
Exploiting Processor Heterogeneity for Interactive Services

Shaolei Ren‡∗
‡Florida International University

Yuxiong He† Sameh Elnikety† Kathryn S. McKinley†

†Microsoft Research

Abstract
To add processing power under power constraints, emerging
heterogeneous processors include fast and slow cores on the
same chip. This paper demonstrates that this heterogeneity
is well suited to interactive data center workloads (e.g., web
search, online gaming, and financial trading) by observing
and exploiting two workload properties. (1) These
workloads may trade response quality for responsiveness.
(2) The request service demand is unknown and varies
widely with both short and long requests. Subject to
per-server power constraints, traditional homogeneous
processors either include a few high-power fast cores that
deliver high quality responses or many low-power slow
cores that deliver high throughput, but not both.

This paper shows heterogeneous processors deliver both
high quality and throughput by executing short requests on
slow cores and long requests on fast cores with Fast Old
and First (FOF), a new scheduling algorithm. FOF
schedules new requests with unknown service demands on
the fastest idle core and migrates requests from slower to
faster cores. We simulate and implement FOF. In
simulations modeling Microsoft’s Bing index search, FOF
on heterogeneous processors improves response quality and
increases throughput by up to 50% compared to
homogeneous processors. We confirm simulation
improvements with an implementation of an interactive
finance server using Simultaneous Multithreading (SMT),
configured as a dynamic heterogeneous processor. Both
simulation and experimental results indicate processor
heterogeneity offers a lot of potential for interactive
workloads.

1 Introduction

A heterogeneous processor contains cores with
differentiated power and performance characteristics. All
cores execute the same instruction set (ISA), but they run at
different speeds and/or use different microarchitectures so

∗This work was partially done while Shaolei Ren was visiting Microsoft
Research.

that the faster the core, the more power it consumes. Since
power consumption increases faster than speed, a fast core
executes a request in less time than a slow core, but
consumes more energy. We show that a homogeneous
processor under a fixed power constraint can only deliver
either high performance with a few fast cores or high
throughput with many more slow cores for interactive data
center workloads, whereas heterogeneous processors
deliver both with substantial benefits.

Interactive services require high quality results and
timely responses to satisfy users and generate revenue [23].
For example, Bing search servers are provisioned to execute
requests within 120 ms with an average quality of 0.99. This
quality metric compares returned search results within a
time limit to an off-line search with unlimited time and
resources. Interactive services have two properties. First,
many interactive services — including web search,
financial trading, and online gaming — are adaptive, i.e.,
processing a request for more time improves response
quality. Adaptive execution may return lower-quality
responses (or partial results) for responsiveness. Second,
the service demand of a request is unknown a priori, and it
varies widely with both short and long requests.

The main contribution of this paper is to demonstrate that
exploiting processor heterogeneity delivers substantial
benefits to interactive workloads in data centers as
compared to using homogeneous processors. More
concretely, when building a data center to support
interactive services, power budgets constrain the overall
system as well as individual servers. Such design-time
power constraints limit the core speed and number of cores
on a chip. With a fixed design-time power budget, system
designers can deploy a homogeneous processor with either
fewer fast high-performance power-hungry cores that are
less energy-efficient or a larger number of slow cores that
are more energy-efficient. For example, one fast core may
burn as much power as 8 to 16 low power cores [38]. Fast
cores offer high service quality and fast response at a light
load, but when the load increases, both quality and
throughput degrade quickly since requests significantly
outnumber cores. In contrast, more slow energy-efficient

cores increase throughput by executing more requests, but
the quality of responses drops when the slow cores do not
execute fast enough to fully process long requests before
their respective deadlines. We show how to achieve both
high quality and throughput with a heterogeneous design
provisioned with both fast and slow cores. The key idea is
to execute short requests on slow cores, so that they
complete within their deadline with low energy
consumption, and to execute long requests on fast cores to
obtain high response quality. Towards this end, there are
two challenges. (1) When a request arrives, we do not know
its service demand, and predicting service demand is
difficult for many workloads [34]. (2) Even if we know the
service demand, there are multiple requests but only a
limited number of cores, and therefore the most appropriate
core on which to execute a request may not be available.

This paper address these challenges by introducing a new
online algorithm for scheduling requests of interactive
services on heterogeneous processors, called Fast Old and
First (FOF). When a new request arrives, FOF assigns it the
fastest available core (Fast First). When a request
completes, FOF promotes the oldest request on a slower
core to the fastest, newly available core (Fast Old). FOF
achieves high throughput because it completes many short
requests on energy-efficient slow cores. FOF achieves high
response quality since requests are processed on fast cores
whenever possible and long requests execute with a higher
probability on fast cores and thus all requests are likely to
complete before their deadlines.

We model Microsoft Bing, a commercial web search
engine. We measure Bing workload distributions and
quality profiles. We find that the request service demand
has high variance, and response quality is monotonically
increasing in processing time (before the deadline). Our
simulation results of web search show that FOF on
heterogeneous processors achieves a significantly higher
response quality and up to 50% improvement in throughput
compared to homogeneous processors with the same
design-time power budget as well as compared to
traditional scheduling algorithms. We also show that FOF
improves throughput and quality for a variety of
heterogeneous hardware configurations and workloads with
various service demand distributions. Moreover, FOF
improves average quality, reduces quality variance,
improves high-percentile quality, and improves throughput.

We further show how to configure a Simultaneous
Multithreading (SMT) core as a dynamic heterogeneous
processor and modify FOF for it. A core executing one
thread acts as a fast core, while a core executing M > 1
SMT hardware threads acts as M slow cores. Even with the
limited heterogeneity of a 2-way 6 core SMT processor,
FOF improves the measured performance of an interactive
finance server by up to 16% compared to default
round-robin OS scheduling and by 27% when SMT is
turned off. We validate our simulator against these
measurements. FOF in implementation performs the same

or better than in simulation. These results indicate that FOF
offers performance benefits for heterogeneity present in
data centers today.

We show how to compute the number of slow and fast
cores in the hardware configurations using the request
service demand distribution. In general, more long requests
require more fast cores, and more slow cores are required
for sustaining a higher throughput. Future data centers can
exploit these results either to substantially reduce the
number of servers, or to increase the capacity without
compromising quality or responsiveness.

2 Scheduling Model

This section measures request characteristics in interactive
services for a commercial web search engine, and formalizes
our job and hardware model.

The literature establishes the following characteristics of
interactive services [48, 35, 38, 26]. (1) Adaptive
execution. Adaptive execution partially evaluates a request
and returns a response before completion; more
computation yields better quality. (2) Concave quality
profile. If a request executes fully, it receives quality 1
(measured off-line). A concave function exhibits
diminishing returns and captures the relationship between
quality and computational resources (see Section 2.1).
(3) Deadline. For online interactive services, users expect
timely responses. Long response times are not acceptable
because they cause user dissatisfaction and loss of
revenue [23]. We express timing constraints as deadlines.

Recommendation systems, ad services, and video
streaming have similar characteristics. For example, in
scalable video coding, basic layers are more important than
refinement layers, and the quality of received video streams
improves monotonically with the number of layers but
exhibits diminishing returns [28]. This paper focuses on
web search and finance, but our results apply more broadly.

2.1 Measurement Study of Bing Search
We confirm these characteristics with measurements of
Bing. Bing’s web index serving system receives user
queries and returns the response. This system is a
distributed interactive search service. The web index
contains billions of documents and thus, the index is
partitioned and managed across thousands of servers. To
meet responsiveness goals, Bing and other modern search
engines [48, 35, 38] design and configure search such that
the index for a server fits in main memory of the server with
virtually no I/O or system calls, creating a CPU bound
process. Other interactive services, such as video
streaming, have similar goals and requirements. When a
request arrives, the system assigns it to an aggregator,
which sends the request to servers. Each server returns its
matched results to the aggregator. The aggregator collects
them and returns the top L webpages to the user.

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Request Completion Ratio

Q
ua

lit
y

(a) Quality profile.

0 50 100
0

0.1

0.2

0.3

0.4

Service Demand (ms)

Pr
ob

ab
ilit

y

(b) Service demand distribution.

Figure 1: Measured workload of Bing search.

Search servers support adaptive execution with response
deadlines. Each web search query contains a set of
keywords. A server scans an inverted index looking for
webpages that match the keywords and ranks the matching
webpages. The response is links to the top documents that
match the keywords. The more time the server spends in
matching and ranking the documents, the better quality
(i.e., more relevant) the search results. If the search server
does not finish searching the entire index within the
deadline, it returns the best matches so far. The server
responds to the aggregator within 120 ms. The aggregator
returns its collected results to users without waiting for any
delayed responses. Ranking involves complex calculations
and search servers are computationally intensive [38].

Quality Profile We obtained 200K queries from a
production trace of Bing queries. We execute them multiple
times with different completion deadlines using Bing in a
controlled setting. Response quality compares the
documents returned to the golden results (Quality = 1),
without any deadline, such that Bing fully processes each
request. The x-axis of Figure 1(a) is the request time
completion ratio which is calculated as the actual measured
processing time divided by its full processing time. The
y-axis is the average response quality. Figure 1(a) shows
that Web search has a monotonically increasing and
(roughly) concave response quality profile.The concavity is
because the inverted index searches popular webpages first,
which are more likely to rank higher and contribute more to
the response quality.

Service Demand Figure 1(b) presents the measured
service demand distribution for 200K queries. Request
service demand varies with many short requests, less than
40 ms, and under the 120 ms deadline, over 10% have a
demand greater than or equal to 100 ms. This diversity in
request service demands has been observed in many
workloads [10, 48, 24, 25].

2.2 Job Model
An individual request is processed sequentially, while
multiple requests can be processed on different cores
concurrently. A job (request) is specified by a tuple

(ta,d,w), where ta is arrival time, d is lifespan, and w is
service demand. The job deadline is ta + d. We assume d is
the same for all jobs without loss of generality. We denote
the maximum service demand by ŵ. The service demand is
the total work (i.e., CPU cycles) required to complete a
request and is unknown until the job completes. However,
the service demand distribution is available by using online
or offline profiling [34, 26, 25]. Thus, w ∈ [0, ŵ] is an
unknown random variable, whose probability density
function (PDF) and cumulative distribution function (CDF)
are denoted by f (w) and F(w) =

∫ w
0 f (x)dx, respectively. We

can alternatively use discrete values of service demands
(e.g., measured values shown in Figure 1(b)) and all the
analysis still applies, where PDF f (w) is the probability
mass function and w takes values from a finite set.

The server can fully process a request, returning a
complete result, or terminate with a partial result. We
measure the actual quality q(r) : R+→ R off-line, comparing
processed work to demand. While each request may have a
unique quality profile that is unavailable to an online
scheduler, we use q(r), as shown in Figure 1(a), to represent
expected quality profile of a request.

2.3 Hardware Model
Limited by power constraints, architects are turning to
parallelism and heterogeneity in search of power-efficient
performance [3, 31, 36, 8, 33]. A heterogeneous processor
consists of N > 1 heterogeneous cores, indexed by
1,2, · · · ,N, which offer non-uniform performance and power
consumption due to processing speeds or microarchitecture
or both. Without loss of generality, we assume that the i-th
core performance (i.e., effective speed) si and power pi

satisfy 0 < s1 ≤ s2 ≤ ·· · ≤ sN and 0 < p1 ≤ p2 ≤ ·· · ≤ pN [34].
Moreover, we assume that a core with higher performance
speed burns more power to process a unit of work, i.e.,
forall 1 ≤ i ≤ j ≤ N, pi/si ≤ p j/s j, since otherwise the faster
core is more energy-efficient than the slower core and there
is no need to include the slower core in the processor design
space. To fairly compare heterogeneous to homogeneous
processors, we give them all the same design-time power
budget.

3 Scheduling Algorithm

The scheduling objective of FOF is to improve the average
response quality of all requests and thereby increase
throughput. In practice, data center designers may exploit
throughput improvements either by generating and
servicing more load per server or by supporting the same
load with fewer servers.

3.1 Key Insights
Intuitively, we want to schedule long requests on fast cores
(since only fast cores are sufficient to ensure timely and

3

high-quality responses for long requests) and schedule short
requests on slow cores (since they are sufficient to ensure
timely and high-quality responses). An ideal scheduler will
thus maximize throughput and quality by executing every
request on the slowest core that can meet the request
deadline and quality requirement. However, there are two
challenges. (1) Assignment: since the request service
demand is unknown, how do we assign short requests to
slow cores and long requests to fast cores? (2) Availability:
given multiple requests and a limited number of cores, the
most appropriate core may not always be available.

(1) Assignment FOF migrates requests from slow to fast
cores during its execution. This policy increases the
probability that short requests complete on slow cores and
when a fast core becomes available, it processes longer
requests. Given a deadline, this policy improves total
response quality of requests, sustaining higher throughput
while satisfying the target quality.

Theorem 1 explains why “slow to fast” improves
throughput. The theorem formally establishes that
migrating a request from slower to faster cores during its
execution is the most energy-efficient schedule. Given the
server’s design-time power budget, dynamic energy per
time unit is bounded. Thus, when each individual request
consumes less energy, the server can serve more requests,
improving throughput. Theorem 1 assumes the desired
core(s) are always available, and later we address multiple
requests competing for cores.

Theorem 1 Given request deadline d, service demand
CDF F , and a quality profile function q that is
monotonically increasing and concave. To meet any
average quality requirement, the core speed for processing
the request is non-decreasing under an optimal schedule
that minimizes the average CPU energy consumption of the
request.

Proof. We first meet the quality requirement. Request
quality is a function of the quality profile q and work
completed before the deadline. Let us define the target
work x̄, which specifies the maximum amount of work
completed prior to the deadline regardless of the actual
service demand. If the request has a total service demand
less than x̄, the request runs until completion, whereas the
request is terminated at work x̄ otherwise. Since the quality
profile function q is monotonically increasing in x̄ ∈ [0, ŵ],
the expected average response quality increases from 0 to 1.
Therefore, given an average quality requirement 0 ≤ r ≤ 1,
we can find a fixed target work x̄ ∈ [0, ŵ] that satisfies the
quality target. After finding the target work x̄, we formulate
the energy-minimization problem for scheduling a request
as follows:

min
X

∫ x̄

0

[
1−F(x)

]
· pX (x)

sX (x)
dx, (1)

s.t.,
∫ x̄

0

1
sX (x)

dx≤ d, (2)

where X is a schedule that specifies the order and cores
that process the single request, sX (x) ∈ {s1,s2 · · ·sN}, and
pX (x) = pi, if sX (x) = si. Constraint (2) guarantees that the
schedule X satisfies the deadline. We now prove the
theorem by contradiction. Suppose that sX ′(x) minimizes
(1) while, under the schedule X ′, the job is first processed
by a faster core and then by a slower one. Thus, there exist
x1 and x2 such that 0 ≤ x1 < x1 + dx ≤ x2 < x2 + dx ≤ x̄ and
sX ′(x′1) > sX ′(x′2), where x′1 ∈ [x1,x1 + dx], x′2 ∈ [x2,x2 + dx] and
dx is a sufficiently small positive number.

Since we assume faster cores consume more energy to
process one unit of work than slower ones, the following
inequality holds:

[1−F(x′1)] ·
[

pX ′(x′1)
sX ′(x′1)

− pX ′(x′2)
pX ′(x′2)

]
+[1−F(x′2)] ·

[
pX ′(x′2)
sX ′(x′2)

− pX ′(x′1)
sX ′(x′1)

]
=

[
pX ′(x′1)
sX ′(x′1)

− pX ′(x′2)
sX ′(x′2)

]
· [F(x′2)−F(x′1)]> 0.

(3)

Thus, we have [1−F(x′1)] ·
pX ′ (x

′
1)

sX ′ (x
′
1)

+ [1−F(x′2)] ·
pX ′ (x

′
2)

sX ′ (x
′
2)

>

[1−F(x′1)] ·
pX ′ (x

′
2)

sX ′ (x
′
2)
+ [1−F(x′2)] ·

pX ′ (x
′
1)

sX ′ (x
′
1)

. By evaluating the
integral in (1), the expected energy consumption is further
reduced by exchanging the order of cores processing the
x′1−th cycle and the x′2−th cycle, for x′1 ∈ [x1,x1 + dx] and
x′2 ∈ [x2,x2 + dx], while keeping the rest of the schedule X ′

unchanged. This contradicts the assumption that X ′

minimizes (1) and hence, proves Theorem 1. �
The most obvious application of this theorem is

optimizing dynamic run-time energy of service requests.
However, we leave dynamic energy to future work and
focus on design-time, because interactive service providers
must first determine whether or not a heterogeneous
processor can improve throughput and quality given
design-time power constraints, and if it can, what
combinations of fast and slow processors to use. We next
leverage the insight of migrating a request from slower to
faster cores to improve quality and throughput.

(2) Availability Given multiple requests and a limited
number of cores, the most appropriate core to execute a
request may not be available. FOF solves this problem by
assigning the most urgent request to the fastest core, which
is also the request that has already been executed for the
longest time. Intuitively, the longer the system executes the
job, the higher probability that the job requires faster cores
to complete prior to the deadline. More formally, we define
urgency as follows.

Definition 1: Request urgency is defined as the expected
minimum core speed to complete the request prior to its
deadline. Mathematically, we express urgency as follows:

U =
E{w−w0 |w≥ w0}

r

=

∫ ŵ
w0

w f (w |w≥ w0)dw−w0

r
,

(4)

4

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Completed Work (ms)

U
rg

en
cy

Figure 2: Urgency versus completed work. With more processing,
request urgency increases: an older request has higher urgency.

where w0 is completed work, r is the remaining lifespan of
the request and f (w |w ≥ w0) is the PDF of the service
demand conditioned on the completed w0 work.

Urgency indicates the (expected) necessary core speed to
complete a job upon its deadline. By assigning faster cores
to jobs with higher urgency, jobs have a greater chance to
complete prior to their deadlines. Figure 2 shows a lower
bound on the urgency value for the Bing service demand
distribution (Figure 1(b)), where x-axis is the amount of
work that a job has completed and y-axis is urgency. During
actual processing, request urgency is impacted by its
waiting time in the queue and its execution history, making
the urgency in Figure 2 a lower bound.

A key observation is that as the request is processed, its
urgency increases. When a request is processed more, its
available time before the deadline decreases whereas its
expected service demand increases. The general urgency
trend is similar for other widely used service demand
distributions such as exponential and Pareto. This
observation motivates FOF to use faster cores to run the
oldest request because that request has high urgency.

3.2 FOF Algorithm
Algorithm 1 shows the pseudo-code of FOF. When a job
enters the system, FOF assigns it to the fastest available core.
When a job completes or early terminates at its deadline, a
core is idle and FOF promotes the oldest job on a slower
core to this faster core. No job migrates between cores that
have the same speed. Consider the following cases.

All cores are idle FOF assigns the job to the fastest idle
core N.

Only the fastest core is busy FOF assigns the new job to
idle core N−1, the second fastest core in the system.

All cores are busy: When an existing job completes or its
deadline expires, a core becomes available. FOF
promotes the oldest (longest running) job on any
slower core to this faster core. It repeats this process
until the slowest core becomes idle. At this point, FOF
schedules the job at the head of the wait queue on the
slowest core.

Algorithm 1 FOF
Require: Active job queue Q, core processing speeds 0 < s1 ≤

s2 ≤ ·· · ≤ sN
1: Assign urgencies to all jobs: older jobs have higher urgency.
2: i← N
3: while i≥ 1 do
4: if core i is idle then
5: job J = job being processed on a slower core than core

i (or waiting in the queue) with the highest urgency
6: if job J is not null then
7: schedule job J to core i
8: end if
9: end if

10: i−−
11: end while
12: return

The FOF algorithm has the following key properties:

• A faster core always runs a request with higher or
equal urgency than all jobs on slower cores, increasing
response quality and the probability of completing all
requests before their deadlines.

• When there are 1 ≤ k < N requests where N is the
number of cores, the fastest k cores process these k
requests, increasing response quality.

• If a request migrates, it always migrates from a slower
to a faster core. This choice increases the probability
that short jobs will complete on a slow core and that
long jobs will execute on fast cores.

Note that FOF is designed to improve quality and
throughput on a heterogeneous processor, rather than attain
the lowest possible dynamic run-time energy. For example,
with only one request in the system, FOF will execute it on
the fastest core, whereas executing it on a slower core first
will consume less dynamic energy (as shown in
Theorem 1). However, by improving throughput while
satisfying response quality, the data center can buy and use
fewer servers and consume less total energy. Thus, server
provisioning and consolidation is the means by which FOF
optimizes server and energy cost.

FOF is computationally efficient. It does not require a
priori information on each request’s actual service demand.
It also bounds job migrations to K−1 times in the worst case,
where K is the number of different core speeds, regardless
of the server load. In practice, migrations per job are much
less than K − 1, as many short requests are processed and
completed on one core.

4 Simulation Study

This section evaluates FOF with a simulation study using
Bing web search measurements and various workload
distributions. We show heterogeneous processors with FOF
improve over homogeneous processors in terms of average
quality, quality variance, 95%-quality, and number of
servers required to support the workload. Furthermore,

5

Normalized Normalized
Name Processor (C Cores T SMT) technology LLC Speed 1 Core Power Performance Power

A i7-2600 Sandy Bridge (4C 2T) 32 nm 4 M 3.4 GHz 21 W 1.0 1.0
B i5-670 Nehalem (2C 2T) 32 nm 8 M 3.4 GHz 16 W 0.92 0.81
C i7-920 Nehalem (4C 2T) 45 nm 8 M 2.7 GHz 15 W 0.72 0.73
D AtomD Bonnell (2C 2T) 45 nm 1 M 1.7 GHz 4 W 0.45 0.19

Table 1: Core specification, measured and normalized PARSEC performance and power.

FOF achieves a higher quality than various alternative
scheduling algorithms, including a clairvoyant scheduler.
We explore how to select a good heterogeneous processor
configuration based on workload characteristics. We
observe that the quality improvement obtained from using
FOF on heterogeneous processors translates directly into a
throughput increase, thereby reducing the required number
of servers. We also explore sensitivity to hardware choice
and workload, showing FOF improves throughput at high
quality in many scenarios. Section 5 shows how to
configure processors with Simultaneous Multithreading
(SMT) to mimic heterogeneous processors with FOF and
attain benefits in today’s data center servers.

4.1 Methodology

As heterogeneous servers are not yet available, we perform
a simulation study using DESMO-J, a Java-based
discrete-event simulator. The simulator models cores,
scheduling, jobs, migration, completion, and other events.
Although simulation cannot capture every detail of system
implementation, it demonstrates the first-order impact of
using FOF on heterogeneous processors. We however
validate these simulation results using a finance server
executing on an SMT multicore processor.

Workload We use the Bing index search measurements
from Section 2.1. We model a server that accepts users’
search queries and returns the top L webpages as a CPU
intensive process [38]. Our simulator considers a request
delay deadline of 120 ms. We model service demand
distribution using measurements from production servers
and shown in Figure 1(b). We model request arrivals as a
Poisson process. To change system load, we control the
mean query arrival rate as queries per second (QPS). We
use the measured quality profile of Bing web search as
shown in Figure 1(a). All these characteristics match other
search engines in the literature [48, 35, 38].

Hardware performance and power We approximate
heterogeneous core performance and power based on
measurements of existing Intel processors. We use the
performance and power data reported by Esmaeilzadeh et
al. [19] executing PARSEC [7] on four architectures. We
use PARSEC because Reddi et al. show that they exhibit
similar performance characteristics to interactive

services [38]. Table 1 presents core speed, and normalized
single core performance and power for four architectures.

Name A B C D E Power

Hom-4A 4 0 0 0 0 82 W
Hom-5B 0 5 0 0 0 81 W
Hom-6C 0 0 6 0 0 88 W
Hom-22D 0 0 0 22 0 82 W
Het-3B-9D 0 3 0 9 0 82 W

Table 2: Processor configurations with design-time power budget.

We model homogeneous and heterogeneous processors
with a design-time power budget between 80 and 88 W
shown in Table 2. Homogeneous configurations include as
many individual cores as possible. We simulate a
heterogeneous processor composed of three i5 Nehalem
cores (3B) and nine AtomD cores (9D), called Het-3B-9D.
Section 4.5 explores other heterogeneous configurations.

4.2 Heterogeneous versus Homogeneous
This section shows the benefit of FOF by comparing our
default heterogeneous processor (Het-3B-9D) using FOF
with the four homogeneous processors from Table 2 using
FIFO scheduling in terms of average quality, quality
variance, 95%-quality, and number of servers to support a
given workload subject to the quality requirement. The
widely-used FIFO scheduler places all jobs in a single
queue and an idle core pulls the job from the head of the
queue and processes it until completion or expiration of the
deadline. FOF and FIFO are equivalent on a homogeneous
processor.

Improved average quality Figure 3(a) plots average
response quality (y-axis) against load measured in QPS
(x-axis). A heterogeneous processor with FOF outperforms
all homogeneous configurations in terms of average
response quality on a wide range of loads, translating into a
higher throughput subject to a fixed quality requirement.
We focus on throughput at the target quality of 0.99.

FOF increases throughput significantly, by 50%, on
Het-3B-9D compared to Hom-5B, the best 0.99-throughput
homogeneous processor. The core utilization at quality 0.99
is as follows: Hom-4A at 150 queries per second (QPS) is
91%; Hom-5B at 180 QPS is 92%; Hom-6C at 155 QPS is
81%; and Het-3B-9D at 270 QPS is 99%. Hom-22D only
supports an average quality of approximately 0.9808. At

6

50 100 150 200 250 300
0.95

0.96

0.97

0.98

0.99

1

QPS

Av
er

ag
e

Q
ua

lit
y

Hom−4A
Hom−5B
Hom−6C
Hom−22D
Het−3B−9D

(a) Average quality.

50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

QPS

Q
ua

lit
y

Va
ria

nc
e

Hom−4A
Hom−5B
Hom−6C
Hom−22D
Het−3B−9D

(b) Variance.

50 100 150 200 250 300
0.6

0.7

0.8

0.9

1

QPS

95
%

 Q
ua

lit
y

Hom−4A
Hom−5B
Hom−6C
Hom−22D
Het−3B−9D

(c) 95%-Quality.

0.98 0.985 0.99 0.995 1
20

40

60

80

100

Quality

N
um

be
r o

f S
er

ve
rs

Hom−4A
Hom−5B
Hom−6C
Het

(d) Number of servers.

50 100 150 200 250 300
0.98

0.985

0.99

0.995

1

QPS

Av
er

ag
e

Q
ua

lit
y

FIFO (Homï5B)
PS (Homï5B)
FOF (Hetï3Bï9D)
FIFO (Hetï3Bï9D)
BestFit (Hetï3Bï9D)
SPF (Hetï3Bï9D)
PS (Hetï3Bï9D)

(e) Different scheduling algorithms.

50 100 150 200 250 300
0.95

0.96

0.97

0.98

0.99

1

QPS

Av
er

ag
e

Q
ua

lit
y

Hom−4A
Hom−5B
Hom−6C
Hom−22D
Het−3B−9D

Migration overhead:
0ms, 1ms, 2ms

(from top to bottom)

(f) Different migration overheads.

Figure 3: Figures (a), (b), (c) and (d) compare heterogeneous to homogeneous processors under different performance metrics. Figure (e)
compares different heterogeneous scheduling algorithms. Figure (f) shows the impact of migration overheads.

0 50 100
0

0.1

0.2

0.3

0.4

Service Demand (ms)

Pr
ob

ab
ilit

y

Web search
Small tail
Big tail

(a) Service demand.

50 100 150 200 250 300
0.95

0.96

0.97

0.98

0.99

1

QPS

A
ve

ra
ge

 Q
ua

lit
y

Het−1B−17D
Het−2B−13D
Het−3B−9D
Het−4B−5D
Hom−5B

(b) Measured distribution.

100 200 300 400 500
0.95

0.96

0.97

0.98

0.99

1

QPS

A
ve

ra
ge

 Q
ua

lit
y

Het−1B−17D
Het−2B−13D
Het−3B−9D
Het−4B−5D
Hom−5B

(c) Small tail.

10 20 30 40 50
0.95

0.96

0.97

0.98

0.99

1

QPS

A
ve

ra
ge

 Q
ua

lit
y

Het−1B−17D
Het−2B−13D
Het−3B−9D
Het−4B−5D
Hom−5B

(d) Big tail.

Figure 4: Heterogeneous core configurations for a range of service demand distributions.

higher load (not shown), quality drops off further.
Figure 3(a) shows that both Hom-4A and Hom-5B, which
are fast cores, produce high quality when the throughput is
low (e.g., 90 QPS), whereas neither Hom-6C nor Hom-22D
are fast enough to achieve sufficiently high quality.

With a fixed power budget, a heterogeneous design
satisfies stringent quality requirements (e.g., 0.99) by
combining the high processing capabilities of fast cores and
the high throughput of multiple low-power slower cores.
Key to this result is that one fast core consumes more power
than 3 or more slow cores but a fast core has only about 2
times of the processing speed of a slow core.

Reduced quality variance Figure 3(b) shows response
quality variance. The heterogeneous processor using FOF
has the lowest variance. With Hom-22D, there are enough
cores to serve (almost) every incoming job without delay
and hence, the quality variance remains relatively constant
throughout until the QPS exceeds its capabilities.
Nonetheless, long jobs cannot complete prior to their
respective deadlines, resulting in a quality variance among

short and long jobs. Hom-4A, Hom-5B and Hom-6C have
little quality variance with light load (QPS < 150), since
they complete almost every job. When load increases,
queuing time increases and some long requests get
insufficient service before their deadline, which reduces
quality and increases variance. When using a Het-3B-9D, a
long request that cannot get a fast core immediately can still
be processed on one of many slow and medium cores and
migrate later to the fast core, which improves quality and
reduces variance even at high load.

Improved 95%-quality High-percentile quality is of
considerable interest since many commercial services
specify their service level agreement (SLA) using both
high-percentile quality and average response quality [17].
Remember we compute quality off-line, comparing to a
search with no limit on time or resources. For example, a
web search engine may target a quality of 0.99 for average
quality and 0.90 for at least 95% requests. The
high-percentile quality depends on the response quality
distribution. Figure 3(c) shows that a heterogeneous

7

processor improves the 95%-quality over homogeneous
processors on moderate and heavy loads by improving
average quality and reducing variance.

Reducing number of servers To highlight the hardware
and energy reductions due to heterogeneous processors with
FOF scheduling, we consider a total workload of 10,000
QPS and compute how many servers are needed with a
given design-time power budget, subject to various average
quality requirements. Figure 3(d) shows the number of
servers, for four systems, Het-3B-9D, Hom-4A, Hom-5B
and Hom-6C. For average quality of 0.99, a heterogeneous
processor reduces the number of servers by approximately
35% compared with homogeneous processors with the same
power budget, and may significantly reduce costs and
energy usage in large data centers.

4.3 Comparing Scheduling Algorithms

This section compares FOF with four alternative scheduling
algorithms: FIFO, Processor Sharing (PS), Slow Preempt
Fast (SPF), and BestFit. FIFO, PS, SPF, and FOF are
non-clairvoyant because when jobs arrive, their service
demand is unknown in practice. BestFit is a clairvoyant
scheduler; it knows each request’s service demand but lacks
migration. Figure 3(e), shows that even without knowledge
of the request service demand, FOF outperforms BestFit
and all the other schedulers because its migration policy
takes advantage of core heterogeneity.

FIFO and EDF Since requests have the same maximum
delay, FIFO and Earliest Deadline First (EDF), an optimal
real-time scheduler, behave the same. FOF achieves a
significantly higher quality than FIFO which cannot support
a 0.99-throughput higher than 160 QPS. FOF outperforms
FIFO because FOF completes many short requests on
slower cores and migrates long requests to faster cores. In
FIFO, the assignment of cores does not depend on the
request service demand, and processing long requests using
slower cores inevitably degrades the total response quality.

Processor sharing (PS) Processor sharing is the
well-known round-robin scheduler for homogeneous
processors. We extend PS to heterogeneous processors.
When the number of jobs M is greater than the number of
cores N, the jobs equally share all the available cores. When
M is smaller than N, the jobs equally share the M fastest
cores in a round-robin fashion. We assume that the context
switch and migration overhead of PS is 0 and therefore the
PS quality result is an upper bound. Figure 3(e) shows that
FOF achieves a higher quality than PS because the FOF
migration policy gives long requests a higher chance to use
fast cores. PS shares fast cores equally among short and
long requests and hence, long requests that really need fast
cores may not get them.

These classic scheduling algorithms for homogeneous
processors are insufficient because they do not consider
how to match request service demands to heterogeneous
core characteristics. Moreover, since the request service
demand is unknown, it is not possible to determine the most
appropriate core for a request before its execution. During
execution, however, the scheduler progressively has more
information about requests (i.e., urgency) such that the
scheduler may refine its decision. Thus, using FOF, job
migration among cores refines and improves scheduling
decisions when request service demand is unknown.

Migration policies We consider the SPF scheduler which
migrates jobs in reverse order to FOF, from fast cores to
slow ones. Each job is processed until completion or
expiration. If the number of jobs is smaller than the number
of cores, all the jobs are processed by the fastest available
cores. We show in Figure 3(e) that FOF achieves a much
higher quality than SPF. By migrating jobs from slower to
faster cores, FOF is more likely to complete short jobs on
slower cores, saving faster cores to process long jobs. In
contrast, SPF completes short jobs on faster cores whereas
long jobs, which have higher urgency, are processed by
slower cores. Thus, it is likely that long jobs do not get
fully completed before their respective deadlines. This
comparison shows that the job migration order from slower
to faster cores is critical to exploit processor heterogeneity.

Clairvoyant without migration Even with known
service demands, scheduling multiple jobs on a
heterogeneous processor is a challenging task. BestFit tries
to schedule each job with the minimum energy in a greedy
fashion. Specifically, each core maintains a separate queue
and, a new job joins the queue served by the slowest core
that can complete the job before its deadline. If none of the
cores can complete the job because of a large number of
waiting jobs, the job will be scheduled to the queue that
produces the highest quality for the job. Hence, BestFit is a
greedy clairvoyant scheduler with known service demands
but without job migration. Combining job migration with
clairvoyance requires solving an integer programming
problem that we leave for future work. This algorithm is
similar to scheduling algorithms in prior work [14, 40, 44],
which map jobs to the most “appropriate” cores.

Figure 3(e) shows that, rather surprisingly, FOF without
knowing request service demand outperforms BestFit with
known service demand. Because BestFit does not consider
job migration, it cannot fully exploit heterogeneous cores.
For example, if a long job arrives and the best core to run
the job is a fast core but all fast cores are running another
job. BestFit will let the job wait for the fast core to finish
even when there are other cores available. FOF is better
because it uses the slow cores to run the job first and then
migrates it to the fast core when it becomes available. FOF
also outperforms the Shortest Job First (SJF) algorithm (a
widely-used algorithm for improving the response time in

8

homogeneous processors) in terms of response quality. We
omit these results due to space limitations. Even when the
request service demand is known, migration is critical to
exploiting heterogeneous core resources as they become
available. In particular, long requests make progress on
slow cores first before migrating when fast cores become
available.

4.4 Migration Overhead

This subsection shows FOF is not sensitive to migration
overheads, since actual migration overheads are less than
1%. Even modeling higher migration overheads does not
diminish FOF’s performance benefits.

Job migration requires a context switch, whose time is
proportional to the size of a job’s working set due to cache
warm-up time, which may take tens of microseconds to a
millisecond [18]. We model three migration overhead
values: 0 ms (prior section), 1 ms, and 2 ms. Figure 3(f)
shows migration overheads hardly have any effect on
quality, which is mainly due to the following two factors.
(1) Migration overhead is typically at the range of tens of
microseconds to a couple of milliseconds and thus is much
smaller compared to the deadline of a few hundred
milliseconds. (2) The number of migrations is small. Given
K different core speeds available, a job may migrate up to
K− 1 times in the worst case, and K is a small number in
general. Moreover, as many short jobs complete on slow
cores, they do not need to migrate at all. Het-3B-9D has
two core types and thus, the upper bound on the number of
job migrations is 1 while the average number of migrations
per job is 0.45 at 150 QPS and increases to 0.56 at 300 QPS.

4.5 Heterogeneous Core Configuration

This subsection explores how to select good heterogeneous
processor configurations based on workload characteristics.
We find that more long jobs need more fast cores for a given
quality target but some small cores are always required.

We consider three representative workloads as illustrated
in Figure 4(a): (1) measured distribution of web search; (2)
small tail reduces the probability of long jobs (> 30 ms) and
increases the probability of short jobs (≤ 30 ms) in the
measured distribution; and (3) big tail reverses the
measured distribution (most jobs are long). Figure 4 shows
their average quality. We explored more configurations, but
for brevity, only show combinations of B and D cores. We
compare against a homogeneous processor with B cores,
since D cores cannot deliver the desired quality target.

Under all three service demand distributions, a
heterogeneous processor outperforms a homogeneous one
(Hom-5B) on 0.99-throughput. In particular, Het-1B-17D is
the best heterogeneous processor with a small tail, whereas
Het-4B-5D is the best under a big tail. Figure 4 confirms
our intuition that the best core configurations depend on the
service demand distribution and that the more long running

jobs the system expects, the more fast cores it should
include, because the slow cores cannot produce sufficiently
high quality. However, there is always a point where one or
more fast cores should be traded for slow cores to
gracefully degrade quality and improve throughput.

4.6 Other Workloads
We performed sensitivity studies on synthetic workloads
(exponential, Pareto, and bipolar service demand
distributions), quality profiles (linear profile, discrete
staircase profile), and different deadlines. These results
consistently show the benefits of using heterogeneous
processors with FOF to meet the desired quality with high
throughput. We omit the details of the results due to space
constraint.

5 Exploiting Heterogeneity in SMT Systems

This section describes: (a) How to configure an
Simultaneous Multithreaded (SMT) multicore processor to
act as a heterogeneous processor. (b) How to modify FOF
for it. (c) An implementation of a finance server for SMT
that delivers improvements in throughput and quality. The
experimental results on a 2-way SMT 4 core machine show
that FOF-SMT improves throughput by up to 16%
compared to the default OS scheduler and 27% compared
to no SMT. (d) A comparison of implementation and
simulation results confirms the accuracy of our simulator.
SMT, as a form of heterogeneity, is already present in data
centers, and thus FOF can have an immediate impact.

5.1 SMT as a Heterogeneous Multicore
SMT adds heterogeneity to existing hardware and we use it
to mimic heterogeneous processors. Intuitively, a core
executing one thread acts as a fast core, and a core
executing N > 1 SMT hardware threads acts as N slow
cores. The N slow cores exhibit higher throughput but each
thread runs slower than the fast core, similar to
heterogeneous processors.

5.2 FOF for SMT
We modify FOF to create FOF-SMT. We enable SMT for
all cores on a processor and then FOF-SMT controls which
cores execute as fast cores by executing only one thread or
as slow cores by executing N threads on an N-way SMT.
FOF-SMT works as follows.

Fast first When a request joins, if there is an idle core, FOF-
SMT schedules the request on it.

Fast old Consider two cases. (1) When a request joins, if
there are available SMT hardware threads but no idle
cores, FOF-SMT schedules the current request on an
SMT thread such that it shares the same core as the

9

youngest executing request. (2) At the point a request
completes, its core may become idle. In this case, if
other cores are sharing, FOF-SMT finds the sharing
core with the oldest job. Rather than moving the oldest
of the jobs sharing a core, it moves the other job. This
other job is less urgent, which minimizes the impact
on the oldest job and with 2-way SMT, gives both jobs
a core to themselves, i.e., fast cores. Both cases leave
the old request running on a fast core as they are likely
more urgent.

The implementation uses thread pools, affinity, and request
queues on each core prioritized by age to schedule jobs in
constant time. To study FOF in an implementation and
validate our simulator, we use an interactive finance server.

5.3 Option Pricing Finance Server
Finance servers are another example of interactive online
services. Banks and fund management companies evaluate
thousands of financial derivatives every day, submitting
requests that value derivatives and then making immediate
trading decisions. Many of these calculations use Monte
Carlo methods, which are computationally intensive and
rely on repeated random sampling to compute results. We
implement an option pricing server that uses Monte Carlo
methods for complex path-dependent Asian options [9, 16].

Each request is a Monte Carlo task that estimates an
option price under various economic scenarios with
different interest rates, strike prices, dividend yields, and
volatility. The tasks are time bounded, since traders use
them to perform online trading. With more samples, the
processing time is longer and the estimated price gets closer
to the real price. The system is adaptive and supports
returning partial results. The result quality is measured by a
well-known statistical metric called standard error of mean
(SEM). SEM is the standard deviation of the sample mean
of the population mean. SEM is computed by sampling the
standard deviation s divided by the square root of the
sample size n, i.e., SEM = s/

√
n. The smaller the SEM is,

the closer the estimated price to the real price. The goal is
to minimize the average and high-percentile SEM value for
all requests so the estimated prices are closer to the real
prices.

Figure 5(a) shows an error profile with increasing sample
sizes. When the number of samples increases along with the
processing time, SEM decreases, which indicates increasing
quality and the error profile is convex. When the sample size
is large, the change in sample standard deviation is small and
the square root of the sample size dominates. The convexity
of 1/

√
n leads to the convexity of SEM. Minimizing SEM

with a convex error profile is equivalent to maximize quality
with a concave quality profile.

Figure 5(b) shows the service demand distribution. Each
request incurs different processing time to compute a
sample, therefore service demand varies. Similar to web
search (Figure 1(a)), this workload is non-uniform with a

0.5 1 1.5 2
x 105

0

0.2

0.4

0.6

0.8

1

Number of Samples

SE
M

(a) Error profile.

75 125 175 225 275 325 375 425 475
0

0.1

0.2

0.3

0.4

0.5

Service Demand (ms)

P
ro

ba
bi

lit
y

(b) Service demand distribution.

Figure 5: Measured quality of finance server workloads.

mix of mostly short and some long requests. However, the
finance server does not have as heavy of a tail.

5.4 Methodology
We use a server with 6-core 2-way SMT 3.33 GHz Intel
Xeon X5680 processor with 24 GB of memory running
Windows Server 2012. The requests follow a Poisson
arrival process. When a request’s SEM reaches the target of
0.05 or lower, we consider it fully evaluated and terminate
the request. Otherwise, the request is partially evaluated
and terminated when it reaches a 500 ms deadline. We
compare three finance server configurations:

NoSMT SMT disabled.

Default-SMT SMT enabled with default round-robin OS
scheduling. After all cores are occupied with a single
request, it shares with SMT, choosing the core in round-
robin fashion [39].

FOF-SMT SMT enabled with FOF-SMT scheduling.

5.5 Implementation Results
We compare FOF with NoSMT and Default-SMT with
respect to average and high-percentile quality. Our results
show that FOF improves response quality of requests and
improves throughput by 27% over NoSMT and 16% over
SMT using default round-robin OS scheduling.

Figure 6(a) presents the average quality of requests with
varying load. The x-axis is load, expressed as request
arrival rate in requests per second (RPS), and the y-axis is
the average quality of all requests, where request quality is
computed by how far the result is from the target accuracy.
The request quality is 1− (SEMm−SEMt)/SEMt where SEMm

is the measured SEM value and SEMt is the target SEM
value. The results show that, at light load, all of NoSMT,
FOF-SMT and Default-SMT achieve high quality because
no core needs to share. With increasing load, FOF-SMT
outperforms both NoSMT and Default-SMT with improved
quality. For example, at quality target 0.99, NoSMT
sustains a throughput of 33 RPS, Default-SMT 37 RPS, and
FOF-SMT improves it to 42 RPS, achieving a 27%
improvement over NoSMT and 16% over Default-SMT.
FOF-SMT reduces quality variance (not shown) and

10

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 10 20 30 40 50 60

A
v
e
r
a
g
e

Q
u
a
l
i
t
y

Request Arrival Rate

NoSMT
Default-SMT

FOF-SMT

(a) Implementation: average quality.

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 10 20 30 40 50 60

A
v
e
r
a
g
e

Q
u
a
l
i
t
y

Request Arrival Rate

NoSMT
FastFirst

FOF-SMT

(b) Simulation: average quality.

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60

9
5
-
P
e
r
c
e
n
t
i
l
e

Q
u
a
l
i
t
y

Request Arrival Rate

NoSMT
Default-SMT

FOF-SMT

(c) Implementation: 95-% quality.

Figure 6: Implementation results with 2-way SMT dynamic heterogeneity on 6 cores for a finance server. Implementation matches
simulation results. FOF-SMT delivers higher average and 95-percentile quality at higher load.

Figure 6(c) shows that FOF-SMT improves high-percentile
quality.

These improvements come from two sources: (1)
capacity due to adding hardware parallelism in the form of
SMT, and (2) better scheduling choices by FOF. To put
capacity improvements in context, we measure a request X
alone on a core with processing time TX and two identical
requests on two SMT threads sharing the same core
concurrently, which takes time 1.582TX . In theory, SMT
could improve performance by 2TX , but in practice SMT
delivers less because it shares hardware resources (issue
queues, caches, etc.). In other words, given a core with
speed 1, each 2-way SMT hardware context has speed
0.632. 2-way SMT thus provides a 0.632× 2− 1 = 26.4%
increase of computational capacity. Thus the capacity
improvements of FOF-SMT are close to optimal for this
workload. Adding a larger number of slow cores to replace
one or more fast cores on heterogeneous processors
increases throughput. FOF-SMT makes better scheduling
decisions as witnessed by the gap between Default-SMT
and FOF-SMT. Smart scheduling algorithms are necessary
to fully exploit the benefits of SMT. FOF-SMT outperforms
Default-SMT because FOF-SMT shares cores among new
requests, which are both likely short and complete on
shared (slow) cores, leaving long requests to run on
unshared (fast) cores, where they are more likely to
complete before the deadline.

5.6 Validating Simulation with
Implementation

We validate the simulation results with the finance server
implementation. The simulator uses measured service
demand, error profile, raw performance on one core (1), and
the relative performance of SMT (0.632 of one core) using
the 6-core 2-way SMT processor measurements.
Comparing Figure 6(b) with the simulation results to the
implementation results in Figure 6(a) for average quality
shows that the SMT performance reported by the simulator
is very close to the SMT implementation results, both with
respect to the trends and absolute performance. This result
increases our confidence in the accuracy of our simulator

and the results in Section 4.

6 Related Work

Heterogeneous processors There are several proposals
for heterogeneous processors [27, 4, 31, 43, 5, 40, 14].
ARM recently announced their big.LITTLE processor for
production [22], which combines high-performance and
energy-efficient cores. Recent work argues for the benefits
of heterogeneous processors compared to homogeneous
processors in two main scenarios.

(1) A single job has different phases [43, 31, 42], such as
parallel phases and sequential phases. This work is
grounded in applying Amdahl’s law to a parallel program to
accelerate its sequential bottleneck [2, 27, 46]. Using a
heterogeneous processor, the sequential phase is executed
on a high-performance core, and the parallel phase is
executed on a number of energy-efficient cores. Our work
considers a stream of independent jobs that execute in
parallel instead of a single parallel program to which
Amdahl’s law was applied. We show more than one fast
core is often necessary and we furthermore show how to
use workload characteristics to choose the mix and variety
of fast and slow cores.

(2) A heterogeneous processor is more suitable for
multiprogramming environments with diverse application
demands [22, 5, 40, 14, 30, 33, 44]. Suleman et al. use
high-performance but energy-inefficient fast cores to
process critical phases of a job [42]. Others try to match
program phases to the appropriate core such that the part of
the program that benefits most from the high power core
executes on it [5, 40, 44]. They either improve performance
or save dynamic energy while being performance neutral.
Users run delay-sensitive tasks such as gaming and web
surfing using fast cores, while background services such as
indexing and spell-checking use slow cores [22].
Lakshminarayana et al. schedule the thread in a parallel job
with a larger remaining execution time on a fast core [32].
They predict the remaining time based on thread creation or
dynamic profiling. FOF achieves a much more substantial
throughput improvement because it leverages the diversity
(short versus long jobs) and adaptivity in the workload

11

demand, since it terminiates a job early if it exceeds it
deadline. A long running job cannot monopolize the fast
core indefinitely. Moreover, instead of using information
about each job, our work exploits the service demand
distribution of all jobs.

Real-time scheduling Prior work on real-time scheduling
that investigates saving energy while meeting deadlines
[47, 1] assumes known service demands, which is not
applicable in our environment. Other related work assumes
unknown service demand [34, 45, 49] and uses Dynamic
voltage/frequency scaling (DVFS) to save energy. None of
the prior work considers scheduling multiple requests that
both support partial execution as well as share and compete
for CPU resources. Trading resource consumption for
service quality has also been explored in other contexts
(e.g., wireless networks) using stochastic control
techniques, but only average queue length or average
response time is addressed [37]. Embedded and real-time
systems did not explore partial execution, and hence their
algorithms are not applicable to interactive services we
study. Our objective is to improve total quality with
deadline constraints, rather than meeting the deadline of
each job.

Next, we discuss scheduling algorithms for SMT and
DVFS systems.

SMT In a multiprogrammed environment, prior work on
SMT scheduling improves fairness and throughput by
coscheduling jobs according to their performance
characteristics and interference [41, 20, 12] . They all
consider workloads without deadlines. SMT scheduling on
real-time and soft real-time systems considers deadlines,
but it focuses on periodic tasks such as multimedia
applications and partitions resources to meet
deadlines [29, 11]. In contrast, we use SMT to emulate a
heterogeneous processor and develop an SMT-aware
scheduler for interactive workloads, where jobs arrive
aperiodically and can be partially evaluated.

DVFS DVFS trades performance for power consumption
by adjusting voltage or frequency [47, 1, 21, 34, 45, 49, 13].
Instead of optimizing for dynamic energy, our scheduling
improves response quality and therefore supports higher
throughput per server under design-time power constraints.
Two proposals [34, 45] progressively accelerate the
processor speed during job execution to minimize the
expected energy based on the service demand distribution,
which is consistent with the findings of Theorem 1.
However, those studies do not address multiple jobs that
compete for resources. Another approach [49] minimizes
the energy consumption for multiple types of
periodically-arriving jobs, which is not applicable for
interactive applications. Similarly, others [15] propose a
dynamic voltage scaling algorithm for multimedia
applications based on the service demand information

provided by content providers, but such information is not
available for our applications. Other related work exploits
partial execution (referred as differential service level) and
proposes an algorithm based on Markov decision process to
maximize total response quality given a mean response
time constraint [13]. Their algorithm is applicable to server
systems with different speeds. They consider mean
response time of jobs as constraint but our jobs need to
meet response deadlines.

DVFS and heterogeneous processors are complementary
technologies. The actual power-performance characteristics
of a core depends factors such as pipeline structure, type of
transistors, degree of speculation, voltage and frequency.
These factors limit the energy efficiency of DVFS at lower
speeds and frequencies [6, 31]. In contrast, heterogeneous
processors address such inefficiencies by using cores with
different microarchitectures to achieve a better tradeoff
between performance and energy [22].

While DVFS and SMT are relatively mature technologies
that do not require major changes to existing software to
exploit their benefits, heterogeneous processors are an
emerging technology that will require additional support
from the OS, compiler, and libraries before it is practical to
use by real-world services and applications.

7 Conclusion

We propose an online scheduling algorithm, FOF, to
improve the quality and throughput of an interactive service
on a heterogeneous processor. FOF effectively schedules
long requests to fast cores and short requests to slow cores
without knowing the actual service demands. Extensive
simulations evaluate FOF based on workloads from Bing
search. The results show that using FOF on heterogeneous
processors improves throughput by up to 50% compared to
using homogeneous processors. We also show how to use
an SMT processor as a dynamic heterogeneous processor.
We implement the scheduling algorithm for a financial
server. Our experimental results show up to 16% higher
throughput by using FOF on an SMT processor compared
to a default round-robin OS scheduler. A comparison of the
implementation results to our simulator configured with
similar features show that they closely match. These results
point to significant opportunities for heterogeneous
processors in data centers.

8 Acknowledgments

We thank Gregg McKnight and James Larus from Microsoft
for the insightful discussions and feedback.

References

[1] S. Albers, F. Muller, and S. Schmelzer. Speed scaling
on parallel processors. In SPAA, 2007.

12

[2] G. Amdahl. Validity of the single processor approach
to achieving large scale computing capabilities. pages
483–485, 1967.

[3] ARM Corporation. big.LITTLE processing, 2011.

[4] S. Balakrishnan, M. Upton, and K. Lai. The impact of
performance asymmetry in emerging multicore archi-
tectures. In ISCA, 2005.

[5] M. Becchi and P. Crowley. Dynamic thread assign-
ment on heterogeneous multiprocessor architectures.
In ACM Computing Frontiers, 2006.

[6] M. Bi, I. Crk, and C. Gniady. Iadvs: On-demand per-
formance for interactive applications. In HPCA, 2010.

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC benchmark suite: Characterization and ar-
chitectural implications. Technical Report TR-811-08,
Princeton University, January 2008.

[8] S. Borkar and A. Chien. The future of microprocessors.
Communications of the ACM, 54(5):67–77, 2011.

[9] M. Broadie and P. Glasserman. Estimating secu-
rity price derivatives using simulation. Manage. Sci.,
42:269–285, February 1996.

[10] B. Cahoon and K. S. McKinley. Performance evalu-
ation of a distributed architecture for information re-
trieval. In SIGIR, pages 110–118, Geneva, Switzer-
land, Aug. 1996.

[11] F. J. Cazorla, P. M. W. Knijnenburg, R. Sakellariou,
E. Fernández, A. Ramirez, and M. Valero. Architec-
tural support for real-time task scheduling in smt pro-
cessors. In CASES, 2005.

[12] F. J. Cazorla, A. Ramirez, M. Valero, P. M. W. Knijnen-
burg, R. Sakellariou, and E. Fernández. Qos for high-
performance smt processors in embedded systems. In
Micro, 2004.

[13] S. Chaitanya, B. Urgaonkar, and A. Sivasubramaniam.
QDSL: QoS-aware systems with differential service
levels. ACM SIGMETRICS, 2008.

[14] J. Chen and L. K. John. Efficient program schedul-
ing for heterogeneous multi-core processors. In DAC,
2009.

[15] E. Y. Chung, L. Benini, and G. D. Micheli. Contents
provider assisted dynamic voltage scaling for low en-
ergy multimedia applications. In IEEE Symposium on
Low Power Electronics and Design, ISPLED’02, 2002.

[16] G. Cortazar, M. Gravet, and J. Urzua. The valuation
of multidimensional american real options using the
LSM simulation method. Computers and Operations
Research., 2006.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In SOSP, 2007.

[18] C. L. C. Ding and K. Shen. Quantifying the cost of
context switch. In ECS, 2007.

[19] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and
K. S. McKinley. Looking back on the language and
hardware revolutions: Measured power, performance,
and scaling. In ASPLOS, pages 319–332, 2011.

[20] S. Eyerman and L. Eeckhout. Probabilistic job sym-
biosis modeling for SMT processor scheduling. In AS-
PLOS ’10, 2010.

[21] V. W. Freeh, N. Kappiah, D. K. Lowenthal, and
T. Bletsch. Just in time dynamic voltage scaling: Ex-
ploiting inter-node slack to save energy in MPI pro-
grams. Journal of Parallel and Distributed Computing,
68(9):1175–1185, Sep. 2008.

[22] P. Greenhalgh. Big.LITTLE processing with ARM
Cortex-A15 & Cortex-A7. ARM Whitepaper, 2011.

[23] J. Hamilton. Blog article: Perspectives, 2009.

[24] M. Harchol-Balter. The effect of heavy-tailed job size
distributions on computer system design. In Appli-
cations of Heavy Tailed Distributions in Economics,
1999.

[25] M. Harchol-Balter. Task assignment with unknown du-
ration. J. of ACM, 49(2):260–288, 2002.

[26] Y. He, S. Elnikety, and H. Sun. Tians scheduling: Us-
ing partial processing in best-effort applications. In
ICDCS, 20011.

[27] M. D. Hill and M. R. Marty. Amdahl’s law in the mul-
ticore era. Computer, 41:33–38, 2008.

[28] C. Huang, P. A. Chou, and A. Klemets. Optimal control
of multiple bit rates for streaming media. In PCS, 2004.

[29] R. Jain, C. J. Hughes, and S. V. Adve. Soft real-time
scheduling on simultaneous multithreaded processors.
In RTSS, 2002.

[30] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling
in heterogeneous multi-core architectures. In EuroSys,
2010.

[31] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,
and D. M. Tullsen. Single-ISA heterogeneous multi-
core architectures: The potential for processor power
reduction. In MICRO, 2003.

[32] N. B. Lakshminarayana, J. Lee, and H. Kim. Age
based scheduling for asymmetric multiprocessors. In
ACM/IEEE Conference on High Performance Comput-
ing (SC), 2009.

13

[33] T. Li, P. Brett, R. C. Knauerhase, D. A. Koufaty,
D. Reddy, and S. Hahn. Operating system support
for overlapping-ISA heterogeneous multi-core archi-
tectures. In HPCA, pages 1–12, 2010.

[34] J. R. Lorch and A. J. Smit. Improving dynamic voltage
scaling algorithms with pace. In SIGMETRICS, 2001.

[35] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber,
and T. F. Wenisch. Power management of online data-
intensive services. In ACM/IEEE International Sympo-
sium on Computer Architecture, ISCA ’11, pages 319–
330, 2011.

[36] T. Y. Morad, U. C. Weiser, A. Kolodnyt, M. Valero,
and E. Ayguadé. Performance, power efficiency and
scalability of asymmetric cluster chip multiprocessors.
Computer Architecture Letters, 5(1):14–17, 2006.

[37] M. J. Neely. Stochastic Network Optimization with
Application to Communication and Queueing Systems.
Morgan & Claypool, 2010.

[38] V. J. Reddi, B. C. Lee, T. M. Chilimbi, and K. Vaid.
Web search using mobile cores: Quantifying and miti-
gating the price of efficiency. In ISCA, 2010.

[39] M. E. Russinovich, D. A. Solomon, and A. Lonescu.
Microsoft Windows Internals, Fifth Edition: Cover-
ing Windows Server 2008, Windows Vista. Microsoft
Press, 2009.

[40] J. C. Saez, D. Shelepov, A. Fedorova, and M. Prieto.
Leveraging workload diversity through OS schedul-
ing to maximize performance on single-ISA heteroge-
neous multicore systems. Journal of Parallel and Dis-
tributed Computing, 71(1):114–131, 2011.

[41] A. Snavely and D. M. Tullsen. Symbiotic job schedul-
ing for a simultaneous multithreaded processor. In AS-
PLOS, 2000.

[42] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt. Accelerating critical section execution with asym-
metric multi-core architectures. In ASPLOS, 2009.

[43] M. A. Suleman, Y. N. Patt, E. Sprangle, A. Rohillah,
A. Ghuloum, and D. Carmean. Asymmetric chip mul-
tiprocessors: Balancing hardware efficiency and pro-
grammer efficiency. Technical report, HPS, 2007.

[44] K. Van Craeynest, A. Jalelle, L. Eeckhout, P. Narvaez,
and J. Emer. Scheduling heterogeneous multi-cores
through performance impact estimation (PIE). In ISCA
’12, 2012.

[45] R. Xu, C. Xi, R. Melhem, and D. Moss. Practical pace
for embedded systems. In Embedded Software, 2004.

[46] E. Yao, Y. Bao, G. Tan, and M. Chen. Extending
Amdahl’s law in the multicore era. ACM SIGMET-
RICS Performance Evaluation Review, 37(2):24–26,
Oct. 2009.

[47] F. F. Yao, A. J. Demers, and S. J. Shenker. A scheduling
model for reduced CPU energy. In FOCS, 1995.

[48] J. Yi, F. Maghoul, and J. Pedersen. Deciphering mo-
bile search patterns: a study of yahoo! mobile search
queries. In ACM International Conference on World
Wide Web, WWW ’08, pages 257–266, 2008.

[49] W. Yuan and K. Nahrstedt. Energy-efficient CPU
scheduling for multimedia applications. ACM Trans.
Computer Systems, 24(3):292–331, 2006.

14

