
Consensus and
Reliable Broadcast

Broadcast

If a process sends a message , then every process
eventually delivers m

m

Broadcast

If a process sends a message , then every process
eventually delivers

p0

p1

p2

p3

m

m

Broadcast

If a process sends a message , then every process
eventually delivers

How can we adapt the spec for an environment
where processes can fail? And what does “fail” mean?

p0

p1

p2

p3

m

m

A hierarchy of
failure models

Crash

Arbitrary failures with
message authentication

Arbitrary (Byzantine) failures

Send Omission

General Omission

Receive Omission

benign failures

Fail-stop

Reliable Broadcast

Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver

Agreement!! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver

Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers , then some
! ! process must have broadcast

m

m

m

m

m

m

Terminating
Reliable Broadcast

Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver

Agreement!! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver

Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers " SF, then
! ! some process must have broadcast

Termination !Every correct process eventually delivers
! ! some message

m

m

m

m

m

m

Consensus

Validity! ! If all processes that propose a value
! ! propose , then all correct processes
! ! eventually decide

Agreement!! If a correct process decides , then all
! ! correct processes eventually !decide
Integrity! ! Every correct process decides at most one
! ! value, and if it decides , then some
! ! process must have proposed

Termination !Every correct process eventually decides
! ! some value

v

v

v

v

v

v

Properties of
send(m) and receive(m)
Benign failures:

Validity If sends to , and , , and
the link between them are correct, then
eventually receives

Uniform* Integrity For any message ,
receives at most once from , and only if
sent to

* A property is uniform if it applies to both
 correct and faulty processes

m

m

m

m

m

p p

q

qq

q

q

pp

Properties of
send() and receive()

Arbitrary failures:

Integrity For any message , if and
are correct then receives at most once
from , and only if sent to

m qp

q

q m

mpp

mm

Questions, Questions…
Are these problems solvable at all?

Can they be solved independent of the failure
model?

Does solvability depend on the ratio between
faulty and correct processes?

Does solvability depend on assumptions about
the reliability of the network?

Are the problems solvable in both synchronous
and asynchronous systems?

If a solution exists, how expensive is it?

Plan
Synchronous Systems

Consensus for synchronous systems with crash failures

Lower bound on the number of rounds

Reliable Broadcast for arbitrary failures with message
authentication

Lower bound on the ratio of faulty processes for
Consensus with arbitrary failures

Reliable Broadcast for arbitrary failures

Asynchronous Systems
Impossibility of Consensus for crash failures
Failure detectors
PAXOS

Model

Synchronous Message Passing

Execution is a sequence of rounds

In each round every process takes a step
sends messages to neighbors
receives messages sent in that round
changes its state

Network is fully connected (an -clique)

No communication failures

n

A simple
Consensus algorithm

Initially

To execute propose()

1:!! send { } to all

decide() occurs as follows:

2: ! for all do

3:!!! receive from

4:!!! :=

5:!! decide min()

Process :pi

V = {vi}

pj

vi

vi

x

j, 0≤j≤n−1, j #= i

Sj

V ∪ SjV

V

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

v4

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

v4

v3v3

Suppose at the end of round 1
Can decide?

v1 = v3 = v4

p3

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

What is going on

A correct process has not received all
proposals by the end of round . Can
decide?

Another process may have received the
missing proposal at the end of round and
be ready to relay it in round

p
∗

p
∗

i

i + 1

i

Dangerous Chains

Dangerous chain
The last process in the chain is correct, all
others are faulty

round 1

round 2

rounds

round

p
∗

p
∗

p
∗

p
∗

p0

p1

p2

pi−1

pi

3...i − 1

i

Living dangerously

How many rounds can a dangerous chain span?

 faulty processes

at most nodes in the chain

spans at most rounds

It is safe to decide by the end of round !

f

f+1

f

f+1

The Algorithm

Initially
To execute propose()
! round
1:!!send { has not already sent } to all
2:!!for all do
3:!!! receive from
4:!!! :=
decide() occurs as follows:

5: if then

6: decide min()

Code for process :pi

k=f+1

j, 0≤j≤n−1, j #= i

k, 1≤k≤f+1

V ={vi}

v∈V : pi v

V

V ∪ Sj

Sj pj

vi

x

V

Termination and
Integrity

Termination

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Integrity
At most one value:

Only if it was proposed:

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round f + 1
Decides on min(V) --- which is well
defined

Integrity
At most one value:

 – one decide, and min(V) is unique

Only if it was proposed:

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Termination and
Integrity

Termination
Every correct process

reaches round
Decides on min(V) --- which is well
defined

Integrity
At most one value:

 – one decide, and min(V) is unique

Only if it was proposed:

 – To be decided upon, must be in V at round
 – if value = vi, then it is proposed in round 1

 – else, suppose received in round k. By induction:
 – :
 • by Uniform Integrity of underlying send
 and receive, it must have been sent in round 1
 • by the protocol and because only crash
 failures, it must have been proposed
 – Induction Hypothesis: all values received up to
 round k = j have been proposed
 – :
 • sent in round j+1 (Uniform Integrity of send
 and synchronous model)
 • must have been part of V of sender at end
 of round j
 • by protocol, must have been received by sender
 by end of round j
 • by induction hypothesis, must have been proposed

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

f+1

f+1

k = j+1

k = 1

Validity

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

Validity

Suppose every process proposes

Since only crash model, only can
be sent

By Uniform Integrity of send and
receive, only can be received

By protocol, = { }

min() =

decide()

v
∗

v
∗

v
∗

v
∗

v
∗

v
∗

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

V

V

Agreement

Lemma 1
For any , if a process receives
a value in round , then there
exists a sequence of processes
! ! such that , is
! .’s proponent, and in each round
! sends and receives it.
Furthermore, all processes in the
sequence are distinct.

Proof
By induction on the length of
the sequence

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

r≥1 p

v r

p0, p1, . . . , pr pr =p p0

v

pk−1 pkv

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round

• Let be earliest round is added to the
! of a correct . Let that process be

• If , then sends in round ;
! every correct process receives and adds
! to its in round

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

r x V

p p
∗

r≤f p
∗

x r+1≤f+1

x x

V r+1

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round

• Let be earliest round is added to the
! of a correct . Let that process be

• If , then sends in round ;
! every correct process receives and adds
! to its in round
• What if ?

Agreement follows from Lemma 2, since
min is a deterministic function

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

r

r=f+1

x V

p p
∗

r≤f p
∗

x r+1≤f+1

x x

V r+1

f+1

Vi =Vj pi pj

Agreement

Lemma 2:
!In every execution, at the end of round ,
! ! for every correct processes and

Proof:
• Show that if a correct has in its at
! the end of round , then every correct
! has in its at the end of round

• Let be earliest round is added to the
! of a correct . Let that process be

• If , then sends in round ;
! every correct process receives and adds
! to its in round
• What if ?
• By Lemma 1, there exists a sequence of
! distinct processes
• Consider processes
• processes; only faulty
• one of is correct, and adds to
! its before does it in round
CONTRADICTION!Agreement follows from Lemma 2, since

min is a deterministic function

p0, . . . , pf

p0, . . . , pf

Initially

To execute propose()

! round !
1:! ! send { has not already sent } to all

2:! ! for all do
3:! ! ! receive from

4:! ! ! :=

decide(x) occurs as follows:

5:! if then
6:! ! decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j #= i

v∈V : pi v

p x V

f+1 p

x V f+1

r

r=f+1

x V

p p
∗

r≤f p
∗

x r+1≤f+1

x x

V r+1

p0, . . . , pf+1 = p
∗

f+1 f

p
∗

r

x

V

f+1

Vi =Vj pi pj

Terminating
Reliable Broadcast

Validity! ! If the sender is correct and broadcasts a
! ! message , then all correct processes
! ! eventually deliver

Agreement!! If a correct process delivers a message ,
! ! then all correct processes eventually
! ! deliver

Integrity! ! Every correct process delivers at most one
! ! message, and if it delivers " SF, then
! ! some process must have broadcast

Termination !Every correct process eventually delivers
! ! some message

m

m

m

m

m

m

TRB for benign failures

Sender in round 1:
1:! send m to all

Process p in round ! k, 1 # k # f+1! !

1:! if delivered m in round k-1 and p " sender then
2:! ! send m to all

3:! ! halt
4:! receive round k messages

5:! if received m then
6:! ! deliver(m)
7:! ! if k = f+1 then halt

8:! else if k = f+1
9:! ! deliver(SF)

10:!! halt

Terminates in rounds

 How can we do better?
find a protocol whose round
complexity is proportional to
! –the number of failures
that actually occurred–
rather than to ..–the max
number of failures that may
occur

f

f+1

t

Early stopping:
the idea

Suppose processes can detect the set of
processes that have failed by the end of
round

Call that set

If there can be no active
dangerous chains, and can safely deliver SF

faulty(p, i)

|faulty(p, i)| < i

p

i

Early Stopping:
The Protocol

Let be the set of processes that have failed to send a message to
! ! in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ? and delivered in round then halt

4:! receive round values from all
5:! { | received no value from in round }

6: if received value " ? then

7:!! value :=

8:!! deliver value
9:! else if or then

10:! ! value := SF

11:!! deliver value

12:! ! if then halt

|faulty(p, k)| < k

1, . . . , k

k, 1≤k≤f+1

p

p

k

p

v

k=f+1

k=f+1

v

k−1

m

m

pq q k

faulty(p, k)

faulty(p, k) := faulty(p, k − 1)∪

Termination

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Termination

If in any round a process
receives a value, then it
delivers the value in that
round

If a process has received
only “?” for rounds,
then it delivers SF in
round

f+1

f+1

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Validity

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Validity

If the sender is correct then
it sends to all in round 1

By Validity of the underlying
send and receive, every
correct process will receive
by the end of round 1

By the protocol, every correct
process will deliver by the
end of round 1

m

m

m

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Agreement - 1
Lemma 1:

! For any , if a process delivers
! ! SF in round r, then there exists a
sequence of processes such
that = sender, , and in each
round , sent and
received it. Furthermore, all processes
in the sequence are distinct, unless
and sender

Lemma 2:

! For any , if a process sets value
to SF in round , then there exist
some and a sequence of distinct
processes !

! such that only receives “?” in

rounds 1 to , , and in
each round , sends

SF to and receives SF

p0, p1, . . . , pr

p0 pr = p

pk−1 pk

p0 = p1 =

m

m

qj , qj+1, . . . , qr = p

qj

qk qk

qk−1

|faulty(qj , j)| < j

k, j+1≤k≤r

j≤r

k, 1≤k≤r

r≥1 p

r=1

r≥1 p

r

j

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

Agreement - 2

Lemma 3:
! It is impossible for and , not necessarily

correct or distinct, to set value in the same
round to and SF, respectively

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

qp

mr

Agreement - 2
Proof

By contradiction
Suppose sets value = and sets
value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics
Since did not receive from
process in round

 must conclude that are
all faulty processes
But then,

CONTRADICTION

p0, . . . , pr

qj , . . . , qr

|faulty(qj , j)| ≥ j

p0, . . . , pj−1

pk−1

qj

qj

mp q

Lemma 3:
! It is impossible for and , not necessarily

correct or distinct, to set value in the same
round to and SF, respectively

qp

m

m

1≤k≤j k

k−1

Let be the set of processes that have
failed to send a message to in any round

1:! if = sender then value := else value:= ?

Process in round !

2:! send value to all
3:! if value " ?! and delivered in round then halt
4:! receive round values from all
5:! { |
 received no value from in round }
6:! if received value " ? then
7:! ! value :=
8:! ! deliver value
9:! else if or then
10:! ! value := SF
11:! ! deliver value
12:! ! if then halt

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

m

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

r

