
Dependence Analysis

Last Time:

• Brief introduction to interprocedural analysis

Today:

Optimization for parallel machines and memory
hierarchies

• Dependence analysis

• Loop transformations

• an example - McKinley, Carr, Tseng
loop transformations to improve cache
performance

After that:

• TRIPS Architecture and Compiler (scheduling)
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Dependence Examples

do I = 2, 100
A(I) = A(I-1) + 1

enddo

do I = 1, 100
A(I) = A(I) + 1

enddo

...

...

 51 2 3 4

 51 2 3 4

I

I

Can either of these loops be performed in parallel?

A loop-independent dependence exists regardless of
the loop structure. They do not inhibit parallelization,
but they do affect statement ordewhichr with a loop.

A loop-carried dependence is induced by the iterations
of a loop and prevents safe loop parallelization.
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Dependence Classification

S1 δ S2

True (flow) dependence
occurs when S1 writes a memory location that S2
later reads.

Anti dependence
occurs when S1 reads a memory location that S2
later writes.

Output dependence
occurs when S1 writes a memory location that S2
later writes.

Input dependence
occurs when S1 reads a memory location that S2
later reads. (Input dependences do not restrict
statement order.)
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Dependence Analysis Question

Given

DO i1 = L1,U1
. . .

DO in = Ln,Un

S1 A( f1(i1, . . . , in), . . . , fm(i1, . . . , in)) = . . .

S2 . . . = A(g1(i1, . . . , in), . . . ,gm(i1, . . . , in))

A dependence between statement S1 and S2, denoted
S1δS2, indicates that S1, the source, must be executed
before S2, the sink on some iteration of the nest.

Let α & β be a vector of n integers within the ranges
of the lower and upper bounds of the n loops.

Does ∃ α ≤ β, s.t.

fk(α) = gk(β) ∀k, 1≤ k ≤ m ?
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Iteration Space

do I = 1, 5
do J = I, 6

. . .

enddo
enddo

1 ≤ I ≤ 5
I ≤ J ≤ 6

J

I

• Lexicographical (sequential) order

(1,1), (1,2), . . ., (1,6)
(2,1), (2,2), . . . (2,6)
. . .

(5,1), (5,2), . . . (5,6)

• Given I = (i1, . . . in) and I′ = (i′1, . . . , i
′
n),

I < I′ iff

(i1, i2, . . . ik) = (i′1, i
′
2, . . . i′k) & ik+1 < i′k+1
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Distance & Direction Vectors

do I = 1, N
do J = 1, N

S1 A(I,J) = A(I,J-1) + 1
enddo

enddo

do I = 1, N
do J = 1, N

S2 A(I,J) = A(I-1,J-1) + 1
S3 B(I,J) = B(I-1,J+1) + 1

enddo
enddo

I

J

I

J
Distance Vector: number of iterations between

accesses

Direction Vector: direction in the iteration space

distance vector direction vector

S1 δ S1

S2 δ S2

S3 δ S3
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Which Loops are Parallel?

do I = 1, N
do J = 1, N

S1 A(I,J) = A(I,J-1) + 1

do I = 1, N
do J = 1, N

S2 A(I,J) = A(I-1,J-1) + 1

do I = 1, N
do J = 1, N

S3 B(I,J) = B(I-1,J+1) + 1 J

I

• A dependence D = (d1, . . . ,dk) is carried at level i, if
di is the first nonzero element of the
distance/direction vector.

• A loop li is parallel, if 6 ∃ a dependence D j carried
at level i. Either

distance vector direction vector
∀D j d1, . . . ,di−1 > 0 d1, . . . ,di−1 = “ <′′

OR d1, . . . ,di = 0 d1, . . . ,di = “ =′′

CS 380C Lecture 23 7 Dependence Analysis

Approaches to Dependence Testing

• Can we solve this problem exactly?

• What is conservative in this framework?

• Restrict the problem to consider index and bound
expressions that are linear functions

=⇒ solve general system of linear equations
NP-complete

Solution Methods

• Cascade of exact, efficient tests (if they fail, use
inexact methods)

◦ Rice

◦ Stanford

• Inexact methods

◦ GCD

◦ Banerjee’s inequalities (Illinois)

◦ Fourier-Motzkin (Pugh)
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Greatest Common Denominator (GCD) - Inexact
test

do i = 1, N
a(2i+1) = a(8i+3) + a(4i)

enddo

f (I) = 2i+1
g(I′) = 8i′+3

f (I) = 2i+1
g(I′) = 4i′

let f (I) = α0+α1i1+ . . .+αkik
g(I′) = β0+β1i′1 + . . .+βki′k

• Test for integer solutions to f (I) = g(I′)

α1i1−β1i′1 + . . .α1ik −β1i′k = α0−β0

• ∃ a solution iff

gcd(α1, . . . ,αk,β1, . . . ,βk) = |α0−β0|

• If the gcd = 1, what do we know?

• If the gcd > 1, we test to determine if the index
expression ranges over that value, if so
=⇒ ∃ a dependence.
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Banerjee - Inexact test

• Tests for a real solution to the integer equations

• For example, given a single index variable in the
subscripts (e.g., 2i and i+3) determines if the
lines intersect at a real or integer point.

let h(I, I′) = αI −βI′, h+
i (Ik, I′k) = maxRk

h(Ik, I′k)
h−i (Ik, I′k) = minRk

h(Ik, I′k)

Ik D I′k is the relation imposed by the direction
vector element (either <, >, or =)

Banerjee’s inequality

• For a given direction vector D, ∃ a real solution to
αI −βI′ iff n

∑
i=1

H−
i −Di ≤ β0−α0 ≤

n

∑
i=1

H+
i +Di

Direction Vector Hierarchy:

(  ,   ) (  ,   ) (  ,   )

(  ,   ) (  ,   ) (  ,   )

(  ,   )* *

* * *< 

< < < =

=

< >

>

CS 380C Lecture 23 10 Dependence Analysis



Exact Test Cascade

• Stanford [Maydan, Hennessy, Lam - PLDI ’91]

◦ Single variable per constraint: each constraint
can be solved directly

◦ Acyclic test: variable is constrained by other
variables in only one direction, replace variable
with lower (upper) bound

◦ Loop Residue Test: each constraint is of the
form i− i′ ≤ α, cycle with a negative value
implies dependence

◦ Fourier-Motzkin (inexact)

• Rice [Goff, Kennedy, Tseng - PLDI ’91]

◦ Index variable classification (complexity &
separability)

◦ ZIV test, Strong and weak SIV tests

◦ Delta test for coupled subscripts: propagate
constraints from separable subscripts to
determine independence

◦ MIV - Banerjee (inexact)
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Subscript Classification Rice

Complexity:

A(1, i+1, j)
A(N, i, i)

Classification by the number of index variables
occurring in subscript

• ZIV → zero index variable (51%)

• SIV → single index variable (46%)

• MIV → multiple index variable (3%)

Separability:

A(i+1, j, j)
A( i, j, k)

Classification by determining if index variables are
shared in subscripts

• Separable (Allen ’83)
Each subscript expression has disjoint index
variables

• Coupled (Li, Yew, Zhu ’89)
subscripts expressions share index variables
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Taking Advantage of Separability

Separable subscripts

• may be tested independently

• merge the resulting dependence information

Direction Vector Hierarchy Partition Based

(  ,   ) (  ,   ) (  ,   )

)( )(

(  ,   )< >

(  ,   )< >

(  ,   )* *

* * *< 

< < =

=

< 

>

< >

(  ,   ) (  ,   )

Partition-Based Algorithm:

1. Partition into separable & coupled groups

2. Classify as ZIV, SIV, MIV subscripts

3. Apply dependence tests to each group

4. Finished if independent

5. Otherwise merge dependence information
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ZIV test

Example: test A(e1) & A(e2)

Algorithm:

• if e1 6= e2 then independent

Symbolic test:

• symbolically compute e1 – e2
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SIV Subscripts

test A(a1I+c1) & A(a2I+c2)

Strong SIV (a1 = a2)

Algorithm:

• distance d = (c1 – c2) / a

• independent if

1. d is not integer, OR

2. | d | > U – L

Symbolic test:

• symbolically compute c1 − c2

• symbolically compare d, U, L

Weak SIV (a1 = 0 or a2 = 0)

Crossing SIV (a1 = -a2)
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Delta Test

• Multiple subscript test

◦ Exact for common coupled subscripts

• Constraints for index variable

◦ Derived from SIV subscripts

◦ Distance, line, point

◦ Intersect/propagate → other subscripts

Constraint Intersection

Example: test A(I, I) & A(I+1,I+2)

Constraints must hold simultaneously
(intersection)

c1 ∩ c 2 = ({d1 = 1} ∩ {d2 = 2}) = /0
⇒ no intersection proves independence

Constraint Propagation

Example: test A(I+1, I+J) & A(I,I+J)

Propagate C1 = {d1 = 1} into second subscript

⇒ A(. . ., J−1) & A(. . ., J)
⇒ Generate C2 = {d2 = −1}
⇒ distance vector (1,−1)
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Empirical Study

Programs

• Riceps, Perfect, Spec, Eispack, Linpack

Array reference pairs tested

• All reference pairs in loop nest

• After symbolic analysis phase

• Using symbolic expression simplifier

Effectiveness

Strong Weak Sym
% of ZIV SIV SIV MIV Delta Used

all subscripts 51 39 7 3
all successful 31 52 8 3 6 28
all independ. 85 5 2 3 5 10
successful 44 97 90 58 43

independent 44 3 6 22 13
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Multiple Subscript Tests

• Coupled subscripts

◦ 20% of subscripts were coupled

◦ 75% of coupled subscripts in Eispack

• Delta test

◦ tested 82% with constraint intersection

◦ tested 4% with constraint propagation
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Summary

• Classifying subscripts is important

◦ Complexity → fast exact tests

◦ Separability → solve simple systems

• Real programs

◦ Have simple subscripts

◦ Simple tests are usually exact

• More practical to use quick exact tests

◦ Dependence analysis for scalar compilers

◦ Save the more powerful but expensive tests
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Uses for Dependence Analysis

• parallelization (detection and optimization)

• vectorization

• loop optimizations

• instruction scheduling (pipelined and super scalar)

• cache optimizations

Next Time

Read:

• Improving Data Locality with Loop
Transformations, Kathryn S. McKinley, Steve
Carr, and Chau-Wen Tseng, ACM Transactions on

Programming Languages and Systems,

18(4):424-453, July 1996.
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