
Program Representation

Last Time

• Live variable analysis

• Constant propagation
leads us to SSA and how to connect uses and def

Today

• Finish constants

• Goal: understand control flow more deeply to
build SSA

• Dominator relationships

• DOM, IDOM, DOM−1, DOM!, post-dominators

• Control Dependence

CS 380C Lecture 6 1 Program Representation

Dominator Relationships

Dominators

x dominates y, x DOM y, in a CFG if ∀ paths from
Entry to y include x.

DOM(v) = the set of all vertices that dominate v.

• All vertices dominate themselves, v ∈ DOM(v).

• Entry dominates every vertex in the graph,
∀v Entry ∈ DOM(v).

• DOM is reflexive, antisymmetric, and transitive.

Strict Dominators

• DOM!(v) = DOM(v) - {v}, strictly dominates v

• antisymmetric and transitive

Immediate Dominator

• IDOM(v) = the closest, strict dominator of v.
d IDOM v if

d DOM! v and (∀w ∈ w DOM! v) [w DOM d]

• antisymmetric

CS 380C Lecture 6 2 Program Representation



Dominator Example

  B

C D

E

F

A - entry

G - exit

v DOM(v) DOM! (Strict) IDOM(v)
A
B
C
D
E
F
G

CS 380C Lecture 6 3 Program Representation

Dominator Tree

G − exit

  B

C D

E

F

A − entry

G − exit

  B

C D

E

F

A − entry

CS 380C Lecture 6 4 Program Representation



Dominator Relationships

Theorem: IDOM(v) is unique, i.e., a singleton.

Proof: by contradiction. Suppose c IDOM v and
d IDOM v. By definition, c 6= v and d 6= v, so
c DOM! v and d DOM! v. By definition of IDOM,

d DOM! v and (∀w ∈ w DOM! v) [w DOM d].

Thus, c DOM d and d DOM c, but DOM is
antisymmetric, a contradiction if c 6= d. c and d must
therefore be the same vertex.

Inverse Dominators

• DOM−1(v) = the set of all vertices dominated by
v.

• reflexive, antisymmetric, and transitive

CS 380C Lecture 6 5 Program Representation

Inverse Dominator Example

G − exit

  B

C D

E

F

A − entry

G − exit

  B

C D

E

F

A − entry

v DOM(v) DOM−1(v)
A {A}
B {A,B}
C {A,B,C}
D {A,B,D}
E {A,B,E}
F {A,B,E,F}
G {A,B,E,G}

CS 380C Lecture 6 6 Program Representation



Finding Dominators

DOM(v) = the set of all vertices that dominate v.

DOM(v) = {v}∪
\

p∈PRED(v)

DOM(p)

Algorithm:

DOM(Entry) = { Entry }
for v ∈V −{ Entry } do DOM(v) = V
repeat

changed = false
for n ∈V −{ Entry } do

olddom = DOM(n)

DOM(n) = {n}∪
\

p∈PRED(v)

DOM(p)

if DOM(n) 6= olddom then changed = true
endfor

until changed = false

Complexity: O(N2)

CS 380C Lecture 6 7 Program Representation

Dominator Algorithm Example

G − exit

  B

C D

E

F

A − entry

G − exit

  B

C D

E

F

A − entry

DOM(v) iteration: 0 1 2

A {A}
B {A,B,C,D,E,F,G}
C {A,B,C,D,E,F,G}
D {A,B,C,D,E,F,G}
E {A,B,C,D,E,F,G}
F {A,B,C,D,E,F,G}
G {A,B,C,D,E,F,G}

CS 380C Lecture 6 8 Program Representation



Post-Dominators

CFG = 〈V,E, Entry, Exit 〉

(∀v ∈V )[v
∗
→ Exit]

Exit is reachable from all other nodes

PDOM(v): all nodes that post-dominate v
p post-dominates v, if every path from v to Exit

includes p

• p PDOM v implies v
∗
→Exit can be split into v

∗
→ p

and p
∗
→ Exit

• reflexive, antisymmetric, and transitive

• PDOM on CFG is the same as DOM on the
reverse CFG

strict post-dominators

• p PDOM! v ⇐⇒ p PDOM v & p 6= v

post-dominance frontier

• v ∈ PDF(p) if p PDOM SUCC(v)
but p is not p PDOM! v

CS 380C Lecture 6 9 Program Representation

Post-Dominator Example

G − exit

  B

C D

E

F

A − entry

G − exit

  B

C D

E

F

A − entry

CS 380C Lecture 6 10 Program Representation



Control Dependence Graph - Gcd

y is control dependent on x, x and y in CFG, if:

• ∃ x
∗
→ y, y post-dominates every vertex p in x

∗
→ y,

p 6= x, and

• y does not strictly post-dominate x.

• (x,y)l has label l, the first edge on x
∗
→ y.

CDPRED(y) = {x | y is control dependent on x}
CDSUCC(x) = {y | y is control dependent on x}

Note: add edge (entry, exit) in CFG

CS 380C Lecture 6 11 Program Representation

Control Dependence Example

G − exit

  B

C D

E

F

A − entry

G − exit

  B

C D

E

F

A − entry

CS 380C Lecture 6 12 Program Representation



Aside: we need a basic block for code motion

Entry

i = i + 1
if (c < 0)

b = |c| + b b = c+ b

c = c + 2i
m = n

if (i < n)

Exit

T F

T

F

• landing pad

• control dependence graph

CS 380C Lecture 6 13 Program Representation

Landing pad (Preheaders)

3

4

5

1 2 1 2

3

4

5

PH

CS 380C Lecture 6 14 Program Representation



Next Time

Static Single Assignment

Read: Cytron et al. ”Efficiently Computing Static
Single Assignment Form and the Control Dependence
Graph, TOPLAS 13(4), Oct 1991, pp. 451-490.

CS 380C Lecture 6 15 Program Representation


