Dependence Analysis

Last Time:
e Brief introduction to interprocedural analysis

Today:

Optimization for parallel machines and memory
hierarchies

e Dependence analysis
e Loop transformations

e an example - McKinley, Carr, Tseng
loop transformations to improve cache
performance

After that:

e TRIPS Architecture and Compiler (scheduling)

CS 380C Lecture 23 1 Dependence Analysis

Dependence Examples

do 1 2, 100 (\'mmmm
ol =2,

A = A1) + 1 1121345
enddo

el%
dolI =1, 100
A(l) = A0 + 1
enddo() @ 112 3/ 4|5

Can either of these loops be performed in parallel?

A loop-independent dependence exists regardless of
the loop structure. They do not inhibit parallelization,
but they do affect statement ordewhichr with a loop.

A loop-carried dependence is induced by the iterations
of a loop and prevents safe loop parallelization.

CS 380C Lecture 23 2 Dependence Analysis

Dependence Classification

Dependence Analysis Question

S90S

True (flow) dependence
occurs when § writes a memory location that $
later reads.

Anti dependence
occurs when § reads a memory location that $
later writes.

Output dependence
occurs when § writes a memory location that $
later writes.

Input dependence
occurs when § reads a memory location that $
later reads. (Input dependences do not restrict
statement order.)

CS 380C Lecture 23 3 Dependence Analysis

Given
DO il - L1,U1
DO i, = Ly, Uy
SZ R - A(gl(I]-?"')In)?"'7gm(|17"'7|n))

A dependence between statement S and S, denoted
S80S, indicates that S, the source, must be executed
before S, the sink on some iteration of the nest.

Let a & B be a vector of n integers within the ranges
of the lower and upper bounds of the n loops.

Does d a < (3, s.t.

fu(@) = o(B) Vk, 1<k<m?

CS 380C Lecture 23 4 Dependence Analysis

Iteration Space

dolI=1,5
doJ=16

enddo T
enddo |

e
IA A
(S
IAIN
(N6

Distance & Direction Vectors

—J —

e Lexicographical (sequential) order

(1,1), (1,2), ..., (1,6)
(2,1), (2,2), ... (2,6)

(5.1), (5.2), ... (5,6)
e Given | = (iy,...in) and I = (i%,...,iy),
| < I iff

(ini2, - ik) = (L0, 0f) & dkp1 <y

CS 380C Lecture 23 5 Dependence Analysis

dolI=1,N
doJ=1,N |
S A(L)) = A(1,J-1) + 1 i
enddo
enddo

dolI=1, N
doJ=1,N

—

S A(lLJ) = A(I-1,J-1) + 1
S B(I,J) =B(1-1,J+1) + 1
enddo i

enddo

e\]%

Distance Vector: number of iterations between
accesses
Direction Vector: direction in the iteration space

distance vector direction vector

SIS}
$0S
$ 03

CS 380C Lecture 23 6 Dependence Analysis

Which Loops are Parallel?

Approaches to Dependence Testing

doI=1,N
doJ=1,N
S A(L,J)) = A(I,J-1) + 1 T
doI=1,N
doJ=1,N |
S A(lJ) = A(I-1,J-1) + 1 l
doI=1, N
doJ=1,N
S B(I,J) = B(I-1,J4+1) + 1 SR

e A dependence D= (dy,...,dk) is carried at level i, if
di is the first nonzero element of the
distance/direction vector.

e A loop | is parallel, if A a dependence D; carried
at level i. Either

| distance vector | direction vector
vDJ dl,...,di,]_ > 0 d17~-~7di71 = T
OR dl?"'7di - O dl,...,di = =N

CS 380C Lecture 23 7 Dependence Analysis

e Can we solve this problem exactly?
e \What is conservative in this framework?

e Restrict the problem to consider index and bound
expressions that are linear functions

— solve general system of linear equations
NP-complete

Solution Methods

e Cascade of exact, efficient tests (if they fail, use
inexact methods)

o Rice

o Stanford

e Inexact methods
o GCD
o Banerjee's inequalities (Illinois)

o Fourier-Motzkin (Pugh)

CS 380C Lecture 23 8 Dependence Analysis

Greatest Common Denominator (GCD) - Inexact

Banerjee - Inexact test

test
f(1) = 2i+1
doi=1, N oll") = 8I'+3
a(2i41) = a(8i+3) + a(4i)
enddo f(1) = 2i+1
g(l") = 4V
let f(I) = ap+0qi1+...+0kik
g(l"y = Bo+Baiy+ ...+ By

CS 380C Lecture 23 9

Test for integer solutions to f(l)=g(l)
Ogip— Baiy +...azixk—Pii, = do—Po

3 a solution iff
ng(alw'wak?Blr'ka) = ’C(O_BO’

If the gcd = 1, what do we know?

If the gcd > 1, we test to determine if the index
expression ranges over that value, if so
— 1 a dependence.

Dependence Analysis

e Tests for a real solution to the integer equations
e For example, given a single index variable in the

subscripts (e.g., 2i and i4+3) determines if the
lines intersect at a real or integer point.

let h(1,I') = al —Bl’, h (I, 1) maxgh(lk 1)
h(le1) = mingh(li, 1)

Ik D I is the relation imposed by the direction
vector element (either <, >, or =)

Banerjee’s inequality

e For a given direction vector D, 3 a real solution to

ol —BI" iff N
i;Hf—Di < Bo—0ap < i;HiJW—Di
Direction Vector Hierarchy: (* *)
/’\
%) Ex) €4)
/’\
<) €>) €=)
CS 380C Lecture 23 10 Dependence Analysis

Exact Test Cascade

e Stanford [Maydan, Hennessy, Lam - PLDI '91]

o Single variable per constraint: each constraint
can be solved directly

o Acyclic test: variable is constrained by other
variables in only one direction, replace variable
with lower (upper) bound

o Loop Residue Test: each constraint is of the
form i—i’ <a, cycle with a negative value
implies dependence

o Fourier-Motzkin (inexact)

e Rice [Goff, Kennedy, Tseng - PLDI '91]
o Index variable classification (complexity &
separability)
o ZIV test, Strong and weak SIV tests

o Delta test for coupled subscripts: propagate
constraints from separable subscripts to
determine independence

o MIV - Banerjee (inexact)

CS 380C Lecture 23 11 Dependence Analysis

Subscript Classification Rice

Complexity:

A1, i+1, J)
A(N, i)

Classification by the number of index variables
occurring in subscript

e ZIV — zero index variable (51%)
e SIV — single index variable (46%)
e MIV — multiple index variable (3%)
Separability:
A(+1, j, J)
AC i, 0 k)

Classification by determining if index variables are
shared in subscripts

e Separable (Allen '83)
Each subscript expression has disjoint index
variables

e Coupled (Li, Yew, Zhu '89)
subscripts expressions share index variables

CS 380C Lecture 23 12 Dependence Analysis

Taking Advantage of Separability

Separable subscripts
e may be tested independently

e merge the resulting dependence information

Direction Vector Hierarchy Partition Based

¢ %) (<) (3
I
%) €x) jr\) «,>)
<.<) &>) €=)

Partition-Based Algorithm:

Partition into separable & coupled groups
Classify as ZIV, SIV, MIV subscripts
Apply dependence tests to each group
Finished if independent

o kR wNPE

Otherwise merge dependence information

CS 380C Lecture 23 13 Dependence Analysis

Z1V test

Example: test A(e;) & A(ey)
Algorithm:

e if e1 # e, then independent
Symbolic test:

e symbolically compute e; — e,

CS 380C Lecture 23 14

Dependence Analysis

SIV Subscripts

test A(ail4c1) & A(azl+cy)
Strong SIV (a; = ay)

Algorithm:

e distanced = (c;1 —¢c) / a
e independent if

1. d is not integer, OR
2. |d|>U-L

Symbolic test:

e symbolically compute ¢c; — Co
e symbolically compare d, U, L

Weak SIV (a; = 0 or a, = 0)

Crossing SIV (a; = -ay)

CS 380C Lecture 23 15 Dependence Analysis

Delta Test

e Multiple subscript test
o Exact for common coupled subscripts
e Constraints for index variable

o Derived from SIV subscripts
o Distance, line, point
o Intersect/propagate — other subscripts

Constraint Intersection

Example: test A(I, 1) & A(I+4+1,I+2)

Constraints must hold simultaneously
(intersection)

Ci1 N Co= ({d]_:l} N {d2=2}) =0
= no intersection proves independence

Constraint Propagation

Example: test A(I+41, I4+J) & A(I,I+J)
Propagate C; = {d; =1} into second subscript

= A(.., J-1) & A(..., J)
= Generate C; = {d2=-1}
= distance vector (1,—1)

CS 380C Lecture 23 16 Dependence Analysis

Empirical Study Multiple Subscript Tests

Programs e Coupled subscripts

e Riceps, Perfect, Spec, Eispack, Linpack o 20% of subscripts were coupled

) o 75% of coupled subscripts in Eispack
Array reference pairs tested

e Delta test

o All reference pairs in loop nest o tested 82% with constraint intersection

e After symbolic analysis phase o tested 4% with constraint propagation

e Using symbolic expression simplifier

Effectiveness

Strong | Weak Sym
% of Z1V SIV SIV MIV | Delta | Used
all subscripts 51 39 7 3
all successful 31 52 8 3 6 28
all independ. 85 5 2 3 5 10
successful 44 97 90 58 43
independent 44 3 6 22 13

CS 380C Lecture 23 17 Dependence Analysis CS 380C Lecture 23 18 Dependence Analysis

Summary Uses for Dependence Analysis

e parallelization (detection and optimization)

e Classifying subscripts is important e vectorization

o Complexity — fast exact tests e |loop optimizations

o Separability — solve simple systems e instruction scheduling (pipelined and super scalar)

e cache optimizations
e Real programs
o Have simple subscripts

. Next Time
o Simple tests are usually exact

. . Read:
e More practical to use quick exact tests

o Dependence analysis for scalar compilers e Improving Data Locality with Loop
Transformations, Kathryn S. McKinley, Steve
Carr, and Chau-Wen Tseng, ACM Transactions on
Programming Languages and Systems,
18(4):424-453, July 1996.

o Save the more powerful but expensive tests

CS 380C Lecture 23 19 Dependence Analysis CS 380C Lecture 23 20 Dependence Analysis

