
Graph Coloring Register Allocation

Last Time

• Chaitin et al.

• Briggs et al.

Today

• Finish Briggs et al. basics

• An improvement: rematerialization

CS 380C Lecture 13 1 Register Allocation

Rematerialization

Some expressions are especially simple to recompute:

• Operands are constant
(though not necessarily known)

• Operands are available globally

Chaitin calls these expressions never-killed

Typical examples include:

• Constant

• Constant + frame pointer

• Load of constant parameter

• Load from constant pool

• Access through display

CS 380C Lecture 13 2 Register Allocation



Rematerialization

We should recognize that these are cheaper before we
try to color

Helps resolve spill choices correctly

Original

p← 123

y← y+[p]

p← p+1

Ideal

p← 123
y← y+[p]

p← 123

p← p+1

CS 380C Lecture 13 3 Register Allocation

What we get

Chaitin

p← 123
spill p

reload p
y← y+[p]

reload p
p← p+1
spill p

Chow - Spitting

p← 123
spill p

reload p
y← y+[p]

reload p

p← p+1

CS 380C Lecture 13 4 Register Allocation



Live Ranges and Values

Chaitin’s allocator works with live ranges

A live range may include many values, connected by
common uses

A value corresponds to a single definition, including
the merge of two values

You should be thinking:

Hmmm, smells like SSA or something, . . .

Chaitin’s allocator can handle rematerializing a live
range with a single value

CS 380C Lecture 13 5 Register Allocation

The Plan

To discover and isolate rematerializable values:

• Find values
(use pruned SSA graph)

• Tag values according to definition

• Propagate tags
(use sparse simple constant algorithm)

• Union connected values if tags are identical

CS 380C Lecture 13 6 Register Allocation



A Lattice

Lattice elements may have one of three types:

⊤ No information is known – a value defined by a
copy instruction or a φ-node has an initial tag of ⊤

inst A value defined by an appropriate instruction
(never-killed) should be rematerialized – the
value’s tag is just a pointer to the instruction

⊥ Value cannot be rematerialized – values defined
by “inappropriate” instructions are immediately
tagged with ⊥

⊤

inst1 inst2 inst3 instn

⊥

CS 380C Lecture 13 7 Register Allocation

The Meet Operation

The meet operation ⊓ is

any ⊓ ⊤ = any
any ⊓ ⊥ = ⊥
insti ⊓ inst j = insti if insti = inst j

insti ⊓ inst j = ⊥ if insti 6= inst j

insti = inst j compares the instructions on an
operand-by-operand basis

Since our instructions have only 2 operands,
asymptotic complexity is not affected

CS 380C Lecture 13 8 Register Allocation



Conservative Coalescing Example

We remove splits where the source and destination
values have the same tag

SSA

p0← 123

y← y+[p0]

p1← φ(p0, p2)
p2← p1 +1

Splits

p0← 123

y← y+[p0]

p1← p0

p2← p1 +1
p1← p2

Minimal

p0← 123

y← y+[p0]

p12← p0

p12← p12 +1

Similarly, we remove copies if the source and
destination values have identical inst tags

CS 380C Lecture 13 9 Register Allocation

Undoing Splits

Briggs claims that they end up with splits placed
perfectly

All never-killed values are isolated with the minimum
number of splits

Nevertheless, some of the splits (copies) are never
required

• Conservative coalescing

• Biased coloring

CS 380C Lecture 13 10 Register Allocation



Briggs’ phases

renumber Find all distinct live ranges and number
them uniquely

build Construct the interference graph

coalesce For each copy where the source and
destination live ranges don’t interfere, union the
two live ranges and remove the copy

spill costs Estimate the dynamic cost for spilling each
live range

simplify Repeatedly remove nodes with degree < k
from the graph and push them on a stack. When
necessary, choose spill candidates and push them
on the stack

select Reassemble the graph with nodes popped from
the graph. As each node is added to the graph,
choose a color differing from neighbors in the
graph. If no color is available, the node is left
uncolored

spill code Spill uncolored nodes by inserting a load or
store at each use or definition

CS 380C Lecture 13 11 Register Allocation

Conservative Coalescing

Two rounds of coalescing

1. Coalesce copies (subsumption)

2. Conservatively coalesce splits

Note that each round of coalescing may be repeated
several times

Conservative coalescing removes splits when it doesn’t
hurt colorability

The conservative approximation is to remove a split if
the resulting live range has < k neighbors of degree ≥ k

CS 380C Lecture 13 12 Register Allocation



Biased Coloring

We also modify select slightly

Select (re)assembles the graph 1 node at a time

As each node is added to the graph, we choose a color
that differs from any neighbor

With biased coloring, we try to choose a color that
helps remove a split

An additional refinement

limited lookahead Avoid choosing colors that an
uncolored partner can’t use

CS 380C Lecture 13 13 Register Allocation

Results

Dynamic measurements on 70 routines (mostly SPEC
Fortran)

On a (simulated) machine with 16 integer registers
and 16 floating-point registers

Counting loads, stores, copies, ldi’s, addi’s contributing
to spill costs

• New < Old – 28 routines

• New > Old – 2 routines

The new allocator is typically slightly slower (compile
time) due to

• Propagation of tags

• Conservative coalescing

Occasionally, the new allocator is faster because of
simplified coalescing

CS 380C Lecture 13 14 Register Allocation



Rematerialization

A natural, low-cost extension to Chaitin’s ideas on
rematerialization

Handles complex live ranges that are wholly or partially
rematerializable

Especially significant to splitting allocators (e.g.,

Chow)

• A simple adaptation of Wegman and Zadeck’s
sparse simple constant propagation algorithm

• Other required engineering changes

• Results showing that significant opportunities for
rematerialization occur in practice

CS 380C Lecture 13 15 Register Allocation

Next Time

Read: Traub, Holloway, and Smith, “Quality and
Speed in Linear-scan Register Allocation,” ACM

SIGPLAN ’98 Conference on Programming Language

Design and Implementation, June 1998, pp. 142-151.

CS 380C Lecture 13 16 Register Allocation


