Consensus and
Reliable Broadcast

Broadcast

@ If a process sends a message m, then every process
eventually delivers m

Po

i N
S

Py 6>\\\

Broadcast

@ If a process sends a message m, then every process
eventually delivers m

Broadcast

@ If a process sends a message m, then every process
eventually delivers m

Po

b1

b2

b3

@ How can we adapt the spec for an environment
where processes can fail? And what does “fail” mean?

Fail-stop O~

Send Omission @.

B benign failures

Validity

Agreement

Integrity

Termination

A hierarchy of

failure models
@ Crash

9

@ Receive Omission

General Omission

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Terminating
Reliable Broadcast

If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

If a correct process delivers a messagem,
then all correct processes eventually
deliver m

Every correct process delivers at most one
message, and if it delivers m , then
some process must have broadcast m
Every correct process eventually delivers
some message

Reliable Broadcast

Validity

Agreement

Integrity

Validity

Agreement

Integrity

Termination

If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

If a correct process delivers a messagem,
then all correct processes eventually
deliver m

Every correct process delivers at most one
message, and if it delivers m, then some
process must have broadcast m

Consensus

If all processes that propose a value
propose v, then all correct processes
eventually decide v

If a correct process decides v, then all
correct processes eventually decide v
Every correct process decides at most one
value, and if it decides v, then some
process must have proposed v

Every correct process eventually decides
some value

Properties of
send(m) and receive(m)

Benign failures:

Validity If psends mtogq, andp,q, and
the link between them are correct, then ¢
eventually receives m

Uniform* Integrity For any message m, q
receives m at most once from p, and only if p
sent m to ¢

* A property is uniform if it applies to both
correct and faulty processes

Questions, Questions...

@ Are these problems solvable at all?

@ Can they be solved independent of the failure
model?

@ Does solvability depend on the ratio between
faulty and correct processes?

@ Does solvability depend on assumptions about
the reliability of the network?

@ Are the problems solvable in both synchronous
and asynchronous systems?

@ If a solution exists, how expensive is it?

Properties of
send(m) and receive(m)

Arbitrary failures:

Integrity For any message m , if pand ¢
are correct then g receives m at most once
from p, and only if p sent m to ¢

Plan

@ Synchronous Systems

@ Consensus for synchronous systems with crash failures
@ Lower bound on the number of rounds

@ Reliable Broadcast for arbitrary failures with message
authentication

@ Lower bound on the ratio of faulty processes for
Consensus with arbitrary failures

@ Reliable Broadcast for arbitrary failures

@ Asynchronous Systems
@ Impossibility of Consensus for crash failures
@ Failure detectors
@ PAXOS

Model

@ Synchronous Message Passing
D Execution is a sequence of rounds

DIn each round every process takes a step
—sends messages to neighbors
—receives messages sent in that round
—changes its state

@ Network is fully connected (an n-clique)

@ No communication failures

An execution

A simple
Consensus algorithm

Process p;:

Initially V' = {v;}

To execute propose(v;)

1: send {v;} to all

decide(z) occurs as follows:

2: forall 5,0<5<n—1, j#1ido
3 receive S; from p;

4: V.=V uUS;

5: decide min(V)

An execution

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?

Pp1 b2 p3 2

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?

Pp1 b2 p3 2

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?

P1 b3 D4

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?

P1 D2 ps3 D4
M)

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?

Pp1 b2 p3 2

M)

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?

Pp1 b2 p3 2

M)

An execution

Suppose v; = v3 = vy at the end of round 1
Can p3 decide?
P1 D2 b3 Y2
M) -

Echoing values

@ A process that receives a proposal in round 1,
relays it to others during round 2.

Echoing values

@ A process that receives a proposal in round 1,

relays it to others during round 2.

@ Suppose p3 hasnt heard from p» at the end of

round 2. Can p3 decide?

What is going on

@ A correct process p* has not received all
proposals by the end of roundi. Canp*
decide?

@ Another process may have received the
missing proposal at the end of round i and
be ready to relay it in round ¢ + 1

Echoing values

@ A process that receives a proposal in round 1,

relays it to others during round 2.

@ Suppose p3 hasnt heard from p» at the end of

round 2. Can p3 decide?
y2

round 1

round 2

Dangerous Chains

Dangerous chain
The last process in the chain is correct, all
others are faulty

Po
-\ D1 round 1
\p2 round 2
\\

rounds 3...i — 1 P

~

\\\pifl

\Pi round ¢

Living dangerously The Algorithm

Code for process p;:
How many rounds can a dangerous chain span?
Initially V ={v;}
To execute propose(v;)
round k, 1<k<f+1
1: send fv €V : p; has not already sent v} to all
2:for all j, 0<j<n—1, j#£i do

3: receive S; from p;
O spans at most f rounds 4 Vi=VUS;

0 f faulty processes

O at most f+1 nodes in the chain

decide(z) occurs as follows:

It is safe fo decide by the end of round f+1! B: if ke f-1 then
6: decide min(V)

Termination and Termination and
Integrity Integrity

Initially V= {u;} Initially V ={u;}

To execute propose(v:) To execute propose(V:)
round k, 1<k<f+1 round k, 1<k<f+1

1: send {veV :p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do

3: receive S; from p;

4 Vi=VUS;

decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

1: send {fveV : p; has not already sent v} to all
2: forall j, 0<j<n—1, j#ido

3: receive S; from p;

4 Vi=VUS;

decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Every correct process
@reaches round f + 1

@Decides on min(V) --- which is well
defined

Termination and
Integrity

Initially V = {u;}

To execute propose(v:)
round k, 1<k<f+1
1: send {v€V : p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do
3 receive S; from p;
4 V=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Every correct process
@reaches round f + 1

@Decides on min(V) --- which is well
defined

At most one value:

Only if it was proposed:

Termination and
Integrity

Initially v

To execute propose(vi)
round k, 1<k<f+1
1: send {fveV : p; has not already sent v} to all
2: forall j,0<j<n—1, j#ido
3: receive S; from p;
4 Vi=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Every correct process
@reaches round f + 1

@Decides on min(V) --- which is well
defined

At most one value:
- one decide, and min(V) is unique

Only if it was proposed:

Termination and

Integrity Valicly?

Initially V ={u;}

To execute propose(vi)
round k, 1<k<f+1
1: send {veV :p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do
3 receive S; from p;
& Vi=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Every correct process
@ reaches round f+1

@ Decides on min(V) --- which is well
defined

At most one value:
- one decide, and min(V) is unique

Only if it was proposed:
- To be decided upon, must be in V at round f+1
- if value = vj, then it is proposed in round 1
- else, suppose received in round k. By induction:
=Rl
® by Uniform Integrity of underlying send
and receive, it must have been sent in round 1
® by the protocol and because only crash
failures, it must have been proposed
- Induction Hypothesis: all values received up fo
round k = j have been proposed
-k=j+1:
e sent in round j+1 (Uniform Integrity of send
and synchronous model)
® must have been part of V of sender at end
of round j
® by protocol, must have been received by sender
by end of round j
® by induction hypothesis, must have been proposed

Initially vV ={v;}

To execute propose(vi)
round k, 1<k<f+1

send {vE€V : p; has not already sent v} to all

1
2: forall j,0<j<n—1, j#i do
3: receive S; from p;
4: Vi=VUS;

decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Validity

Initially V = {u;}

To execute propose(v:)
round k, 1<k<f+1
1: send {v€V : p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do
3 receive S; from p;
4 V=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

@ Suppose every process proposes v*

@ Since only crash model, only v* can
be sent

@ By Uniform Integrity of send and
receive, only v™ can be received

@By protocol, V= { v*}
@min(V) = v*

@decide(v*)

Agreement

Initially V ={u;}

To execute propose(vi)
round k, 1<k<f+1
1: send {veV :p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do
3 receive S; from p;
& Vi=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Lemma 2:

Agreement

Initially vV ={v;}

To execute propose(vi)
round k, 1<k<f+1
1: send {fveV : p; has not already sent v} to all
2: forall j,0<j<n—1, j#ido
3: receive S; from p;
4 Vi=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Lemma 1
For any r>1, if a process p receives
a value v in round r, then there
exists a sequence of processes
D0, P1, - - -, Pr SUch that p.=p, po is
v’s proponent, and in each round
pr—1 Sends v and py receives it.
Furthermore, all processes in the
sequence are distinct.

Proof

By induction on the length of
the sequence

Agreement

Initially vV ={v;}

To execute propose(vi)
round k, 1<k<f+1
1: send {fveV : p; has not already sent v} to all
2: forall j, 0<j<n—1, j#ido
3: receive S; from p;
4 Vi=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Lemma 2:

Proof:

® Show that if a correct p has z in its Vat
the end of round f+1, then every correct p
has z in its V at the end of round f+1

In every execution, at the end of round f+1,
V; =V for every correct processes p; and p;

In every execution, at the end of round f+1,
V; =V for every correct processes p; and p;

Agreement follows from Lemma 2, since
min is a deterministic function

Agreement follows from Lemma 2, since
min is a deterministic function

Agreement

Initially V = {u;}

To execute propose(v:)
round k, 1<k<f+1
1: send {v€V : p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do
3 receive S; from p;
4 V=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Lemma 2:
In every execution, at the end of round f+1,
V; =V for every correct processes p; and p;

Agreement follows from Lemma 2, since
min is a deterministic function

Proof:

® Show that if a correct p has z in its Vat
the end of round f+1, then every correcp
has z in its V at the end of round f+1

e Let r be earliest round x is added to theV
of a correct p. Let that process be p*

o If r<f, then p* sends = in round r+1<f+1;
every correct process receives = and adds
to its Vin round r+1

Agreement

Proof:

Initially V ={u;}

To execute propose(vi)
round k, 1<k<f+1
1: send {veV :p; has not already sent v} to all
2 forall j,0<j<n—1, j#i do
3 receive S; from p;
& Vi=VUS;
decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

Lemma 2:
In every execution, at the end of round f+1,
V; =V for every correct processes p; and p;

Agreement follows from Lemma 2, since
min is a deterministic function

® Show that if a correct p has z in its Vat
the end of round f+1, then every correcp
has z in its V at the end of round f+1

e Let r be earliest round x is added to theV

of a correct p. Let that process be p*

o If »<f, then p* sends z in round r+1< f+1;
every correct process receives = and adds
to its V in round r+1

® What if r=f+17?

® By Lemma 1, there exists a sequence of
distinct processes po,...,pf+1 = p”*

e Consider processes po

e f+1 processes; only f faulty

® one of po pyis correct, and adds z to
its V before p*does it in round r

Agreement

Proof:

Initially vV ={v;}

To execute propose(vi)
round k, 1<k<f+1

send {ve€V : p; has not already sent v} to all
for all j, 0<j<n—1, j#i do

1
2:
3: receive S; from p;
4: Vi=VUS;

decide(x) occurs as follows:

5: if k=f+1 then
6: decide min(V)

® Show that if a correct p has x in its Vat
the end of round f+1, then every correcp
has z in its V at the end of round f+1

e Let r be earliest round x is added to theV
of a correct p. Let that process be p*

o If r<f, then p* sends z in round r+1<f+1;
every correct process receives x and adds
to its Vin round r+1

o What if r=f+17?

Lemma 2:

In every execution, at the end of round f+1,
V; =V for every correct processes p; and p;

Agreement follows from Lemma 2, since
min is a deterministic function

Terminating

Reliable Broadcast

Validity

Agreement

Integrity

Termination

If the sender is correct and broadcasts a
message m, then all correct processes
eventually deliver m

If a correct process delivers a messagem,
then all correct processes eventually
deliver m

Every correct process delivers at most one
message, and if it delivers m . then
some process must have broadcast m
Every correct process eventually delivers
some message

TRB for benign failures

Terminates in f+1 rounds

Sender in round 1:

iz

send m to all

How can we do better?

Process p in round Kk, 1<k < fl

1
2:
35
4:
5
6:
78
8:
Gk

10:

if delivered m in round k-1 and p # sender then find a PrOfOCOl whose round

send m to all

hat complexity is proportional to
receive round k messages t _.l,he number OF Failures

if received m then

deliver(m) that actually occurred-

K i rather than to f-the max
else if k = f+1 g

deliver(SF) number of failures that may
e occur

Early Stopping:
The Protocol

Let faulty(p,k) be the set of processes that have failed to send a message to
p in any round 1

1: if p = sender then value :=m else value:= ?
Process p in round k,1<k<f+1

send value to all
if value # ? and delivered m in round k—1 then halt
receive round k values from all
faulty(p, k) := faulty(p,k — 1)U {q| p received no value from ¢ in round k}
if received value v # ? then
value := v
deliver value
else if k= f+1 or |faulty(p, k)| < k then
10: value := SF
11: deliver value
12: if k=f+1 then halt

0 00 oy UIGERC

Early stopping:
the idea

@ Suppose processes can detect the set of
processes that have failed by the end of
round ¢

@ Call that set faulty(p,)

@ If|faulty(p,i)| < ithere can be no active
dangerous chains, and p can safely deliver SF

Termination

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1

1: if p= sender then value := m else value:= ?
Process p in round k,1<k<f+1

send value fo all
if value # 2 and delivered m in round k—1 then halt
receive round k values from all
faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢in round k}
if received value v# ? then

value := v

deliver value
else if k=f+1 or |faulty(p, k)| <k then

value := SF

deliver value

if k=f+1 then halt

Termination

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,...,k

@ If in any round a process
receives a value, then it
delivers the value in that
round

1: if p=sender then value := m else value:= ?
Process p in round k,1<k<f+1

send value fo all
if value # ? and delivered m in round k—1 then halt

receive round k values from all @ IF a proCeSS hC\S received
faulty(p, k) := faulty(p,k — 1)U {q|p o

received no value from ¢ in round k} only ? FOT' f+1 r‘ounds,
value := o then it delivers SF in

if received value v# ? then
deliver value

else if k=f+1 or |faulty(p, k)| <k then round f+1
value := SF
deliver value
if k=f+1 then halt

Validity

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,...,k

@ If the sender is correct then
it sends m to all in round 1

1: if p=sender then value := m else value:= ?

Process p in round k,1<k<f+1

@ By Validity of the underlying
send and receive, every
correct process will receive m
by the end of round 1

send value fo all
if value # ? and delivered m in round k—1 then halt
receive round k values from all
faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢in round k}
if received value v# ? then
value := v

R @ By the protocol, every correct
else If kdlior: gt) S PRREY process will deliver m by the
value := SF

deliver value end of round 1
if k=f+1 then halt

Validity

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1

1: if p= sender then value := m else value:= ?
Process p in round k,1<k<f+1

send value fo all
if value # 2 and delivered m in round k—1 then halt
receive round k values from all
faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢in round k}
if received value v# ? then

value := v

deliver value
else if k=f+1 or |faulty(p, k)| <k then

value := SF

deliver value

if k=f+1 then halt

Agreement - 1

Lemma 1

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1

1: if p= sender then value := m else value:= ?
Process p in round k,1<k<f+1

send value fo all
if value # 2 and delivered m in round k—1 then halt
receive round k values from all
faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢in round k}
if received value v# ? then

value := v

deliver value
else if k=f+1 or |faulty(p, k)| <k then

value := SF

deliver value

if k=f+1 then halt

For any r>1, if a process p delivers
m = SF in round r, then there exists a

that po = sender, p, = p, and in each
round k,1<k<r7, pr—1sent m and pi
received it. Furthermore, all processes
in the sequence are distinct, unless r=1
and po = p1 =sender

Lemma 2:
For any r>1, if a process p sets value
to SF in round r, then there exist
some j<r and a sequence of distinct
processes ¢;,qj+1 s =10
such that ¢; only receives “?” in
rounds 1 fo j, |faulty(q;,7)| < j. and in
each round k,j+1<k<r, qi_1 sends

SF to qxr and gi receives SF

Agreement - 2 Agreement - 2

Let faulty(p,k) be the set of processes that have

Let faulty(p,k) be the set of processes that have Proof
failed to send a message to pin any round 1,..., b

failed to send a message to p in any round 1
1: if p=sender then value := m else value:= ? 1: if p=sender then value := m else value:= ? By contradiction
Suppose p sets value = m and g sets

value = SF

Process p in round k, SRk Process p in round k,1 figg

send value fo all send value fo all

if value # ? and delivered m in round k—1 then halt : if value # ? and delivered m in round k—1 then halt By Lemmas 1 and 2 there exist

receive round k values from all
faulty(p, k) aulty(p,k — 1)U {qlp
received no value from ¢ in round k}
if received value v# ? then

receive round k values from all Pos .-y Pr
faulty(p, k) := faulty(p,k — 1)U {q|p ¢

received no value from ¢ in round &} e Ir
if received value v# ? then

value := v : value := v with the appropriate characteristics
deliver value : deliver value

sl ; P Since ¢; did not receive m from
else if +1 or |faulty(p, k)| <k then else if k=f+1 or |faulty(p, k)| <k then 3

value := SF 10: value := SF process px—1 1<k<j in round &k
deliver value i deliver value ik
if k=f+1 then halt 12: if k=741 then Nalt q; must conclude that pg,...,p;—1 are

Lemma 3: Pemmas: all faulty processes

It is impossible for p and ¢, not necessarily It is impossible for p and ¢, not necessarily But then, |faulty(q;,j)| > Jj
correct or distinct, to set value in the same correct or distinct, to set value in the same

round 7 fo m and SF, respectively round 7 to m and SF, respectively

