Program Representation

Last Time

- Live variable analysis
- Constant propagation leads us to SSA and how to connect uses and def

Today

- Finish constants
- Goal: understand control flow more deeply to build SSA
- Dominator relationships
- DOM, IDOM, DOM⁻¹, DOM!, post-dominators

1

• Control Dependence

Dominator Relationships

Dominators

x dominates y, x DOM y, in a CFG if \forall paths from Entry to y include x.

DOM(v) = the set of all vertices that dominate v.

- All vertices dominate themselves, $v \in DOM(v)$.
- *Entry* dominates every vertex in the graph, $\forall v \ Entry \in DOM(v)$.
- DOM is reflexive, antisymmetric, and transitive.

Strict Dominators

- $DOM!(v) = DOM(v) \{v\}$, strictly dominates v
- antisymmetric and transitive

Immediate Dominator

IDOM(v) = the closest, strict dominator of v.
 d IDOM v if

 $d \text{ DOM! } v \text{ and } (\forall w \in w \text{ DOM! } v) [w \text{ DOM } d]$

2

• antisymmetric

CS 380C Lecture 6

Program Representation

CS 380C Lecture 6

v	DOM(v)	DOM! (Strict)	IDOM(v)	
Α				
В				
С				
D				
Е				
F				
G				

3

CS 380C Lecture 6

Program Representation

Dominator Tree

4

CS 380C Lecture 6

Dominator Relationships

Theorem: IDOM(v) is unique, *i.e.*, a singleton.

Proof: by contradiction. Suppose *c* IDOM *v* and *d* IDOM *v*. By definition, $c \neq v$ and $d \neq v$, so *c* DOM! *v* and *d* DOM! *v*. By definition of IDOM,

 $d \text{ DOM! } v \text{ and } (\forall w \in w \text{ DOM! } v) [w \text{ DOM } d].$

Thus, c DOM d and d DOM c, but DOM is antisymmetric, a contradiction if $c \neq d$. c and d must therefore be the same vertex.

Inverse Dominator Example

6

Inverse Dominators

DOM⁻¹(v) = the set of all vertices dominated by v.

5

• reflexive, antisymmetric, and transitive

CS 380C Lecture 6

Program Representation

CS 380C Lecture 6

Finding Dominators

Dominator Algorithm Example

DOM(v) = the set of all vertices that dominate v.

$$\mathsf{DOM}(v) = \{v\} \cup \bigcap_{p \in \mathsf{PRED}(v)} \mathsf{DOM}(p)$$

Algorithm:

 $DOM(Entry) = \{ Entry \}$ for $v \in V - \{ Entry \}$ do DOM(v) = Vrepeat changed = falsefor $n \in V - \{ Entry \}$ do olddom = DOM(n) $DOM(n) = \{n\} \cup \bigcap_{p \in PRED(v)} DOM(p)$ if $DOM(n) \neq olddom$ then changed = trueendfor
until changed = false

7

Complexity: $O(N^2)$

CS 380C Lecture 6

Program Representation

CS 380C Lecture 6

Α

В

С

D

Е

F

G

 $\{A\}$

 $\{A, B, C, D, E, F, G\}$

 $\{A, B, C, D, E, F, G\}$

8

Post-Dominators

 $CFG = \langle V, E, Entry, Exit \rangle$

 $(\forall v \in V)[v \xrightarrow{*} Exit]$ Exit is reachable from all other nodes

PDOM(v): all nodes that post-dominate v

 $\ensuremath{\textit{p}}$ post-dominates $\ensuremath{\textit{v}},$ if every path from $\ensuremath{\textit{v}}$ to $\ensuremath{\textit{Exit}}$ includes $\ensuremath{\textit{p}}$

- $p \text{ PDOM } v \text{ implies } v \xrightarrow{*} Exit \text{ can be split into } v \xrightarrow{*} p$ and $p \xrightarrow{*} Exit$
- reflexive, antisymmetric, and transitive
- PDOM on *CFG* is the same as DOM on the reverse *CFG*

9

strict post-dominators

• $p \text{ PDOM! } v \iff p \text{ PDOM } v \& p \neq v$

post-dominance frontier

 v ∈ PDF(p) if p PDOM SUCC(v) but p is not p PDOM! v

Post-Dominator Example

10

CS 380C Lecture 6

Program Representation

CS 380C Lecture 6

Control Dependence Graph - G_{cd}

y is control dependent on x, x and y in CFG, if:

• $\exists x \xrightarrow{*} y$, y post-dominates every vertex p in $x \xrightarrow{*} y$, $p \neq x$, and

11

- *y* does not strictly post-dominate *x*.
- $(x,y)_l$ has label l, the first edge on $x \xrightarrow{*} y$.

 $CDPRED(y) = \{x \mid y \text{ is control dependent on } x\}$ $CDSUCC(x) = \{y \mid y \text{ is control dependent on } x\}$

Note: add edge (entry, exit) in CFG

Control Dependence Example

12

CS 380C Lecture 6

Program Representation

CS 380C Lecture 6

13

- landing pad
- control dependence graph

Landing pad (Preheaders)

14

CS 380C Lecture 6

Program Representation

CS 380C Lecture 6

Next Time

Static Single Assignment

Read: Cytron et al. "Efficiently Computing Static Single Assignment Form and the Control Dependence Graph, TOPLAS 13(4), Oct 1991, pp. 451-490.

CS 380C Lecture 6

15