Dependence Analysis

Last Time:

• Brief introduction to interprocedural analysis

Today:

Optimization for parallel machines and memory hierarchies

- Dependence analysis
- Loop transformations
- an example McKinley, Carr, Tseng loop transformations to improve cache performance

After that:

• TRIPS Architecture and Compiler (scheduling)

1

Dependence Examples

do I = 2, 100 A(I) = A(I-1) + 1 enddo

1	2	3	4	5	••
	~	- I -	_>		

 $) \cap \cap \cap ($

do I = 1, 100 A(I) = A(I) + 1 enddo

Can either of these loops be performed in parallel?

A *loop-independent* dependence exists regardless of the loop structure. They do not inhibit parallelization, but they do affect statement ordewhichr with a loop.

A *loop-carried* dependence is induced by the iterations of a loop and prevents safe loop parallelization.

2

CS 380C Lecture 23

Dependence Analysis

CS 380C Lecture 23

Dependence Classification

$S_1 \delta S_2$

True (flow) dependence

occurs when S_1 writes a memory location that S_2 later reads.

Anti dependence

occurs when S_1 reads a memory location that S_2 later writes.

Output dependence

occurs when S_1 writes a memory location that S_2 later writes.

Input dependence

occurs when S_1 reads a memory location that S_2 later reads. (Input dependences do not restrict statement order.)

3

Dependence Analysis Question

Given

DO
$$i_1 = L_1, U_1$$

...
DO $i_n = L_n, U_n$
 S_1
 S_2
DO $i_n = L_n, U_n$
 $A(f_1(i_1, \dots, i_n), \dots, f_m(i_1, \dots, i_n)) = \dots$
 $\dots = A(g_1(i_1, \dots, i_n), \dots, g_m(i_1, \dots, i_n))$

A *dependence* between statement S_1 and S_2 , denoted $S_1\delta S_2$, indicates that S_1 , the *source*, must be executed before S_2 , the *sink* on some iteration of the nest.

Let $\alpha \& \beta$ be a vector of *n* integers within the ranges of the lower and upper bounds of the *n* loops.

4

Does $\exists \alpha \leq \beta$, s.t. $f_k(\alpha) = g_k(\beta) \quad \forall k, \ 1 \leq k \leq m ?$

CS 380C Lecture 23

Dependence Analysis

is

CS 380C Lecture 23

• Lexicographical (sequential) order

$$(1,1), (1,2), \dots, (1,6)$$

 $(2,1), (2,2), \dots (2,6)$
 \dots
 $(5,1), (5,2), \dots (5,6)$

• Given
$$I = (i_1, \dots i_n)$$
 and $I' = (i'_1, \dots, i'_n)$,
 $I < I'$ iff
 $(i_1, i_2, \dots i_k) = (i'_1, i'_2, \dots i'_k)$ & $i_{k+1} < i'_{k+1}$

5

Distance & Direction Vectors

	alstance	100001	
$S_1 \delta S_1$			
$S_2 \delta S_2$			
<i>S</i> ₃ δ <i>S</i> ₃			
CS 380C Lecture	23	6	Dependence Analysis

CS 380C Lecture 23

Dependence Analysis

CS 380C Lecture 23

Which Loops are Parallel?

- A dependence $D = (d_1, ..., d_k)$ is *carried* at *level i*, if d_i is the first nonzero element of the distance/direction vector.
- A loop l_i is *parallel*, if $\not\exists$ a dependence D_j carried at level *i*. Either

	distance vector	direction vector		
$\forall D_j$	d_1,\ldots,d_{i-1} > 0	$d_1,\ldots,d_{i-1} = "<"$		
OR	$d_1,\ldots,d_i = 0$	$d_1,\ldots,d_i = "="$		

7

Approaches to Dependence Testing

- Can we solve this problem exactly?
- What is conservative in this framework?
- Restrict the problem to consider index and bound expressions that are linear functions
- \implies solve general system of linear equations NP-complete

Solution Methods

• Cascade of exact, efficient tests (if they fail, use inexact methods)

8

- Rice
- \circ Stanford
- Inexact methods
 - GCD
 - Banerjee's inequalities (Illinois)
 - Fourier-Motzkin (Pugh)

CS 380C Lecture 23

Dependence Analysis

CS 380C Lecture 23

Greatest Common Denominator (GCD) - Inexact test

$$\begin{array}{ll} f(I) = 2i + 1 \\ g(I') = 8i' + 3 \\ a(2i + 1) = a(8i + 3) + a(4i) \\ enddo \\ f(I) = 2i + 1 \\ g(I') = 4i' \end{array}$$

let $f(I) = \alpha_0 + \alpha_1 i_1 + \ldots + \alpha_k i_k$ $g(I') = \beta_0 + \beta_1 i'_1 + \ldots + \beta_k i'_k$

• Test for integer solutions to f(I) = g(I')

$$\alpha_1 i_1 - \beta_1 i'_1 + \ldots \alpha_1 i_k - \beta_1 i'_k = \alpha_0 - \beta_0$$

- \exists a solution *iff* gcd($\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k$) = $|\alpha_0 - \beta_0|$
- If the gcd = 1, what do we know?
- If the gcd > 1, we test to determine if the index expression ranges over that value, if so
 ⇒ ∃ a dependence.

9

Dependence Analysis

Banerjee - Inexact test

- Tests for a real solution to the integer equations
- For example, given a single index variable in the subscripts (*e.g.*, 2i and i+3) determines if the lines intersect at a real or integer point.

let
$$h(I, I') = \alpha I - \beta I'$$
, $h_i^+(I_k, I'_k) = \max_{R_k} h(I_k, I'_k)$
 $h_i^-(I_k, I'_k) = \min_{R_k} h(I_k, I'_k)$

 $I_k D I'_k$ is the relation imposed by the direction vector element (either <, >, or =)

Banerjee's inequality

• For a given direction vector D, \exists a real solution to $\alpha I - \beta I'$ iff

$$\sum_{i=1}^{n} H_i - D_i \leq p_0 - \alpha_0 \leq \sum_{i=1}^{n} H_i^{+} + D_i$$

CS 380C Lecture 23 10 Dependence Analysis

Exact Test Cascade

- Stanford [Maydan, Hennessy, Lam PLDI '91]
 - Single variable per constraint: each constraint can be solved directly
 - Acyclic test: variable is constrained by other variables in only one direction, replace variable with lower (upper) bound
 - ∘ Loop Residue Test: each constraint is of the form $i i' \le \alpha$, cycle with a negative value implies dependence
 - Fourier-Motzkin (inexact)
- Rice [Goff, Kennedy, Tseng PLDI '91]
 - Index variable classification (complexity & separability)
 - ZIV test, Strong and weak SIV tests
 - Delta test for coupled subscripts: propagate constraints from separable subscripts to determine independence

11

• MIV - Banerjee (inexact)

Subscript Classification

Rice

Complexity:

Classification by the number of index variables occurring in subscript

- ZIV \rightarrow zero index variable (51%)
- SIV \rightarrow single index variable (46%)
- MIV \rightarrow multiple index variable (3%)

Separability:

 $A(i+1, j, j) \\ A(i, j, k)$

Classification by determining if index variables are shared in subscripts

- Separable (Allen '83) Each subscript expression has disjoint index variables
- Coupled (Li, Yew, Zhu '89) subscripts expressions share index variables

CS 380C Lecture 23

Dependence Analysis

CS 380C Lecture 23 12 Depe

Taking Advantage of Separability

Separable subscripts

- may be tested independently
- merge the resulting dependence information

Direction Vector Hierarchy

Partition Based

(<) (>) \/ (<,>)

Partition-Based Algorithm:

- 1. Partition into separable & coupled groups
- 2. Classify as ZIV, SIV, MIV subscripts
- 3. Apply dependence tests to each group
- 4. Finished if independent
- 5. Otherwise merge dependence information

ZIV test

Example: test $A(e_1) \& A(e_2)$

Algorithm:

• if $e_1 \neq e_2$ then independent

Symbolic test:

• symbolically compute $e_1 - e_2$

CS 380C Lecture 23 13

Dependence Analysis

CS 380C Lecture 23

14

SIV Subscripts

test $A(a_1I+c_1) \& A(a_2I+c_2)$

Strong SIV $(a_1 = a_2)$

Algorithm:

- distance d = $(c_1 c_2) / a$
- independent if

1. d is not integer, OR

2. |d| > U - L

Symbolic test:

- symbolically compute $c_1 c_2$
- symbolically compare d, U, L

<u>Weak SIV</u> $(a_1 = 0 \text{ or } a_2 = 0)$

Crossing SIV $(a_1 = -a_2)$

Delta Test

- Multiple subscript test
 - Exact for common coupled subscripts
- Constraints for index variable
 - Derived from SIV subscripts
 - $\circ\,$ Distance, line, point
 - $\circ~$ Intersect/propagate $\rightarrow~$ other subscripts

Constraint Intersection

Example: test A(I, I) & A(I+1,I+2)

Constraints must hold simultaneously (intersection)

 $c_1 \cap c_2 = (\{d_1 = 1\} \cap \{d_2 = 2\}) = \emptyset$ \Rightarrow no intersection proves independence

Constraint Propagation

Example: test A(I+1, I+J) & A(I,I+J)

Propagate $C_1 = \{d_1 = 1\}$ into second subscript

16

$$\Rightarrow A(..., J-1) & A(..., J) \Rightarrow Generate C_2 = \{d_2 = -1\} \Rightarrow distance vector (1,-1)$$

CS 380C Lecture 23

Dependence Analysis

15

sis

CS 380C Lecture 23

Empirical Study

Programs

• Riceps, Perfect, Spec, Eispack, Linpack

Array reference pairs tested

- All reference pairs in loop nest
- After symbolic analysis phase
- Using symbolic expression simplifier

Effectiveness

		Strong	Weak			Sym
% of	ZIV	SIV	SIV	MIV	Delta	Used
all subscripts	51	39	7	3		
all successful	31	52	8	3	6	28
all independ.	85	5	2	3	5	10
successful	44	97	90	58	43	
independent	44	3	6	22	13	

17

Multiple Subscript Tests

- Coupled subscripts
 - $\circ~20\%$ of subscripts were coupled
 - $\circ~75\%$ of coupled subscripts in Eispack
- Delta test
 - $\circ\,$ tested 82% with constraint intersection
 - tested 4% with constraint propagation

Dependence Analysis

CS 380C Lecture 23

18

Summary

- Classifying subscripts is important
 - $\circ~$ Complexity $\rightarrow~$ fast exact tests
 - \circ Separability \rightarrow solve simple systems
- Real programs
 - Have simple subscripts
 - Simple tests are usually exact
- More practical to use quick exact tests
 - Dependence analysis for scalar compilers
 - $\circ\,$ Save the more powerful but expensive tests

Uses for Dependence Analysis

- parallelization (detection and optimization)
- vectorization
- loop optimizations
- instruction scheduling (pipelined and super scalar)
- cache optimizations

Next Time

Read:

• Improving Data Locality with Loop Transformations, Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng, *ACM Transactions on Programming Languages and Systems*, 18(4):424-453, July 1996.

CS 380C Lecture 23

19

Dependence Analysis

CS 380C Lecture 23

Г

20