusterscontaining approximately6 nodes
each. Load balancingis done at two levels. First, each
sub-clusteis assignedhvirtual IP (VIP) addresseandDNS
round-robincyclesthroughthe 6 VIP addressefor theentire
FooBarsite. Secondwithin eachsub-clusterthat sharesa
VIP addressthe Windows Load BalancingService(WLBS)
[17] is usedto spreadload evenly acrossthe nodes. The
main pointto take away is thatat differenttimes,a particular
client'srequestmaybesenedby ary of the40 nodes.

3.2 Sewver Accesd.ogs

Eachsener nodemaintainsa standardHTTP accesdog that
recordsseveral piecesof informationfor eachclient access:
a timestampthe client’s IP addressthe URL accessedthe
responsesize,the sener statuscode,etc. For administratve

reasonsthe sener site operatorchoseto turn off loggingfor
imageaccessesSothe logs only recordaccesseto HTML
content. While the absenceof imageaccesdogsis a lim-
itation of our dataset, we do not believe it interfereswith
our studyin ary significantway sinceour analysisof access
dynamicsfocuseson Web pages (as definedby the HTML
contentyatherthanon theindividualfiles.

Table1 summarizeshe overall statisticsof the sener ac-
cesslogs we usedin our study For our analysis,we picked
tracesfrom several different periods, eachspanninga few
consecutie days. In someperiods,we hadonly an hour’s
worth of tracesper day, while in otherswe hadtracesfrom
theentireday. Thetraceson12/17/98and12/18/98 werees-
peciallyinterestingbecausehey correspondo a”hot” news
event,namelythe launchingof Opeiation DesertFox by the
US military againstrag.

The FooBarsener site saw, on average,over 25 million
clientaccessefor its HTML contentalone(imagehits were
over and above this). Due to disk and memorylimitations,
we only usediogsfrom9 or 12 (i.e.,22.5-30%)f thesener
nodesout of the clusterof 40 whenanalyzingthe logs from
awhole day period. Sincerequestarerandomlydispatched
to the sener nodes,consideringonly a subsetof the sener
nodesds unlikely to significantlybiasor otherwiseémpactthe
resultsof our analysis.

In someof ouranalysesye clusterectlientstogethelinto
domainswhichwe definedto beall but the hostnamepartof
the clients’ DNS nameg(e.g.,the domainfor foo.barcomis
barcom).We determinedhe DNS nameof ahostvia reverse
DNS lookuponits IP addressWe hada fairly high success
rate — typically over 70% — asreportedin Table1. For
the analyseghat involved domaininformation, we ignored
clientsfor which the reverseDNS lookup failed. We realize
thatour definitionof a domainis simplistic,andarecurrently
looking at more sophisticatedilternatvesthat also consider
network topology

I Throughouthis papey datesappeaiin theformatmonth/day/year



12/17- 12/18(1998) 8/1-8/5 8/3-8/5| 9/27-10/1 | 10/7-10/11 | 10/14-10/18
Period 9AM -12AM | 10-11AM | 9AM - 12AM all all day all day
% total senerlogsused 100 100 100 30 22.50 22.50
HTTP Requests 10413866 7061572 14183820| 38191388 28102751 30000981
Objects 34443 30199 35359 57053 60323 52429
Clients 253484 440151 656449| 1948609 1831027 1938437
% Domaindiscovered? 58.587 - 76.227 78.967 78.344 -
Domains 41025 - 75569 117615 396528 -
% GET 99.818 99.050 99.065 99.065 99.008 99.059
% POST 0.088 0.448 0.464 0.474 0.512 0.475
% HEAD 0.082 0.406 0.392 0.327 0.350 0.336
% Othermethods 0.012 0.096 0.079 0.134 0.130 0.130
% status=200 58.084 55.913 57.104 56.195 55.088 54.744
% status=302 4.554 15.017 15.267 17.647 16.047 18.443
% status=304 36.946 27.529 26.231 23.812 26.517 24.501
% status=400 0.010 0.023 0.025 0.031 0.029 0.026
% status=403 0.003 0.024 0.018 0.013 0.015 0.018
% status=404 0.327 1.347 1.241 1.738 1.654 1.661
% status=500 0.012 0.089 0.070 0.131 0.125 0.126
% Otherstatus 0.064 0.058 0.044 0.433 0.525 0.481

Tablel: Overalltracestatistics




3.3 Content Creationand Modification Logs

The back-endof the FooBarsite usesthe Microsoft Content
ReplicationSystem(CRS) [17] to replicatecontentfrom a
stagingsener to eachof the 40 sener nodes. Eachreplica-
tion eventis logged specifyingthetime of replicationandthe
file beingreplicatedtogetherwith its size. However, all that
a CRSlog entry saysis that a file wasreplicated,so by it-
selfit doesnotenableusto determinewvhethera new file was
createcr anexisting onewasupdated We disambiguatée-
tweenfile creationand modificationby using several days’
worth of CRSlogsto prime our list of files that alreadyex-
ist, andthereafteffoncethe spike in the numberof file "cre-
ation” eventshassubsided}reating CRS replicationevents
for files not seenbeforeasfile creations’. The CRSsystem
did notlog file deletionsalthough,in generaljt could have.
The CRSlogs we analyzedcorrespondedo the 4-weekpe-
riod from 10/1/99through10/28/99.

3.4 ContentLogs

For asmallfractionof thecontenthostecby FooBar, wewere
ableto obtainalog of HTML contentitself, i.e., successie
versionsof thefiles asandwhenthey weremodified. A new

versionof thefile wasloggedonthe hourif thefile hadbeen
modified (at leastonce)in the pasthour. The subsebf files
loggedin thismannemwasdeterminedy thesener siteoper

ator4. The contentlog, althoughlimited in scope gnablesis
to getsomeinsightinto the evolution of files asthey undego
modification.

3.5 ProxyLogs

In someof our analyses(Section5.2), we comparechar
acteristicsof the FooBar sener accesslog with that of a
busy cachingproxy. We obtainedlogs from a proxy cache
thatsenesa large campuspopulationwith over 50000client

3As avalidation of this heuristic,we confirmedthat the numberof file
creationeventsbeyond the priming period doesnot diminish with time, as

would have happenedhadthefile creationeventsbeen’bogus”.
40ne of the reasonghey generatedhe contentlog wasto feedit into

varioussearchenginesor re-indexing the correspondingages.

hosts.Thelogsweregatheredvera2-dayperiod— 10/6/99
and10/7/99.

4 Sewer Content Dynamics

In this section,we analyzethe dynamicsof file creationand
modification.

4.1 File Creationand Modification Processes

We studiedthe dynamicsof file creationand modification
using information derived from the CRSlogs. Figure 1(a)
shavs the numberof file creationand modificationevents
(computedhourly) over a one-weekperiod (midnight Satur
day, 10/9/99throughmidnight Friday, 10/15/99local time).
Not surprisinglythereis a cleardiurnal cycle in thefile cre-
ation and modificationprocess. Thereis a trough at night-
time, and several peaksduring the daytime. We believe the
reasorfor thesepeakss thatevenif theactualcontentgener
ation/modificationprocesss spreadout uniformly, the CRS
replicationprocesss only scheduledo runfrom timeto time
(i.e., it replicatesa bunchof files at a time ratherthanindi-
vidualfiles; the only exceptionis a”hot” file thatneedgo be
updatedmmediately). Thetime of replicationis whatreally
mattersbecaus®nly beyondit doesthe new contentbecome
availableto clients.

A weekly cycle is alsoevident from Figure1(a). There
tendto be fewer eventson the weelend (the first two days
shavn in thefigure)thanduringtheweek.

In Table2, we talulatea moredetailedbreakdevn of the
event counts. We note thereare nearly four timesas mary
file modificationeventsas creationeventsduring the course
of theweek.A closerexaminationof the modificationevents
revealsthatthey tendto beconcentratedn asmallnumberof
files. On average therewerearound10 modificationevents
perfile (only considerindilesthatweremodifiedatleastonce
duringtheweek).

The large numbersof creationand modification events
have broadimplications. The creationof new files poses
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CDF of thetime interval betweersuccessie modificationsof afile (conditionedon thefile beingmodified).

a challengeto lateng/bandwidth saving schemessuch as
prefetching [22] [10] or senerinitiated”push” [24]. These
schemeslependnthepasthistoryof accesset thefile. But
for anewly createdile, thereexistsnosuchhistory Thelarge
numberof modificationeventssuggestshatit maybeworth-
while to deploy efficient protocolmechanismsor thevalida-
tion/invalidationof files cachecht proxiesand/orclients(e.g.,
citeCKR98[23]).

Table 2 alsorevealsthat around1% of the modification
events correspondedo GIF/JPEGimagefiles. Intuitively,
we would not expectimagesto getmodifiedvery much;in-
steadvewould expectnewr imagedo beassigneshen names.
On closerexamination,we discoveredthatthe imagesbeing
modified were almost exclusively maps, primarily weather
mapshbut also mapsof otherkinds (e.g.,a weekly "health”
map indicatingthe currentstatusof diseaseoutbreakin the
country).

4.2 Distribution of Modification Intervals

Next, we turn to Figure 1(b), which shawvs the cumulative
distribution function (CDF) of thetime durationbetweertwo
successie modifications(i.e., the modificationinterval) of a
file. (Notethatwe only considerediles that were modified
duringthe4-weekperiodof our CRSlogs. In otherwords,the

CDF is conditionedon the file beingmodifiedduring the 4-
weekperiod.) The CDF exhibits two distinctknees.Thefirst
is aroundthe 5% level and occursat a modificationinterval
of around3000secondgaboutl hour). Theseconds around
the 95%level andoccursat a modificationinterval of around
80000secondqapproximatelyl day). Both of theseobser
vationsarein agreementvith our intuition. By default, the
CRSrreplicationprocessis scheduledo run approximately
onceanhour. More frequentupdatesapperonly whenthere
are”hot” news events,which is typically an infrequentoc-
currence.Hencethereare only a small numberof instances
of modificationhappeningn within an hour of the previous
one. At the otherend of the spectrum,a day seemdike a
natural’upperbound”for the updateperiod. Of coursejt is
certainlypossibleor filesto bemodifiedonlongertimescales
suchasweekly monthly; etc. (or evenaperiodically) but this
is likely to beaninfrequentoccurrence.

4.3 Implications of Modification History

We now turn to examiningthe relationshipbetweensucces-
sive modificationintervals of a file. The motivationis to de-
terminewhetherthe modificationdynamicsof a file in the
pastis agoodpredictorof thefuture. Thisfindingwould have
significantimplicationsfor Web cacheconsisteng mecha-
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nismssuchasadaptve TTL [13].

Figure 2(a) shavs a scatterplot of pairs of successie
modificationintenals for a file. If durationof the previ-
ous modification interval were indicative of the next one,
we would have expectedthe pointsto be clusteredalong a
positively-slopedine. It is clearfrom the figure thatthis is
not the case.Thereareseveralinstancesvherea shortmod-
ification interval for afile is followedimmediatelyby along
one,andviceversa.Indeedthecoeficientof correlation[14]
is only mildly positve— 0.23.

We thenexploredthe possibility of usingalongerhistory
thanjust the durationof the previous modificationinterval.
We dividedthe4-weekdurationof our CRSlogsinto roughly
two halves. Usingthe datafrom thefirst half, we determined
the meanmodificationinterval for eachfile. In the end,we
only retainedthe set of files for which the meanwas com-
putedover 10 or more sampleqi.e., therewas "sufficient”
modificationhistory). Thenin usingthesecondhalf of thelog
data,we determinedhelengthof thefirst modificationinter

val for eachof thefilesin the set. The questionwe wantedto
answemwashow gooda predictorthe meanwas of the dura-
tion of the new modificationinterval. Figure2(b) shavs the
scattemlot of thesetwo quantities.We obsene thatthereis
afairly strongpositive correlationbetweerthe meanduration
of the modificationinterval from the pastandthe durationof
the new interval. The value of the coeficient of correlation
— 0.79— confirmsthis.

Thus,we believe it may be appropriateo usethe modi-
ficationinterval from the pastasa predictorof the future so
long asasufficientnumberof samplesrom the pastareaver-
aged.

4.4 Extent of Changeupon File Modification

We now examinemorecloselyjusthow muchafile changes
whenit is modified. First, we computehow muchthe file
sizechangesvhenit is modified. Figure3(a) shovs the CDF
for the changein file size (unsignedmagnitude)in termsof
bytes.We obsenethatthereis little changen file sizedespite



the modification. Over 70% of the modificationscauseless
thana 1% changein the file size (dueto spacelimitations,
we have not shavn thegraphof file sizechangeexpresseds
a percentage)While it is certainly possiblefor thefile size
to remainvirtually unchangedut for the contentto change
significantly intuitively it seemgoo coincidentato belik ely.
Theanalysiswe presennext shedamorelight onthis.

We usedthe contentlogs (which, as describedin Sec-
tion 3.4, wereavailablefor a subsebf theHTML content)to
explore more carefully how mucha file changesuponmod-
ification. Sincewe wereexaminingjust HTML content,we
decidedto focuson the visible textual content,i.e., text that
would be displayedby a client browser To this end,we ex-
tractedthe visible text by strippingoutthe HTML tagsfrom
eachversionof afile. We thenquantifiedhow similar two
successie versionsof afile wereusingthe cosinesimilarity
metric [12]. Foreachdocumentaterm(i.e.,word)frequeng
vectoris constructedThe cosinesimilarity metricis thenjust
theinnerproductof thetwo vectorsdivided by the productof
theirlengthsj.e., thecosineof theanglebetweerthevectors.
The more similar the files are, the closerto 1 the metricis.
The similarity metricis simplein thatit only considersvord
frequeng without caringaboutthe orderin which thewords
appearTo prevent’insignificant” wordssuchas"and”, "the”,
etc.from overwhelminghemoresignificantoneswe created
alist of commonwordsto disregardin the similarity compu-
tation.

Figure 3(b) shows the CDF of the text similarity met-
ric computedover successie versionsof files. We seethat
the metric tendsto be closeto 1, which indicatesthat little
changesn termsof thevisible textual content.On closerex-
amination,we found (at least)a couple of commonmodes
of (minor) textual change: (a) a date/timestring contained
within the TITLE HTML tagsis updatedrom time to time,
and (b) the links to relatedpagesare updatedwhile leaving
thebulk of the pageunchanged.

In conclusion,our analysissuggestshat successie ver-
sionsof files are very similar, both in termsof sizeandin
termsof content. This impliesthattechniqguesuchasdelta-

encoding[19] would bevery useful.

5 Sewver AccessDynamics

In this sectionwe discusghedynamicsof theclientaccesses
madeto the FooBarsener site.

5.1 Typeof Access

As shavn in Table 1, over 99% requesteemploy the GET
method. Moreover, amongall the requeststhe oneswith

HTTP responsestatuscode 200 (action successfullaccount
for 55%. Around 15% to 18.5% of the requestshave re-

sponsestatuscode302 (movedtemporarily) andaround23%

to 37% have responsestatuscode 304 (not modified). The
latter implies that the potential benefitof an efficient Web
objectsconsisteng protocol could be large. Unlessother

wise specified,in our analysisof the accessdynamics,we
donotdistinguishamongdifferentHTTP methodgi.e., GET,

HEAD, andPOST)anddifferentstatuscode.Insteadve treat
themequallyasWebaccesses.

5.2 TheApplicability of Zipf'sLaw to WebRe-
quests

Several prior studieshave investigatedthe application of
Zipf’s law to web accessesnd arrived at differentconclu-
sions. [5] givesa comprehensie summaryof previouswork
onthisissue.Their studiesshaws the distribution of webre-
guestsrom a fixed group of usersfollows a Zipf-lik e distri-
bution, C/i%, very well. Thevalueof o variesfrom traceto
trace rangingfrom 0.64to0 0.83.

We investigatethis issuefurther by studyingaccesdogs
from boththe senerandthe proxy. Dueto spacdimitations,
we shav the graph of documentaccessesersusdocument
rankingonly for thesenertracegFigure4).

We make thefollowing obsenations:

e The curwves for both the sener tracesand the proxy

traces(not shawn) fit a straightline reasonablywell.
The straightline on the log-log scaleimplies that the
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requestrequeng is proportionalto 1/i*. The values
of a areobtainedusingleastsquarefitting, excluding
thetop 100documentgasin [5]), andalsoexcluding
theflat tail.

Thevalueof a variesfrom traceto trace. Thevaluesof

a in the senertracesareconsistenthandsignificantly
higherthanthosein theproxytraces.

More specifically The valuesof « in the sener traces
aremostlyaroundl.4 - 1.6, with lowestbeing1.3970
andhighestbeing1.816. In comparisonthe « in the
proxy tracesare muchlower, around1.0 for both the
dayswe hadproxy logsfor.

We think thatit is not coincidentalthat the tracescol-

lectedat a popularweb site hashigher . than proxy
trace,but is likely to beacommonphenomenonThis
can be explainedas follows: A numberof previous
studies[5, 26] shav popularweb pagesarespreachl-

mostevenly acrosshot web seners. This impliesthat
the proxy aggragatingequestto a numberof popular
senersshouldhave a slower decayin popularitythan
ary individualsener. Thiscanbeillustratedby thefol-

lowing simplifiedexample:

Supposea proxy accesses web seners. The web
sener i hasn; documentswith decaycoeficient ;.

In addition,it receves A; accesset its mostpopular
webpage.Thenaccordingo the Zipf-lik e distribution,

we have
log(A;) = a; * log(n;)

Thedecaycoeficientat the proxy canbe computedas
follows:

log(mam(A17A27 7AS))
log(ny +na + ... + ny)

Aprozy =

For asimplecasewhenA; = A; = ... = A; = A,
n=nNo=..=ng=n,anda; =as = ... = a, =
Qserver, WEhaVE

log(A) log(n)
Aproxy = W = aserver*m Olserver

The exact differencebetweenoy,,oyy andoseryer de-
pendson s (the total numberof popularseners). Of

course thingsaremuchmorecomplicatedn practice:
(i) the Web accessedoesnot strictly follow Zipf like
distribution especiallyfor the mostpopulardocuments;
(i) Websenersarevery heterogeneoust is veryhard
to computea exactly. On the otherhand,aslong as
it is true thatthe popularweb pagesare spreadalmost
evenly acrosshot web seners, the o at the proxy is
lower thanat eachindividual popularwebsener.

e Thevalueof « is higheston 12/17/98 whentherewas
an unusualglobal event interestingto peopleall over
theworld. Thisis whatwe would expect. Sinceduring
suchperiodusersall over the world are interestedn
a small setof pagesrelatedto the event, making hot
documentsxtremely hot and cold documentscolder
thanusual thedifferencen the hits countof hotpages
andcold pagesarethusenlaged,which contributesto
alargera value.

To furtherstudytheimpactof differenta valueswe also
plot the cumulative distribution of requestgo populardocu-
ments. Figure 5 shavs the cumulative probability of access
for thetopr% of documentdor thesenertraceson 12/17/98
(the highesta) andthe proxy traceson 10/6/99. As we can
see,thetop 2% documentsaccountfor 90% accessem the
senertraces.In contrast,t takes36% to 39% documentgo
accountfor 90% accessem the proxy traces.So, as [5] dis-
covered,10/90rule (i.e. 90% accessegoto 10% documents)
doesnot apply for the web accesseseenat the proxies. On
the other hand, accordingto our sener traces,the web ac-
cesse®bsened at the sener side are sometimesaven more
concentratethanthe 10/90rule.

In summary we obsene the accesgatternsat both the
senerandthe proxy exhibit Zipf-lik e distribution. Thevalue
of & is muchhigherfor theseneraccessethanfor the proxy.
In somecasesthe top 2% documentsaccountfor 90% ac-
cesses.In contrast,the accesseseenat the proxy tracesis
more heterogeneousyhich takes up to 40% to accountfor
90% accesses.
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Figure5: Cumulatve distribution of request$o documents

5.3 AccessPattern at Lower-level Proxiesvs.
Higher-level Proxies

In theprevioussectionwe have shavntheaccespatternseen
at the Web sener hasZipf like distribution, with o > 1 for
senertracesanda =~ 1 for proxy traces.Giventheincreas-
ing widespreadleploymentof Webcachingbothattheedges
andin thecoreof network, aninterestingguestiorariseshow
suchdeploymentaffectsthe web accessattern. In particu-
lar, we wantto answerthe following questions{i) giventhe
accespatternof thelower level proxies(or end-users)vhat
is the accesgatternat the higher level proxies(HP) look
like? (i) If the accesgatternat the lower level proxiesex-
hibitsa Zipf-lik edistribution,will theaccespatternstill have
aZipf-lik edistribution atthe higherlevel? If so,whatwill the
valueof a atthe higherlevel proxiesbe? Answersto these
guestionslepencon how lower-level proxiesareassignedo
higherlevel proxies(By assigninga lower-level proxy A to
a highetrlevel proxy B, we meanwheneer thereis a cache
missatthelowerlevel proxy A, therequestvill beforwarded
to the higherlevel proxy B for service.)To make our analy-
sissimple,herewe considerandomassignmentgom lower

level proxiesto higherlevel proxies.

5.3.1 Analysis

We formulatethe problemasfollows:

Supposeawithout hierarchicalcaching,a pagerecevesm
numberof accessesWhenwe employ a two-level caching
hierarchywith z numberof higherlevel proxies,shavn in
Figure6, whatis the averagenumberof higherlevel proxies,
z, thataccesshepage?

To simplify our analysis,we ignore documentinvalida-
tion, and also assumeinfinite cachesize at all the proxies
(both higherlevel and lower-level proxies). Thereforemul-
tiple requestdor a singledocumenwill be forwardedup to-
wardstherootonly onceby a higherlevel proxy cache(basi-
cally, uponreceiptof therequesfor thetime from ary of its
children).

Basedon theseassumptionsye canderive

rxm
z+m—1
Thedetailedanalysiss shavn in AppendixA.

Using the above result,we know if theith popularpage
hasC/i* accessefrom the lower level proxies,thenit will
have C/(i* + %) accessefrom the higherlevel proxies(ig-
noringthe —1 in thedenominatosincez + m is likely to be
muchlarger).When% is muchsmallerthani®, equivalently
whens is large enough thenthe accesgatternat the higher
level proxieslooks very similar to the accesgatternat the
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Figure6: Two-level cachinghierarchy

lower level. Sothe a valuesin both casesarecloseto each
otherfor largei.

5.3.2 Validation using Traces

We use our sener tracesto validate the above analysis.
Specifically we considerthe requestgecordedn the sener
tracesarefrom thelower-level proxies.(Notethatin the con-
text of thesenertracesthe”lower-level proxies”arejustthe
client hostsidentifiedin the traces.Someof thesemay have
beenrealproxieswhile theremainingwerejustend-hostsywe
werenotin apositionto tell onefrom the other) We thenin-
sertanumberof higherlevel proxiesbetweerthelower-level
proxiesandthesener, wherelower-level proxiesareassigned
randomlyto somehigherlevel proxy. Again,asin our analy-
sis,weignorethepagenvalidation,andassumenfinite cache
sizeatall the proxies(bothhigherlevel andlower-level).
The graphin the left of Figure 7 shows the acces9at-
ternseematthe Websenerwhen2-level hierarchicakaching
is employed. As we cansee,the curveswith differentnum-
bersof higherlevel proxiesonly differ in theinitial portions.
The fewer higherlevel proxies,the longerthe flat region is,
wheretheflat region occurswhenalmostall the higherlevel
proxiesaccesshedocumentThisis intuitive, becausegiven
randomassignmenirom lower-level proxiesto higherlevel
proxies,aslong asthe popularity of a documents above a
certainthresholdalmosteveryhigherlevel proxywill request
it. Furthermorethethresholddepend®nthetotal numberof
higher level proxies.Thefewerhigherlevel proxieswe have,
the smallerthe thresholdis. As the documents’popularity
decreaseghe differencein the accesgatternwith different

numberof higherlevel proxiesdiminishes. As predictedin
our previousanalysisthe decaycoeficientsa with different
numberof highekrlevel proxiesarevery closeto eachother

To further explore the accessepatternat higherlevel
proxieswealsoconsidemmorenaturaimappingrom lower-
level proxiesto higherlevel proxieswhereinall lower-level
proxies(i.e., clients) within a domainsharea domain-wide
higherlevel proxy. In particular we studythe numberof re-
guestingdomainsfor eachweb object. As shavn in right of
Figure7, the curve on the log-log scalematcheswell with a
straightline, which impliesa Zipf-lik e distribution. However
thevalueof o becomea little lower: 1.5006,asopposedo
1.6511whenconsideringhe numberof references.

To summarize,we examine the accesspattern at the
higherlevel proxiesthroughboth mathematicahnalysisand
tracesstudies.Ourresultsshav thatthe Zipf-lik e distribution
alsoholdsat the higherlevel proxies,andthe valueof « is
likely to bealittle lowerthanatthelower-level proxies.

5.4 Temporal Stability

In this section,we preseniur analysisof temporalstability
of Webaccessedn particular we areinterestedn answering
thefollowing key questions:
¢ How muchdoesthewebpagegankingvarywith time?
Thatis, do popularweb pageson oneday remainpop-
ularonthefollowing days?
e For eachwebpage how muchdoesthesetof domains
interestedn it vary from onedayto the next?
Answersto thesequestionsarevery critical for designing
sensibleprefetchingor senerinitiated pushalgorithms.Any
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Figure7: Frequng of documenticcessegersusdocumentankingwhentwo-level cachinghierarchyis employed

prefetchingalgorithmsbasedn pasthistoryrely on somede-
greeof stability (bothin rankingandin theinterestgroup(ie.

the setof domainsrequestinghe pages)). Our traceanaly-
sis helpsto shedlight on how well suchreactve prefetching
algorithmscanperformin practice.

5.4.1 Stability of Web PagesRanking

We studythe stability of web pagesrankingasfollows: We
usethewebaccesdogsof severalconsecutie days.For each
day, we pick n mostpopulardocuments.We thencompare
the overlapin the mostpopularpagesselectedrom oneday
to thenext. Ourresultsareillustratedin Figure8. We make
the following obsenations: First, the overlapis mostly over
60%, which essentiallymeansmary documentsare hot on
both days. Secondfor the several consecutie daysperiod,
the overlapis mostly the same.For example,the amountof
overlap between8/1/99 vs 8/2/99is quite closeto that be-
tween8/1/99 vs 8/5/99. This implies the web accessein
thesameshorttime-frame(within 1 weekperiod)areequally
goodfor predictingwhich Web pageswill bemostpopularin
thenearfuture. Thatis, lastweektraceis almostasusefulas
yesterdayracefor predictingwebpageganking. Thereason
for thisis thatmary of thevery popularpagesareindex pages
(suchasthe default front pagefor the FooBarsite) that con-
tain pointersto otherpages.Third, therankingstability tends

to decreasesthe numberof documentsselectedncreases.
Thisindicatesthatvery hot documentaremorelikely to re-
main hot than moderatehot documents.Similar resultsare
obsenedin otherperiodsof traces.
We alsostudythe ranking stability in a largertime win-
dow. Namely we considerthe overlapbetweerthetwo days
that are more widely separated. Our resultsare shawvn in
Figure9. As we would expect,the overlapdecreaseasthe
time interval getslonger For example,the overlapbetween
12/17/98and10/18/99 which are10 monthsapart,is consid-
erablysmaller mostly belov 20%. On the otherhand,even
for thetwo monthsseparatior(8/1/99and10/18/99) though
the overlapis lower thanoneday separationit is still quite
significant. For the top 100 documentsthe overlapis above
60%. However comparedo the oneday separationthe over-
lap in thetwo monthseperatiordecreasemuchfasterasthe
numberof documentselectedncreases.
We furtherexploretheissueby breakingdown theoverlap
anddisjointregionsinto four groups(assumingday 1 is prior
to Day 2):
¢ Common& unmodified:documentshatarepopularon
bothdaysandhave notbeenmodifiedsinceDay 1

¢ Commoné& modified: documentghat are popularon
bothdays,andhave beenmodifiedsinceDay 1

¢ Different& old: documentghat that are popularon
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only oneof thedays but werein existenceon bothdays
o Different& new: documentghat were createdafter

Day 1, andarepopularonly on Day 2
Ourresultsareshavn in Figure10. We obsene thatmary of
thepopularfilesin commonbetweerthetwo daysareremain
unmodifiedthroughboth days. Moreover the disjoint region
in thesetof popularfilesontwo daysaremostlynotdueto the
creationof new files, sincemostof thedisjointregionconsists
of the accesseto Web pageshatwerein existenceon both
days.Evenif thenumberof modifiedfilesis small,designing
agoodinvalidationtechnique$or webdocumentss still very
desirablebecausef the frequentupdatesmadeto the small
setof files (asobsenredin Section4.1).

To summarizein thissectionwe studytherankingstabil-
ity of webpagesandfind the stability is reasonabhhigh on
thescaleof days.Therankingtendsto changeonly gradually
over time. We alsoexaminewhat contritutesto the overlap
anddisjoint regionsof populardocumentsn two days. Our
resultsshav thedisjoint region mostly consistsof old pages,
notnewly createdpageslin theoverlapregion,thenumberof
modifieddocumentexceedshe numberof unmodifieddoc-
umentsalthoughbothcountsareof thesameorderof magni-
tude.

5.4.2 Stability of InterestGroup

We now considerhow the interestgroupfor eachweb page
changesover time. Our approachs as follows: For every
webpagethatrecevesover 100accessesntheearlierof the
two daysunderour study we find the setof domainswhich
accesshe pageon eachday, andcomparehe overlapregion.
As mentionedn Section3.2,weignorerequestgrom clients
for whichthereverseDNS lookupfails. Sincethe percentage
of failure (Table 1) is reasonabljiow, it shouldnot make a
significantdifferencen our results.

Figurellshavsthe percentagef overlapregionfor ses-
eralpairsof dayswe studied.As we cansee theoverlapis not
very large. Only a few documentghat have over half of the
domainsmakingrequestn both days. We obsene similar
resultsduring other periodsof tracesaswell. Oneexplana-

tion for this maybethattheinterestgroupsfor thedocuments
do not stabilizewithin a day, possiblybecauseur definition
of domainss too fine-grained Anotherexplanationcould be
thatemplgying proxy cachecanreducethe likelihood of re-
guestingthe web pageanultiple times. As partof our future
work, we will furtherinvestigatethis issue,andfind out the
reasonthat accountdor the large variationin the setof do-
mainsthatrequesthewebpage.

5.5 Spatial Locality

In this section,we presentour analysisof web traceswith
respectto spatial locality, i.e., the extent to which there
is sharing of requests(i.e., accessego the same object)
within adomain(intra-domain/loca), acrossdomaing(inter-
domain/globa), or both. Our analysisis similar in flavor to
thatin [26], althoughthey analyzedproxy traceswhile we
analyzesenerlogs.

[26] examineghe sharingof webdocumentgrom anor-
ganizationapoint of view. Their analysisis basedon a one-
week proxy traceat University of Washington(UW), USA
takenin mid-May 1999. Their resultsshov that organiza-
tion membershippeargo be significant. However the vast
majority of the requestsnadeareto objectsthat are shared
amongmultiple organizations.

We explorethe organization-basesharingusingthe web
sener tracesas before. The sener tracesdiffer from proxy
tracesin the following ways: (i) The clientsin the sener
tracesare more heterogeneousThey arefrom all over the
world. (i) Requestseenin the sener tracesarefor the ob-
jectsat thatsener only, while in the proxy tracesrecordre-
guestanadeto differentseners.

Figure 12 shaws the distribution of clients, objects,and
requestsn differentdomains. As we cansee,thereis large
variationin the domainsize: the largestdomain has over
10,000clientsmakingrequestso theweb sener, which gen-
erateover100,000equest$or aroundl0,0000bjects.In con-
trast,somedomainshave only oneclientmakingonly onere-
guesto thesener. In thecumulative distribution plot, we see
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in the 12/17/98trace,the top 10 domainsaccountfor 7.83%
requeststhe top 100 domainsaccountfor 18.63% requests,
andthe top 1000 domainsaccountfor 43.63% requests.In
the 10/17/99trace,the top 10 domainsgeneratel1.86% re-
quests;the top 100 domainsgenerate23.00% requestsand
thetop 1000domainsgeneratel4.43% requests.

Figurel3showvstheextentintra-domain(local) andinter-
domain(global)sharing.For eachdomain(onthex-axis),the
graphsshow thepercentagef all requestsandseparatelyhe
percentagef all objectsrequestedyy clientsin thatdomain,
that were shared. The curve marked "first sharedrequests”
countsjust the first requestto a sharedobjectasa percent-
ageof all requestsAs we cansee theinter-domainsharings
significantlyhigherthanintra-domainwhichmeansnostob-
jectsareglobally popular Moreover comparedo the proxy
studyin [26], the sharingin the sener traceshereis con-
sistentlyhigher We believe this is not surprising. Sincethe
proxy aggre@yatesrequestso different seners, the requests
in the proxy tracesare more heterogeneousyhich possibly
leadsto alower degreeof sharing.

As in [26], we also cateyorize the sharingobjectsand
requestdasedon the way in which they are shared:shared
globally only, sharedocally only, sharedboth globally and
locally, andnot shared.Table3 shavs themeanandvariance
of the percentagef objectsandrequestgcomputedcover all
the domains)that fall into eachcateyory. We obsenre that
most objectsare sharedeither globally only or both glob-
ally andlocally. Thereare no objectsthat are only shared
locally. Thisis not surprising,becausat is very unlikely to
have objectsrepeatedlyaccessebly a singledomainbut have
noaccesseom ary otherdomain(i.e.,locally sharednly).
Thepercentagef objectsthatarenotshareds alsovery low.
Theseareobjectshatrecevedonly oneacces#n all andthere
areusuallynotvery mary of them.

Figure 14 plots the numberof objectsthat were shared
by exactly x organizations.As it is shavn, a large number
of objects(over 10,000)areaccessedly a singledomain.On
theotherhand thereis a significantportionof objectsthatare
accessedy mary domains. Someobjectsreceve requests

from over 10,000domains.

Finally, we computethe degreeof sharing(both intra-
domain and interrdomain) when clients are assignedran-
domly to domainsratherthan basedon their DNS names.
(Thenumberof clientsassignedo eachdomainin this man-
neris the sameasbefore.)\We comparehe degreeof sharing
with randomassignmentvith thatwhenclientsareassigned
to their true domains. The goal is to determineif domain
memberships significant.

The top two graphsin Figure 15 shav the intra-domain
and interdomain sharingon 12/17/98, and the lower two
graphsshav theresultsfor 10/7/99. In both casestheinter
domainsharingis with randomassignments comparabldo
thatwith the true assignmentaswe would expect. In con-
trast,intra-domairsharingwith trueassignmenis noticeably
higherthanwith randomassignmentor 10/7/99.This s also
obseredin the tracesof mary otherperiods. On the other
hand,the intra-domainsharingon 12/17/98(the day of Op-
erationDesertFox) is comparablavith bothtrueandrandom
assignmentFrom theseresults,we concludethe following.
In mostcasesddomainmemberships significant,i.e., clients
belongingto the samedomainare more likely to sharere-
guestghanclientspickedatrandom.However, whenthereis
a"hot” event,theglobalinteresttanbecomesodominanthat
even clients picked at randomtendto sharemary requests,
thusdiminishingthe significanceof domainmembership.

5.6 Other Results
5.6.1 Correlation betweendocumentageand popularity

We examinedthe correlationbetweerdocumentge(i.e., the
time elapsesinceit’s creation)and popularity Our results
areshavn in Figure16, wherex-axisdenoteghetime elapse
sincethedocumentreationandy-axisdenoteshedocument
ID sortedin increasingorderby thetotal numberof accesses.
It is evidentfrom the graphsthat mostdocumentgeceve a
lot more accessesoonafter their creationthan afterwards.
Ontheotherhand therearea numberof documentgtheones
denotedwith a large documentiD) that remainhot for the
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Globally sharedbnly | Globallyandlocally shared| Locally shareconly Not shared
mean | variance | mean variance mean| variance | mean | variance
Objects | 0.6774| 0.0846 | 0.3202 0.0844 0 0 0.0023| 0.0009
Requesty 0.4965| 0.1362 | 0.5018 0.1364 0 0 0.0017| 0.0008

Table3: Breakdevn of objectsandrequestsccordingo theway in which they aresharedor 10/7/99traces
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entirefive-dayperiodunderstudy invalidationalgorithmsis large.
5.6.2 Classify accesses according to
modification/creation 6 Conclusions

Previous research [25] shaws that up to 40% of accesses In this paper we have studiedthe dynamicsof a |arge com-
could to the objectsthat have not beenaccessedeforeby mercialwebsite,whichis consistentlyankedamongthebus-
clientsin a domain. In a cachingcontext, theseleadto first-  jestin the Weh We have analyzedhe dynamicsof both the

time (i.e., Compulsory)'nisseS.We arevery interestedn un- contentandthe client accesseat this site.

derstandingvhat composethesefirst-time accesses/misses.
Usingbothaccesdogsandmaodificationlogs,we have found

o _ _ 6.1 Summary of KeyResults
that mostfirst-time accessegwhich we determineon a per

domainbasis)are to old objectsthat were createdat least Ourmainfindingsare:

a day ago. This is shavn in Table4. We believe suchac- 1. The sener contenttendsto be highly dynamicwith
cesse@revery hardto predict. This is becausebjectsthat around6000files createcand24000files modifiedover
haven't beenaccessedby a certaindomainseveral daysfol- aone-weelperiod.For the subsebdf filesthataremod-
lowing its creationare consideredunpopular Accessedo ified, the time gap betweensuccessie modifications
unpopulardocumentsare relatively hardto predict. More- tendsto lie betweeranhourand24 hours(i.e.,aday).

over becausdhesedocumentsare unpopulay the benefitof 2. Pastmodificationbehaior of afile, if averagedovera

prefetchinghemin advanceis not cost-efective. sufficientnumberof samplestendsto be areasonably
We alsostudytherepeatecccesset® theobjectsaccord- goodpredictorof future modificationbehaior.

ing to its modificationhistory. More specifically we divide 3. Most(HTML) file modificationgendto be minorboth

the accesseito two groups: accesses$o objectsthat are in termsof the changdn thefile sizeandin thevisible
modifiedon the day of accessandthosethatnot. As shavn textual content.

in Table 4, over half the repeatedaccesseareto the modi- 4. File popularitytendsto be distributed accordingto a
fied objects.Thisimpliesthe potentialbenefitof goodobject Zipf-lik e distribution. However, the parameter tends
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Date First& New | First& Old | Repeate& Mod | Repeate& Unmod
10/8/99 72362 240119 1317246 1014821
10/9/99 14652 96167 697338 576113
10/10/99 15156 99248 758626 610435
10/11/99 47619 206743 1163424 919085

Table4: Breakdevn thewebaccesseaccordingo the modification/creation

to bein the rangel.4-1.6,which is muchlargerthan 6.2 Broad Implications

hasbeenreportedin the literature(basedon the anal-

We believe ourfindingshave broadimplicationsfor thefuture

ysis of proxy logs). The large value of « implies, for

evolution of theWeb:

instancethatjustthetop 2% of documentsccountor

90%o0f theaccesses.

. The popularity of files tends to be stable over a

timescaleof days. Of the top 100 documentsn terms
of popularityon a given day, 60—100%tendto remain
amongthe top 100for up to 5 days. However, the set
of domainsfrom which accesse$o the populardocu-
mentsaremadetendsto changesignificantlyfrom day

to day For example thereis only a40% overlapwhen

consideringhetop 100documentsThismaybeacon-

sequencef our (fine-grained)definition of a domain,
andwe arecurrentlyexploring this further.

. Organizational(i.e., domain) membershipof clients
tendsto have a significant (positive) impact on the

degree of local sharing, unlessthere is a globally-

interestingevent(suchasOperationDesertFox in De-

cember1998) that cuts acrossorganizationalbound-
aries.

. In the caseof mostdocumentstheir popularitytends
to drop off with age. However, somedocumentgend

to maintaintheir popularityfor a significantlength of

time.

. First-timeaccesseé.e., thefirst acces$o a document

1. Thefrequeng of file modificationunderscoretheim-

portanceof having efficient cacheconsisteng mecha-
nisms(e.g., [6] [23]).

. File creationalsotendsto be a frequentevent. When

a popularnews storyis updatedjt may be assigneca
new file name. The absencef pastaccessistory for
this new file may make the task of prefetchingor pre-
emptiely pushingout suchcontentchallenging.

. Sincethedegreeto which filesaremodifiedtendsto be

small, techniquessuchasdeltaencoding [19] appear
promising.

. Thelargevalueof « in the Zipf-lik e distribution of file

popularitytogethemwith the stability of the popularset
of filesovertime suggestthatcachingustasmallfrac-
tion of the files at proxiesmay help eliminatea large
fractionof therequests.

. Sincefirst-time accessetendto be to old andunpop-

ular documentsjt appearghatit will be hardto cut
down on the (significantnumberof) first-time misses
experiencedby Web cachesusingtechniquessuchas
prefetching.

by ary clientin a domain)generallytendto beto doc- 7 Ongoing and Future Work

umentsthatareat leasta day or moreold andareun-
popular

We arecurrentlyanalyzingalargercontentiog set,investigat-

ing betterheuristicdor identifying clientdomainsandexam-

ining why thestability in interestgroupis low. For thelonger

term,we would lik e to studydatasetsfrom otherlargesener
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sitesto confirm or refutethe findingsreportedin this paper
We alsoplanto develop prefetchingand/orpreemptve push
algorithmsthat are optimizedbasedon the insightswe have
gainedfrom this paper
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A Appendix

Giventherearem lowerlevel proxiesrequestinghe object,
and z highetrlevel proxies, derive the averagenumber of
higherlevel proxiesthataccesshe page.

Letn; bethenumberof differentwaysapageis accessed
by j Higherlevel proxies,and z be the averagenumberof
accessethepagerecevesfromthehigherlevel proxies.Then
we have

Yj—1dxmny

Now let's computen;. As we know, n; denoteghe total

numberof ways of assigningm accessefrom lower level

proxiesto j (outof m) higherlevel proxies.Thismeans

23

whereN is thenumberof waysof puttingm ballsinto j bins.
By definition, NV is the total numberof waysof assigningz;
suchthata; + a2 + ... + a; = m, wherea; > 0. Thisis
equialentto the numberof ways of assignings; suchthat
§1 = a1, s2 = a1 +az, ... ,$§ = a1 +azx+...+a; =

m. Sincea; > 0, s; is anincreasingserie. ThereforeN =

(

So

m—1

. Sowe have
j—1

m—1

|

j—1

Z;'C:I J
z =

i1

()
()

Notethat

With simplealgebraiananipulationsyweimmediatelyget

o xEm
z+m-—1



