Optimization

Last Time

Building SSA

- Basic definition, and why it is useful
- How to build it

Today

- Putting SSA to work
- Analysis and Transformation
 - Analysis proves facts about programs
 - Transformation changes the program to make it "better" while preserving its semantics
- SSA Loop Optimizations
 - Loop Invariant Code Motion
 - Induction variables
 - While we do the above, let's think about comparing SSA with dataflow def/use chains.

1

Loop Optimization

Loops are important, they execute often

typically, some regular access pattern

regularity \Rightarrow opportunity for improvement repetition \Rightarrow savings are multiplied

• assumption: loop bodies execute 10 depth times

Classical Loop Optimizations

- Loop Invariant Code Motion
- Induction Variable Recognition
- Strength Reduction
- Linear Test Replacement
- Loop Unrolling

Other Loop Optimizations

- Scalar replacement
- Loop Interchange
- Loop Fusion
- Loop Distribution (also known as Fision)

2

- Loop Skewing
- Loop Reversal

CS 380C Lecture 8

Optimizations with SSA

CS 380C Lecture 8

Loop Invariant Code Motion

- Build the SSA graph
- Need Briggs-minimal insertion of φ-nodes
 - If two non-null paths $X \xrightarrow{+} Z$ and $Y \xrightarrow{+} Z$ converge at node Z, and nodes X and Y contain assignments to V (in the original program), then a ϕ -node for V must be inserted at Z (in the new program).

and V must be live across some basic block

Simple test:

for a statement s, none of the operands point to a ϕ -node or a definition inside the loop.

Transformation:

Given, $l = r_1$ op r_2 , assign the computation a new temporary name, $t_k = r_1$ op r_2 , move it to the loop pre-header, and assign $l = t_k$.

3

Loop Invariant Code Motion Example I

4

CS 380C Lecture 8

Optimizations with SSA

CS 380C Lecture 8

Loop Invariant Code Motion

More invariants:

- Start at roots in loop
- If the operands point to a definition inside loop, and that definition is a function of loop invariants (*recursive definition*).
- Do the same replacement as in the simple test as each invariant expression is found.

Loop Invariant Code Motion Example II

6

After we finish the example, let's think about using use/def chains from dataflow for loop invariant code motion.

5

Any more?

CS 380C Lecture 8

Optimizations with SSA

CS 380C Lecture 8

Induction Variable Recognition

- What is a loop induction variable?
- Why might we want to detect one?

i = 0while i < 10 do

i = i + 1end while

Simplest Method:

Pattern match for "i = i + b" in loop and look at the DEF/USE chains to determine there are no other assignment to i in loop.

7

Problem: Does not catch all induction variables.

Taxonomy of Induction Variables

- 1. A *basic* induction variable is a variable J
 - whose only definition within the loop is an assignment of the form J := J \pm c, where c is loop invariant).
- 2. A *mutual* induction variable I is
 - defined *once* within the loop, and its value is a linear function of some other induction variable(s) I' such that

I = c1 * I'
$$\pm$$
 c2

or

 $I = I' / c1 \pm c2.$ where c1, c2 are loop invariant.

8

CS 380C Lecture 8

Optimizations with SSA

CS 380C Lecture 8

Optimistic Induction Variable Recognition

Optimistic Induction Variables

$IV = \emptyset$	
for each statement s in the loop	
<pre>if op is ADD, SUB, or NEG add s to IV if op is LOAD or STORE & address is loop invariant add s to IV</pre>	i = 0 k = 0 loop
end for	
repeat	
changes = false for each s in IV if either operand is not in IV	j = k + 1 k = j + 2
changes = true endif	i = i * 2
end for until ¬ changes	end loop

Finds linear induction variables. Catches mutual induction variables. Does not exploit SSA

9

CS 380C Lecture 8

Optimizations with SSA

CS 380C Lecture 8

Loop Induction Variables with SSA	Loop Induction Variabl	Loop Induction Variables Example I		
Build the SSA graphGoing from the innermost to the outermost loop	i = 1	$i_1 = 1$		
• Find cycles in the graph	loop	loop		
Each cycle may be a basic induction variable		$i_2 = \phi(i_1, i_3)$		
If the variable(s) in the cycle is a function of loop invariants and its value on the current iteration, <i>i.e.</i> , φ is a function of an <i>initialized</i> variable and an instance of V in the cycle.	$\dots (i) \dots$ $i = i + 1$	$ (i_2)$ $i_3 = i_2 + 1$		
 Other induction variables can depend on basic induction variables. 	(i) end loop	\dots (i_3) \dots end loop		

CS 380C Lecture 8

11 Optimizations with SSA

CS 380C Lecture 8

Loop Induction Variables with SSA			Loop Induction Varia	Loop Induction Variables Example II		
Are the variable(s) ir invariants and its val	n the cycle ue on the	a function of loop current iteration?	<i>i</i> = 3		$i_1 = 3$	
 The φ-node in the cycle will take one definition from inside the loop and one from outside the loop (assuming φ-nodes with only two inputs). 			m = 0loop	m = 0loop		
 Two statement loop will be part operand from th loop invariant. 	cycle: The of the cyc e ¢-node a	definition inside the cle and will get one nd any others will be			$i_2 = \phi (i_1, i_3)$ $m_2 = \phi (m_1, m_3)$ $i_1 = 2$	
 Larger cycles: O chain as follows: 	ther defini	tions in the cycle will	j = 3 $i = i + 1$		$j_1 = 3$ $i_3 = i_2 + 1$	
$i_2 = \phi(i_0, i_1)$			l = m + 1		$l_1 = m_2 + 1$	
$j = i_2 \pm c 1$			m = l + 2		$m_3 = l_1 + 2$	
$k = j \pm c2$			j = i + 2		$j_2 = i_3 + 2$	
$r = a \pm c6$			k = 2 * j		$k_1 = 2 * j_2$	
$i_1 = r \pm c7$			end loop		end loop	
The definition at	tφis the b	asic induction variable.				
Mutual inductior induction variabl basic variable, th they are not in a $j = c1 * i \pm c2$ wher	n variables es. If they ney must fo a cycle, the re <i>i</i> is an in	are functions of other are in a cycle with a blow the above form. If ey can take the form duction variable.				
CS 380C Lecture 8	13	Optimizations with SSA	CS 380C Lecture 8	14	Optimizations with SSA	

Next Time

Optimizating expressions

- common subexpression elimination
- value numbering

CS 380C Lecture 8

Optimizations with SSA

15