
Dependence Analysis

Last Time:

• Brief introduction to interprocedural analysis

Today:

Optimization for parallel machines and memory
hierarchies

• Dependence analysis

• Loop transformations

• an example - McKinley, Carr, Tseng
loop transformations to improve cache
performance

After that:

• TRIPS Architecture and Compiler (scheduling)

CS 380C Lecture 23 1 Dependence Analysis

Dependence Examples

do I = 2, 100
A(I) = A(I-1) + 1

enddo

do I = 1, 100
A(I) = A(I) + 1

enddo

...

...

 51 2 3 4

 51 2 3 4

I

I

Can either of these loops be performed in parallel?

A loop-independent dependence exists regardless of
the loop structure. They do not inhibit parallelization,
but they do affect statement ordewhichr with a loop.

A loop-carried dependence is induced by the iterations
of a loop and prevents safe loop parallelization.

CS 380C Lecture 23 2 Dependence Analysis

Dependence Classification

S1 δ S2

True (flow) dependence
occurs when S1 writes a memory location that S2
later reads.

Anti dependence
occurs when S1 reads a memory location that S2
later writes.

Output dependence
occurs when S1 writes a memory location that S2
later writes.

Input dependence
occurs when S1 reads a memory location that S2
later reads. (Input dependences do not restrict
statement order.)

CS 380C Lecture 23 3 Dependence Analysis

Dependence Analysis Question

Given

DO i1 = L1,U1
. . .

DO in = Ln,Un

S1 A(f1(i1, . . . , in), . . . , fm(i1, . . . , in)) = . . .

S2 . . . = A(g1(i1, . . . , in), . . . ,gm(i1, . . . , in))

A dependence between statement S1 and S2, denoted
S1δS2, indicates that S1, the source, must be executed
before S2, the sink on some iteration of the nest.

Let α & β be a vector of n integers within the ranges
of the lower and upper bounds of the n loops.

Does ∃ α ≤ β, s.t.

fk(α) = gk(β) ∀k, 1≤ k ≤ m ?

CS 380C Lecture 23 4 Dependence Analysis

Iteration Space

do I = 1, 5
do J = I, 6

. . .

enddo
enddo

1 ≤ I ≤ 5
I ≤ J ≤ 6

J

I

• Lexicographical (sequential) order

(1,1), (1,2), . . ., (1,6)
(2,1), (2,2), . . . (2,6)
. . .

(5,1), (5,2), . . . (5,6)

• Given I = (i1, . . . in) and I′ = (i′1, . . . , i
′
n),

I < I′ iff

(i1, i2, . . . ik) = (i′1, i
′
2, . . . i′k) & ik+1 < i′k+1

CS 380C Lecture 23 5 Dependence Analysis

Distance & Direction Vectors

do I = 1, N
do J = 1, N

S1 A(I,J) = A(I,J-1) + 1
enddo

enddo

do I = 1, N
do J = 1, N

S2 A(I,J) = A(I-1,J-1) + 1
S3 B(I,J) = B(I-1,J+1) + 1

enddo
enddo

I

J

I

J
Distance Vector: number of iterations between

accesses

Direction Vector: direction in the iteration space

distance vector direction vector

S1 δ S1

S2 δ S2

S3 δ S3

CS 380C Lecture 23 6 Dependence Analysis

Which Loops are Parallel?

do I = 1, N
do J = 1, N

S1 A(I,J) = A(I,J-1) + 1

do I = 1, N
do J = 1, N

S2 A(I,J) = A(I-1,J-1) + 1

do I = 1, N
do J = 1, N

S3 B(I,J) = B(I-1,J+1) + 1 J

I

• A dependence D = (d1, . . . ,dk) is carried at level i, if
di is the first nonzero element of the
distance/direction vector.

• A loop li is parallel, if 6 ∃ a dependence D j carried
at level i. Either

distance vector direction vector
∀D j d1, . . . ,di−1 > 0 d1, . . . ,di−1 = “ <′′

OR d1, . . . ,di = 0 d1, . . . ,di = “ =′′

CS 380C Lecture 23 7 Dependence Analysis

Approaches to Dependence Testing

• Can we solve this problem exactly?

• What is conservative in this framework?

• Restrict the problem to consider index and bound
expressions that are linear functions

=⇒ solve general system of linear equations
NP-complete

Solution Methods

• Cascade of exact, efficient tests (if they fail, use
inexact methods)

◦ Rice

◦ Stanford

• Inexact methods

◦ GCD

◦ Banerjee’s inequalities (Illinois)

◦ Fourier-Motzkin (Pugh)

CS 380C Lecture 23 8 Dependence Analysis

Greatest Common Denominator (GCD) - Inexact
test

do i = 1, N
a(2i+1) = a(8i+3) + a(4i)

enddo

f (I) = 2i+1
g(I′) = 8i′+3

f (I) = 2i+1
g(I′) = 4i′

let f (I) = α0+α1i1+ . . .+αkik
g(I′) = β0+β1i′1 + . . .+βki′k

• Test for integer solutions to f (I) = g(I′)

α1i1−β1i′1 + . . .α1ik −β1i′k = α0−β0

• ∃ a solution iff

gcd(α1, . . . ,αk,β1, . . . ,βk) = |α0−β0|

• If the gcd = 1, what do we know?

• If the gcd > 1, we test to determine if the index
expression ranges over that value, if so
=⇒ ∃ a dependence.

CS 380C Lecture 23 9 Dependence Analysis

Banerjee - Inexact test

• Tests for a real solution to the integer equations

• For example, given a single index variable in the
subscripts (e.g., 2i and i+3) determines if the
lines intersect at a real or integer point.

let h(I, I′) = αI −βI′, h+
i (Ik, I′k) = maxRk

h(Ik, I′k)
h−i (Ik, I′k) = minRk

h(Ik, I′k)

Ik D I′k is the relation imposed by the direction
vector element (either <, >, or =)

Banerjee’s inequality

• For a given direction vector D, ∃ a real solution to
αI −βI′ iff n

∑
i=1

H−
i −Di ≤ β0−α0 ≤

n

∑
i=1

H+
i +Di

Direction Vector Hierarchy:

(,) (,) (,)

(,) (,) (,)

(,)* *

* * *<

< < < =

=

< >

>

CS 380C Lecture 23 10 Dependence Analysis

Exact Test Cascade

• Stanford [Maydan, Hennessy, Lam - PLDI ’91]

◦ Single variable per constraint: each constraint
can be solved directly

◦ Acyclic test: variable is constrained by other
variables in only one direction, replace variable
with lower (upper) bound

◦ Loop Residue Test: each constraint is of the
form i− i′ ≤ α, cycle with a negative value
implies dependence

◦ Fourier-Motzkin (inexact)

• Rice [Goff, Kennedy, Tseng - PLDI ’91]

◦ Index variable classification (complexity &
separability)

◦ ZIV test, Strong and weak SIV tests

◦ Delta test for coupled subscripts: propagate
constraints from separable subscripts to
determine independence

◦ MIV - Banerjee (inexact)

CS 380C Lecture 23 11 Dependence Analysis

Subscript Classification Rice

Complexity:

A(1, i+1, j)
A(N, i, i)

Classification by the number of index variables
occurring in subscript

• ZIV → zero index variable (51%)

• SIV → single index variable (46%)

• MIV → multiple index variable (3%)

Separability:

A(i+1, j, j)
A(i, j, k)

Classification by determining if index variables are
shared in subscripts

• Separable (Allen ’83)
Each subscript expression has disjoint index
variables

• Coupled (Li, Yew, Zhu ’89)
subscripts expressions share index variables

CS 380C Lecture 23 12 Dependence Analysis

Taking Advantage of Separability

Separable subscripts

• may be tested independently

• merge the resulting dependence information

Direction Vector Hierarchy Partition Based

(,) (,) (,)

)()(

(,)< >

(,)< >

(,)* *

* * *<

< < =

=

<

>

< >

(,) (,)

Partition-Based Algorithm:

1. Partition into separable & coupled groups

2. Classify as ZIV, SIV, MIV subscripts

3. Apply dependence tests to each group

4. Finished if independent

5. Otherwise merge dependence information

CS 380C Lecture 23 13 Dependence Analysis

ZIV test

Example: test A(e1) & A(e2)

Algorithm:

• if e1 6= e2 then independent

Symbolic test:

• symbolically compute e1 – e2

CS 380C Lecture 23 14 Dependence Analysis

SIV Subscripts

test A(a1I+c1) & A(a2I+c2)

Strong SIV (a1 = a2)

Algorithm:

• distance d = (c1 – c2) / a

• independent if

1. d is not integer, OR

2. | d | > U – L

Symbolic test:

• symbolically compute c1 − c2

• symbolically compare d, U, L

Weak SIV (a1 = 0 or a2 = 0)

Crossing SIV (a1 = -a2)

CS 380C Lecture 23 15 Dependence Analysis

Delta Test

• Multiple subscript test

◦ Exact for common coupled subscripts

• Constraints for index variable

◦ Derived from SIV subscripts

◦ Distance, line, point

◦ Intersect/propagate → other subscripts

Constraint Intersection

Example: test A(I, I) & A(I+1,I+2)

Constraints must hold simultaneously
(intersection)

c1 ∩ c 2 = ({d1 = 1} ∩ {d2 = 2}) = /0
⇒ no intersection proves independence

Constraint Propagation

Example: test A(I+1, I+J) & A(I,I+J)

Propagate C1 = {d1 = 1} into second subscript

⇒ A(. . ., J−1) & A(. . ., J)
⇒ Generate C2 = {d2 = −1}
⇒ distance vector (1,−1)

CS 380C Lecture 23 16 Dependence Analysis

Empirical Study

Programs

• Riceps, Perfect, Spec, Eispack, Linpack

Array reference pairs tested

• All reference pairs in loop nest

• After symbolic analysis phase

• Using symbolic expression simplifier

Effectiveness

Strong Weak Sym
% of ZIV SIV SIV MIV Delta Used

all subscripts 51 39 7 3
all successful 31 52 8 3 6 28
all independ. 85 5 2 3 5 10
successful 44 97 90 58 43

independent 44 3 6 22 13

CS 380C Lecture 23 17 Dependence Analysis

Multiple Subscript Tests

• Coupled subscripts

◦ 20% of subscripts were coupled

◦ 75% of coupled subscripts in Eispack

• Delta test

◦ tested 82% with constraint intersection

◦ tested 4% with constraint propagation

CS 380C Lecture 23 18 Dependence Analysis

Summary

• Classifying subscripts is important

◦ Complexity → fast exact tests

◦ Separability → solve simple systems

• Real programs

◦ Have simple subscripts

◦ Simple tests are usually exact

• More practical to use quick exact tests

◦ Dependence analysis for scalar compilers

◦ Save the more powerful but expensive tests

CS 380C Lecture 23 19 Dependence Analysis

Uses for Dependence Analysis

• parallelization (detection and optimization)

• vectorization

• loop optimizations

• instruction scheduling (pipelined and super scalar)

• cache optimizations

Next Time

Read:

• Improving Data Locality with Loop
Transformations, Kathryn S. McKinley, Steve
Carr, and Chau-Wen Tseng, ACM Transactions on

Programming Languages and Systems,

18(4):424-453, July 1996.

CS 380C Lecture 23 20 Dependence Analysis

