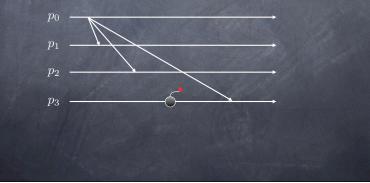


Broadcast

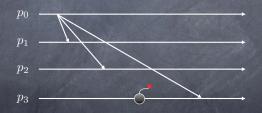
Broadcast

0 If a process sends a message m , then every process eventually delivers m

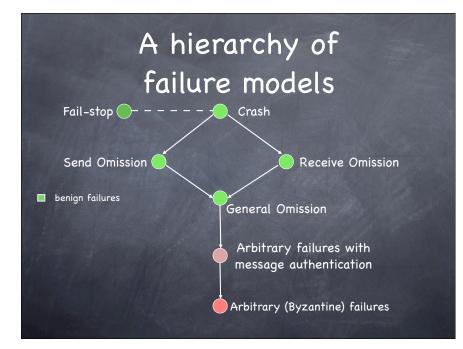


Broadcast

O If a process sends a message m , then every process eventually delivers m



How can we adapt the spec for an environment where processes can fail? And what does "fail" mean?



Reliable Broadcast

Validity	If the sender is correct and broadcasts a message m , then all correct processes eventually deliver m
Agreement	If a correct process delivers a message m , then all correct processes eventually deliver m
Integrity	Every correct process delivers at most one message, and if it delivers m , then some process must have broadcast m

Terminating Reliable Broadcast

Validity	If the sender is correct and broadcasts a message m , then all correct processes eventually deliver m
Agreement	If a correct process delivers a message $m,$ then all correct processes eventually deliver m
Integrity	Every correct process delivers at most one message, and if it delivers $m \neq$ SF, then some process must have broadcast m
Termination	Every correct process eventually delivers some message

Consensus

Validity	If all processes that propose a value propose v , then all correct processes eventually decide v
Agreement	If a correct process decides v , then all correct processes eventually decide v
Integrity	Every correct process decides at most one value, and if it decides v , then some process must have proposed v
Termination	Every correct process eventually decides some value

Properties of send(m) and receive(m)

Benign failures:

Validity If p sends m to q, and p, q, and the link between them are correct, then q eventually receives m

Uniform^{*} Integrity For any message m, q receives m at most once from p, and only if p sent m to q

* A property is uniform if it applies to both correct and faulty processes

Properties of send(m) and receive(m)

Arbitrary failures:

Integrity For any message m, if p and q are correct then q receives m at most once from p, and only if p sent m to q

Questions, Questions...

- Are these problems solvable at all?
- S Can they be solved independent of the failure model?
- Does solvability depend on the ratio between faulty and correct processes?
- Does solvability depend on assumptions about the reliability of the network?
- Are the problems solvable in both synchronous and asynchronous systems?
- If a solution exists, how expensive is it?

Plan

- Synchronous Systems
 - O Consensus for synchronous systems with crash failures
 - Solution Lower bound on the number of rounds
 - Reliable Broadcast for arbitrary failures with message authentication
 - Lower bound on the ratio of faulty processes for Consensus with arbitrary failures
 - © Reliable Broadcast for arbitrary failures
- Synchronous Systems
 - Impossibility of Consensus for crash failures
 - Failure detectors
 - @ PAXOS

Model

Synchronous Message Passing
 Execution is a sequence of rounds
 In each round every process takes a step
 sends messages to neighbors
 receives messages sent in that round
 changes its state

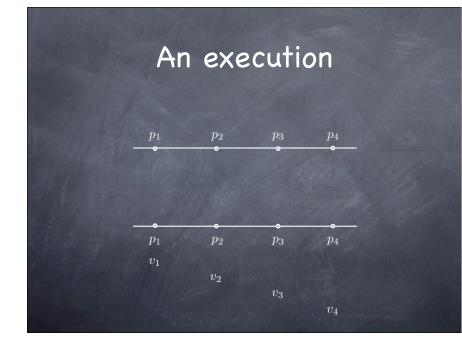
O Network is fully connected (an n-clique)

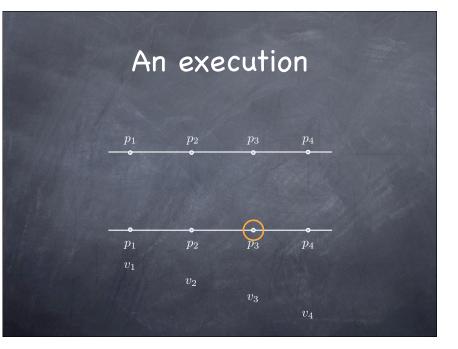
No communication failures

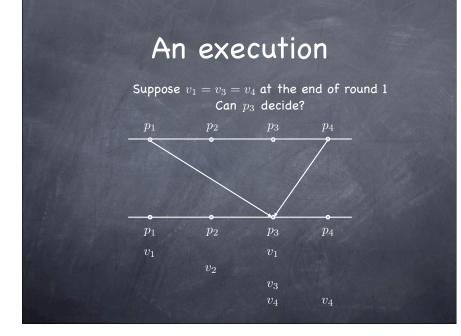
A simple Consensus algorithm

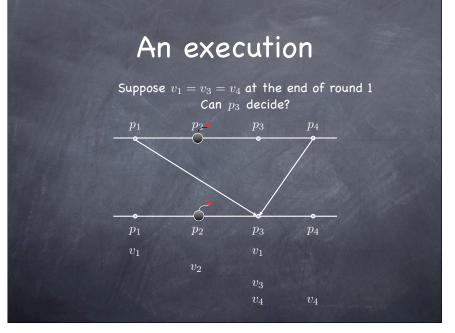
Process p_i :

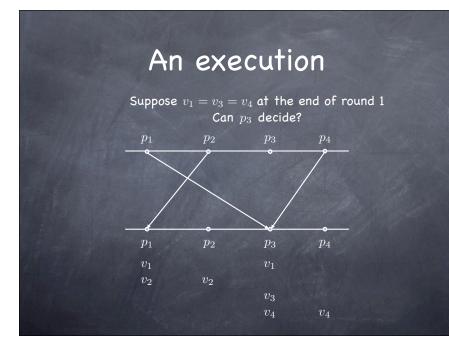
Initially $V = \{v_i\}$ To execute propose (v_i) 1: send $\{v_i\}$ to all decide(x) occurs as follows: 2: for all $j, 0 \le j \le n-1, j \ne i$ do 3: receive S_j from p_j 4: $V := V \cup S_j$ 5: decide min(V)

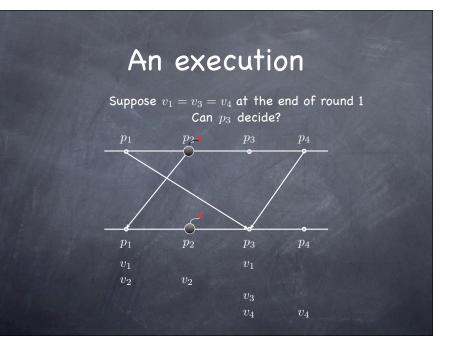


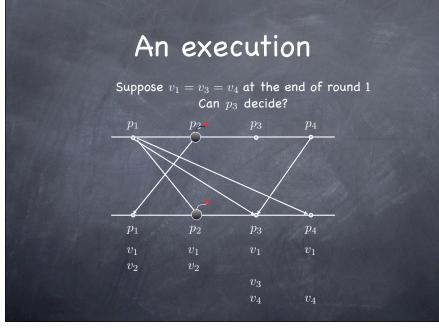


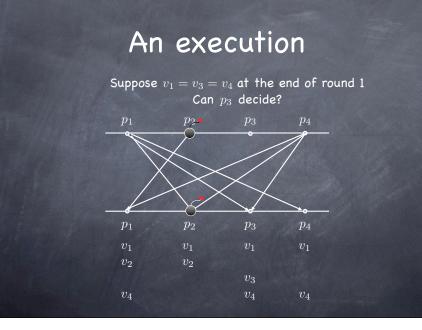


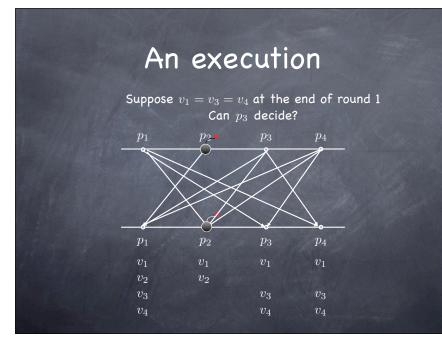












Echoing values

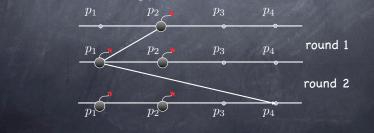
A process that receives a proposal in round 1, relays it to others during round 2.

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p₃ hasn't heard from p₂ at the end of round 2. Can p₃ decide?

Echoing values

- A process that receives a proposal in round 1, relays it to others during round 2.
- Suppose p₃ hasn't heard from p₂ at the end of round 2. Can p₃ decide?



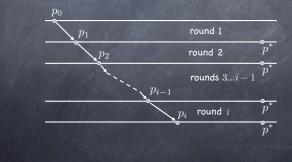
What is going on

- Another process may have received the missing proposal at the end of round i and be ready to relay it in round i + 1

Dangerous Chains

Dangerous chain

The last process in the chain is correct, all others are faulty



Living dangerously

How many rounds can a dangerous chain span?

- $\Box f$ faulty processes
- \Box at most f+1 nodes in the chain
- \Box spans at most f rounds
- It is safe to decide by the end of round f+1!

The Algorithm

Code for process p_i :

Initially $V = \{v_i\}$ To execute propose (v_i) round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all 2: for all $j, 0 \le j \le n-1, j \ne i$ do 3: receive S_j from p_j 4: $V := V \cup S_j$ decide(x) occurs as follows: 5: if k = f+1 then 6: decide min(V)

Termination and Integrity

Initially $V = \{v_i\}$

- To execute propose(v,) round k, 1≤k≤f+1
 send {v∈V : p_i has not already sent v} to all
 for all j, 0≤j≤n-1, j≠i do
- 3: receive S_i from p_i
- 4: $V := V \cup S_j$

decide(x) occurs as follows:
5: if k=f+1 then
6: decide min(V)

Termination

Termination and Integrity

Initially $V = \{v_i\}$

To execute propose(v_i) round $k, 1 \le k \le f+1$ 1: send $\{v \in V : v_i$ has not already sent $v\}$ to all 2: for all $j, 0 \le j \le n-1, j \ne i$ do 3: receive S_j from p_j 4: $V := V \cup S_j$ decide(x) occurs as follows: 5: if $k = f \pm 1$ then

6: decide min(V)

Terminatio

Every correct process reaches round f + 1 Decides on min(V) --- which is well defined

Termination and Integrity

Initially $V = \{v_i\}$

At most one value:

round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all

To execute $propose(v_i)$

decide(x) occurs as follows: 5: if k = f + 1 then

6: decide $\min(V)$

Termination

Every correct process @reaches round f + 1 Decides on min(V) --- which is well defined

Only if it was proposed:

Termination and Integrity

Initially $V = \{v_i\}$

To execute propose(vi) round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all

decide(x) occurs as follows:

5: if k = f + 1 then

6: decide $\min(V)$

Termination

Every correct process @reaches round f + 1 Decides on min(V) --- which is well defined

At most one value: - one decide, and min(V) is unique Only if it was proposed:

Termination and Integrity

Initially $V = \{v_i\}$

- To execute $propose(v_i)$
- round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all
- receive S_i from p_i

decide(x) occurs as follows: 6: decide min(V)

Termination

Every correct process

- O reaches round f+1
- Decides on min(V) --- which is well defined

- At most one value: - one decide, and min(V) is unique
- Only if it was proposed:
- To be decided upon, must be in V at round $f\!+\!1$ if value = ${\rm v_{j}},$ then it is proposed in round 1 - else, suppose received in round k. By induction:
- by Uniform Integrity of underlying send and receive, it must have been sent in round 1 • by the protocol and because only crash
- failures, it must have been proposed
- Induction Hypothesis: all values received up to round k = j have been proposed
- sent in round j+1 (Uniform Integrity of send and synchronous model)
- must have been part of V of sender at end of round i
- by protocol, must have been received by sender by end of round j
- by induction hypothesis, must have been proposed

Validity

Initially $V = \{v_i\}$

To execute $propose(v_i)$ round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all receive S_i from p_i decide(x) occurs as follows: 5: if k = f+1 then 6: decide $\min(V)$

Validity

Initially $V = \{v_i\}$

- To execute propose(v_i) round $k, 1 \le k \le f+1$ 1: send { $v \in V : p_i$ has not already sent v} to all
- 2: for all $i \ 0 \le i \le n-1$ $i \ne i$ do
- 3: receive S_i from p_j
- 4: $V := V \cup S_j$

decide(x) occurs as follows:
5: if k=f+1 then
6: decide min(V)

- 🔊 Suppose every process proposes v^*
- Since only crash model, only v^{*} can be sent
- By Uniform Integrity of send and receive, only v^{*} can be received
- **By** protocol, $V = \{v^*\}$
- $\odot \min(V) = v^*$
- $\mathbf{O} decide(v^*)$

Agreement

Initially $V = \{v_i\}$

- To execute propose(v,) round k, 1≤k≤f+1 1: send {v∈V : p_i has not already sent v} to all
- 2: for all $j, 0 \le j \le n-1, j \ne i$ do
- 3: receive S_j from
- $4: \qquad V := V \cup S_j$
- decide(x) occurs as follows:
- 5: if k = f+1 then 6: decide min(V)

Lemma 1

For any $r \ge 1$, if a process p receives a value v in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that $p_r = p, p_0$ is v's proponent, and in each round p_{k-1} sends v and p_k receives it. Furthermore, all processes in the sequence are distinct.

Proof

By induction on the length of the sequence

Agreement

Initially $V = \{v_i\}$

- To execute propose(v_i) round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all
- 2: for all $j, 0 \le j \le n-1, j \ne i$
- 3: receive S_j from p_j
- $4: \qquad V := V \cup S_j$

decide(x) occurs as follows: 5: if k=f+1 then 6: decide min(V)

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Agreement

Proof:

• Show that if a correct p has x in its V at the end of round f+1, then every correct p has x in its V at the end of round f+1

Initially $V\!=\!\{v_i\}$

To execute propose(v) round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all 2: for all $j, 0 \le j \le n-1, j \ne i$ do 3: receive S_j from p_j 4: $V := V \cup S_j$ decide(x) occurs as follows: 5: if k = f+1 then 6: decide min(V)

Lemma 2:

In every execution, at the end of round f+1, $V_i = V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Agreement

Initially $V\!=\!\{v_i\}$

- To execute propose(v_i) round k, 1≤k≤f+1
 send {v∈V : p_i has not already sent v} to all
- 2: for all i 0 < i < -1 i (i do
- 3: receive S_i from p_i
- 4: $V := V \cup S_i$

decide(x) occurs as follows:

- 5: if k = f + 1 then 6: decide min(V)
- 6: decide $\min(V)$

Lemma 2:

In every execution, at the end of round $f\!+\!1$, $V_i\!=\!V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

Proof:Show that if a correct p has x in its V at

- the end of round f+1, then every correct has x in its V at the end of round f+1• Let r be earliest round x is added to the V
- Let r be earliest round x is added to the of a correct p. Let that process be p^*
- If $r \le f$, then p^* sends x in round $r+1 \le f+1$; every correct process receives x and adds xto its V in round r+1

Agreement

Proof:

Initially $V = \{v_i\}$

- To execute propose(vi)
- round $k, 1 \le k \le f+1$ 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all
- 2. for all i 0 < i < n + 1 i /i do
- 3: receive S_i from p_i
- 4: $V := V \cup S_s$

decide(x) occurs as follows:

- 5: if k = f + 1 then
- 6: decide $\min(V)$

Lemma 2:

In every execution, at the end of round f+1, $V_i = V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

- Show that if a correct p has x in its V at the end of round f+1, then every correcp has x in its V at the end of round f+1
- Let r be earliest round x is added to the V
- of a correct p. Let that process be p^{\ast}
- If $r\!\leq\! f$, then p^* sends x in round $r\!+\!1\!\leq\! f\!+\!1$; every correct process receives x and adds x to its V in round $r\!+\!1$
- What if r = f + 1?

Agreement

Proof:

- Initially $V = \{v_i\}$
- To execute propose(v_i)
- round $k, 1 \le k \le f+1$
- 1: send $\{v \in V : p_i \text{ has not already sent } v\}$ to all
- 2: for all $j, 0 \le j \le n-1, j_{\overline{2}}$
- 3: receive S_j from p_j
- $4: \qquad V := V \cup S_j$

decide(x) occurs as follows: 5: if k = f + 1 then

6: decide min(V)

Lemma 2:

In every execution, at the end of round f+1, $V_i = V_j$ for every correct processes p_i and p_j

Agreement follows from Lemma 2, since min is a deterministic function

• Show that if a correct p has x in its V at the end of round f+1, then every correct has x in its V at the end of round f+1

- Let r be earliest round x is added to the V
- of a correct p. Let that process be p^{st}
- If r≤f, then p* sends x in round r+1≤f+1; every correct process receives x and adds x to its V in round r+1
 What if r=f+1?
- By Lemma 1, there exists a sequence of distinct processes p₀,..., p_{f+1} = p^{*}
- Consider processes p_0, \ldots, p_f
- f+1 processes; only f faulty
- one of p_0, \ldots, p_f is correct, and adds x to its V before p^* does it in round rCONTRADICTION!

Terminating Reliable Broadcast

Validity If the sender is correct and broadcasts a message m, then all correct processes eventually deliver m

- Agreement If a correct process delivers a message m, then all correct processes eventually deliver m
- Integrity Every correct process delivers at most one message, and if it delivers $m \neq SF$, then some process must have broadcast m

Termination Every correct process eventually delivers some message

TRB for benign failures

Sender in round 1:

- Process p in round $k, 1 \le k \le f+1$
- 1: if delivered m in round k-1 and $p \neq$ sender then 2: send m to all
- 3: halt
- 4: receive round k messages
- 5: if received m then
- 6: deliver(m)
- 7: if k = f+1 then halt
- 8: else if k = f+1

9: deliver(SF)

10: halt

Terminates in f+1 rounds

How can we do better? find a protocol whose round complexity is proportional to t -the number of failures that actually occurredrather than to f - the max number of failures that may occur

Early stopping: the idea

- @ Suppose processes can detect the set of processes that have failed by the end of round i
- **@** Call that set faulty(p, i)
- **o** If |faulty(p, i)| < i there can be no active dangerous chains, and p can safely deliver SF

Early Stopping: The Protocol

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1, \ldots, k$

1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

2: send value to all

- 3: if value \neq ? and delivered m in round k-1 then halt
- 4: receive round k values from all
- 5: $faulty(p,k) := faulty(p,k-1) \cup \{q \mid p \text{ received no value from } q \text{ in round } k\}$
- 6: if received value $v \neq ?$ then
- 7: value := v
- 8: deliver value
- 9: else if k = f + 1 or |faulty(p, k)| < k then
- 10: value := SF
- 11: deliver value
- 12: if k = f+1 then halt

Termination

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1,\ldots,k$

1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? and delivered m in round k-1 then halt 4: receive round k values from all
- 5: $faulty(p,k) := faulty(p,k-1) \cup \{q \mid p \ received no value from q in round k\}$
- 6: if received value $v \neq ?$ then
- value := v 8:
- deliver value else if k = f + 1 or |faulty(p,k)| < k then Q.
- 10: value := SF
- deliver value
- if k = f + 1 then halt

Termination

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1, \ldots, k$ 1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? and delivered m in round k-1 then halt
- 4: receive round k values from all
- $faulty(p,k) := faulty(p,k-1) \cup \{q \mid p \ received no value from q in round k\}$
- 6: if received value $v \neq ?$ then
- value := v 7:
- deliver value
- else if k = f + 1 or |faulty(p, k)| < k then 9:
- value := SF 10.
- deliver value
- 12: if k = f + 1 then halt

- If in any round a process receives a value, then it delivers the value in that round
- If a process has received only "?" for f+1 rounds, then it delivers SF in round f+1

Validity

Let faulty(p, k) be the set of processes that have failed to send a message to p in any round $1, \ldots, k$

1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? and delivered m in round k-1 then halt
- 4: receive round k values from all
- $faulty(p, k) := faulty(p, k 1) \cup \{q \mid p \ received no value from q in round k\}$
- 6: if received value $v \neq ?$ then
- value := v
- deliver value
- else if k = f + 1 or |faulty(p, k)| < k then 9:
- value := SF 10.
- deliver value
- if k = f + 1 then halt

Validity

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1, \ldots, k$

1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- if value \neq ? and delivered m in round k-1 then halt
- receive round k values from all
- $faulty(p,k) := faulty(p,k-1) \cup \{q \mid p$ received no value from q in round $k\}$
- 6: if received value $v \neq ?$ then
- value := n
- deliver value
- else if k = f + 1 or |faulty(p, k)| < k then
- 10: value := SF
- deliver value if k = f + 1 then halt

- If the sender is correct then it sends m to all in round 1
- By Validity of the underlying send and receive, every correct process will receive mby the end of round 1
- By the protocol, every correct process will deliver m by the end of round 1

Agreement - 1

Lemma 1

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1, \ldots, k$

1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? and delivered m in round k-1 then halt 4: receive round k values from all
- $\begin{array}{l} \textit{faulty}(p,k) := \textit{faulty}(p,k-1) \cup \{q \,|\, p \\ \texttt{received no value from } q \texttt{ in round } k \} \end{array}$
- if received value $v \neq ?$ then value := 1
- deliver value else if k = f + 1 or |faulty(p, k)| < k then
- 10: value := SF
- deliver value
- if k = f + 1 then halt

For any r > 1, if a process p delivers $m \neq$ SF in round r, then there exists a sequence of processes p_0, p_1, \ldots, p_r such that p_0 = sender, $p_r = p$, and in each round $k, 1 \leq k \leq r$, p_{k-1} sent m and p_k received it. Furthermore, all processes in the sequence are distinct, unless r=1and $p_0 = p_1 =$ sender

Lemma 2:

For any $r \ge 1$, if a process p sets value to SF in round r, then there exist some $j \leq r$ and a sequence of distinct processes $q_j, q_{j+1}, \ldots, q_r = p$ such that q_j only receives "?" in rounds 1 to j, $|faulty(q_i, j)| < j$, and in each round $k, j+1 \le k \le r$, q_{k-1} sends SF to q_k and q_k receives SF

Agreement - 2

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1,\ldots,k$

1: if p = sender then value := m else value:= ?

Process p in round $k, 1 \le k \le f+1$

- 2: send value to all
- 3: if value \neq ? and delivered m in round k-1 then halt
- 4: receive round k values from all
- 5: $Jauly(p, \kappa) := Jauly(p, \kappa 1) \cup \{q \mid p \\ received no value from q in round k\}$
- 6: if received value $v \neq ?$ then
- 7. value := a
- 8: deliver value
- 9: else if k = f + 1 or |faulty(p,k)| < k then
- 10: value := SF
- 11: deliver value
- 12: if k = f + 1 then halt

Lemma 3:

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Agreement - 2

Let faulty(p,k) be the set of processes that have failed to send a message to p in any round $1,\ldots,k$

1: if p = sender then value := m else value:= ?

Process p in round $k,1\!\leq\!k\!\leq\!f\!+\!1$

- 2: send value to all
- 3: if value \neq ? and delivered m in round k-1 then halt
- 4: receive round k values from all 5: $faulty(p, k) := faulty(p, k-1) \cup \{q \mid p\}$
- received no value from q in round k}
 6: if received value v ≠ ? then
- 7: value := v
- 8: deliver value
- : else if k = f + 1 or |faulty(p, k)| < k then
- 10: value := SF
 - deliver value
- 12: if k = f + 1 then halt
 - Lemma 3:

It is impossible for p and q, not necessarily correct or distinct, to set value in the same round r to m and SF, respectively

Proof

By contradiction

Suppose p sets value = m and q sets value = SF

By Lemmas 1 and 2 there exist p_0, \ldots, p_r $a_i = a_r$

with the appropriate characteristics Since q_j did not receive m from process p_{k-1} $1 \le k \le j$ in round k q_j must conclude that p_0, \ldots, p_{j-1} are all faulty processes

But then, $|faulty(q_j, j)| \ge j$

CONTRADICTION