Bounded Partial-Order Reduction

Proof Companion Source Material

Katherine Coons* Madanlal Musuvathi[†] Kathryn McKinley^{*†}

University of Texas, Austin*

Microsoft Research[†]

This companion source material contains the proofs for all the theorems in the main paper. For completeness, it repeats the definitions, theorems, and lemmas.

1. Definitions

Definition 1.1. Traces [1].

Equivalence classes of \equiv_{Λ} are *traces* over Λ . The term $[\omega]$ denotes the trace that contains the sequence of transitions ω .

Definition 1.2. *Prefix*($[\omega]$) [1].

Prefix($[\omega]$) returns the set containing all prefixes of all sequences in the Mazurkiewicz trace defined by ω .

Definition 1.3. Local sufficient.

A nonempty set $T \subseteq \mathcal{T}$ of transitions enabled in a state *s* in $A_{G(Bv,c)}$ is *local sufficient* in *s* if and only if for all sequences ω of transitions from *s* in $A_{G(Bv,c)}$, there exists a sequence ω' from *s* in $A_{G(Bv,c)}$ such that $\omega \in Prefix([\omega'])$ and $\omega'_1 \in T$.

Definition 1.4. ext(s, t).

Given a state s = final(S) and a transition $t \in enabled(s)$, ext(s,t) returns the unique sequence of transitions β from s such that

1. $\forall i \in dom(\beta) : \beta_i.tid = t.tid$ 2. $t.tid \notin enabled(final(S.\beta))$

1.1 Preemption-bounded search

Definition 1.5. Preemption bound [2].

$$Pb(t) = 0$$

$$Pb(S.t) = \begin{cases} Pb(S) + 1 & \text{if } t.tid \neq last(S).tid \text{ and} \\ & last(S).tid \in enabled(final(S)) \\ Pb(S) & \text{otherwise} \end{cases}$$

Definition 1.6. Preemption-bound persistent sets.

A set $T \subseteq \mathcal{T}$ of transitions enabled in a state s = final(S)is *preemption-bound persistent* in s iff for all nonempty sequences α of transitions from s in $A_{G(Pb,c)}$ such that $\forall i \in dom(\alpha), \alpha_i \notin T$ and for all $t \in T$,

1. $Pb(S.t) \leq Pb(S.\alpha_1)$

- 2. if $Pb(S.t) < Pb(S.\alpha_1)$, then $t \leftrightarrow last(\alpha)$ and $t \leftrightarrow next(final(S.\alpha), last(\alpha).tid)$
- 3. if $Pb(S.t) = Pb(S.\alpha_1)$, then $ext(s,t) \leftrightarrow last(\alpha)$ and $ext(s,t) \leftrightarrow next(final(S.\alpha), last(\alpha).tid)$

Definition 1.7. *PC* for Explore(*S*) – Preemption bound. $\forall u \forall \omega :$ if $Pb(S.\omega) \leq c$ then $Post(S.\omega, len(S), u)$

Definition 1.8. Post(S, k, u) – Preemption bound. $\forall v : \text{if } i = max(\{i \in dom(S) \mid S_i \nleftrightarrow next(final(S), u) \text{ and } S_i.tid = v\})$ then

- 1. if $i \le k$ then if $u \in enabled(pre(S, i))$ then $u \in backtrack(pre(S, i))$ else backtrack(pre(S, i)) = enabled(pre(S, i))
- 2. if $j = max(\{j \in dom(S) \mid j = 0 \text{ or } S_{j-1}.tid \neq S_j.tid \text{ and } j < i\})$ and j < k then if $u \in enabled(pre(S, j))$ then $u \in backtrack(pre(S, j))$ else backtrack(pre(S, j)) = enabled(pre(S, j))

1.2 Fair-bounded search

Definition 1.9. Fair bound (Fb).

Let Y(S, u) return Thread u's yield count in final(S).

$$Fb(t) = 0$$

$$Fb(S.t) = max(Fb(S),$$

$$max_{u \in enabled(final(S))}(Y(S, t.tid) - Y(S, u)))$$

Definition 1.10. Fair-bound persistent sets.

A set $T \subseteq \mathcal{T}$ of transitions enabled in a state s = final(S)is *fair-bound persistent* in s if and only if for all nonempty sequences α of transitions from s in $A_{G(Fb,c)}$ such that $\forall i \in dom(\alpha) : \alpha_i \notin T$ and for all $t \in T$,

 Fb(S.t) ≤ c
 if t is a release operation, then ∀u ∈ enabled(s) : next(s, u) ∈ T
 t ↔ last(α)

Definition 1.11. *PC* for Explore(S) - Fair bound.

 $\forall u \forall \omega : \text{ if } Fb(S.\omega) \leq c \text{ and } len(S.\omega) \leq MAX \text{ then } Post(S.\omega, len(S), u)$

Definition 1.12. Post(S, k, u) - Fair bound.

 $\forall v : \text{if } i = max(\{i \in dom(S) \mid S_i \nleftrightarrow next(final(S), u) \text{ and } S_i.tid = v\}) \text{ and } i \leq k \text{ then}$

if $u \in enabled(pre(S, i))$ and S_i is not a release then $u \in backtrack(pre(S, i))$

 $\mathbf{else} \; backtrack(pre(S,i)) = enabled(pre(S,i))$

2. Proofs

Let $A_{R(Bv,c)}$ be the reduced state space explored by a selective search that explores a nonempty local sufficient set in each state.

Theorem 1. Let s be a state in $A_{R(Bv,c)}$, and let l be a local state reachable from s in $A_{G(Bv,c)}$ by a sequence ω of transitions. Then, l is also reachable from s in $A_{R(Bv,c)}$.

Proof. The proof is by induction on the length of the longest sequence of transitions that leads to l from s in $A_{G(Bv,c)}$.

Case 1.1. Base Case.

For $len(\omega) = 0$ the result is immediate.

Case 1.2. Inductive case.

Let l be a local state such that the longest sequence of transitions ω from s to l has length n + 1. Let u be a thread such that $l = local(final(S.\omega), u)$. Let T be the nonempty local sufficient set explored from s in $A_{R(Bv,c)}$.

By Definition 1.3 of local sufficient sets, there exists a sequence ω' of transitions from s in $A_{G(B\nu,c)}$ such that $\omega'_1 \in T$ and $\omega \in Prefix([\omega'])$. Thus, by Definition 1.2 of the prefix function, there exists a sequence β of transitions from final($S.\omega$) such that $\omega.\beta \in [\omega']$. Assume that none of the transitions in ω are by u. Then, by definition of local states,

$$local(\mathit{final}(S.\omega), u) = local(\mathit{final}(S), u)$$

and the result is immediate.

Assume that a transition in ω is by u. Let $i \in dom(\omega)$ be the maximum value of i such that $\omega_i.tid = u$. Because $\omega.\beta \in [\omega']$, there must exist $j \in dom(\omega')$ such that $\omega'_j = \omega_i$. Let $\omega' = \alpha.t.\gamma$ such that $t = \omega'_i$. Because $\omega.\beta \in [\omega']$,

$$local(final(S.\omega), u) = local(final(S.\alpha.t), u)$$

Thus, ω' leads to l. Because ω'_1 is in T, it is explored from sand the state $final(S.\omega'_1)$ is reachable in $A_{R(Bv,c)}$. Because ω is the longest sequence of transitions that leads to l in $A_{G(Bv,c)}$, $len(S.\alpha.t) \leq len(\omega)$. Thus, from $final(S.\omega'_1)$, l is reachable via a sequence of transitions of length n. By the inductive hypothesis, l is also reachable from s in $A_{R(Bv,c)}$.

2.1 Preemption-bounded search

Let $A_{R(Pb,c)}$ be the reduced state space for a selective search that explores a preemption-bound persistent set in each state.

We provide two lemmas to manage the bound, and a theorem stating that a nonempty preemption-bound persistent set is local sufficient.

Lemma 2. Let α and β be nonempty sequences of transitions from s = final(S) in $A_{G(\text{Pb},c)}$ such that

 $I. \ \beta \leftrightarrow \alpha$ $2. \ Pb(S.\beta_1) \leq Pb(S.\alpha_1)$ $3. \ \forall i \in dom(\beta) : \beta_i.tid = \beta_1.tid$ $4. \ \beta \leftrightarrow next(final(S.\alpha_1 \dots \alpha_i), \alpha_i.tid), 1 \leq i < len(\alpha)$ $5. \ if Pb(S.\beta_1) = Pb(S.\alpha_1), then$ $\beta_1.tid \notin enabled(final(S.\beta))$

Then, $\beta . \alpha$ is a sequence of transitions from s in $A_{G(Pb,c)}$.

Proof. By Assumption 1, $\beta.\alpha$ is a sequence of transitions from s in A_G . For each preemption in $S.\beta.\alpha$, from left to right, show that there exists a unique preemption in $S.\alpha$. Assume that β_1 requires a preemption from *final*(S). By Assumption 2, α_1 also requires a preemption from *final*(S). By Assumption 3, no transition in β after β_1 requires a preemption.

Assume that α_1 requires a preemption from $final(S.\beta)$. Then,

$$\beta_1.tid \in enabled(final(S.\beta))$$

and thus by Assumptions 2 and 5, $Pb(S.\beta_1) < Pb(S.\alpha_1)$. Thus, α_1 requires a preemption from final(S) and β_1 does not, so this preemption is unique. Assume that a transition α_i , $2 \le i \le len(\alpha)$, requires a preemption in $S.\beta.\alpha$. By Assumption 4, α_i also requires a preemption in $S.\alpha$. Thus, for each preemption in $S.\beta.\alpha$ there exists a unique preemption in $S.\alpha$ and

$$Pb(S.\beta.\alpha) \le Pb(S.\alpha) \le c$$

Thus, $\beta . \alpha$ is a sequence of transitions from s in $A_{G(Pb,c)}$.

Lemma 3. Let T be a nonempty preemption-bound persistent set in a state s = final(S) in $A_{R(\text{Pb},c)}$ and let $\alpha.\beta.\gamma$ be a sequence of transitions from s in $A_{G(\text{Pb},c)}$ such that α and β are nonempty and

- 1. $\forall i \in \operatorname{dom}(\alpha) : \alpha_i \notin T$
- 2. $\beta_1 \in T$
- 3. $\forall i \in \operatorname{dom}(\beta) : \beta_i.tid = \beta_1.tid$
- 4. if $\operatorname{Pb}(S.\beta_1) < \operatorname{Pb}(S.\alpha_1)$ then $\operatorname{len}(\beta) = 1$
- 5. *if* $Pb(S.\beta_1) = Pb(S.\alpha_1)$ and γ is empty, then $\beta_1.tid \notin enabled(final(S.\beta))$
- 6. *if* $Pb(S.\beta_1) = Pb(S.\alpha_1)$ and γ is nonempty, then $\gamma_1.tid \neq \beta_1.tid$

Then, $\beta . \alpha . \gamma$ is a sequence of transitions from s in $A_{G(Pb,c)}$.

Proof. By Assumptions 1-4 and by Requirements 2 and 3 of Definition 1.6 of preemption-bound persistent sets, $\beta \leftrightarrow \alpha$

and

$$\forall i \in dom(\alpha) : \beta \leftrightarrow next(final(S.\alpha_1 \dots \alpha_i), \alpha_i.tid) \quad (1)$$

Thus, $\beta.\alpha.\gamma$ is a sequence of transitions from s in A_G . For each preemption in $S.\beta.\alpha.\gamma$, from left to right, show that there exists a unique preemption in $S.\alpha.\beta.\gamma$. Assume that β_1 requires a preemption from final(S). Then, by Requirement 1 of Definition 1.6 of preemption-bound persistent sets, α_1 also requires a preemption from final(S). By Assumption 3, no transition in β after β_1 requires a preemption.

Assume that α_1 requires a preemption from $final(S,\beta)$. If $Pb(S,\beta_1) < Pb(S,\alpha_1)$, then α_1 requires a preemption from final(S) and β_1 does not, so this preemption is unique. Otherwise, by Requirement 1 of Definition 1.6 of preemptionbound persistent sets, $Pb(S,\beta_1) = Pb(S,\alpha_1)$. Because α_1 requires a preemption from $final(S,\beta)$,

$$\beta_1.tid \in enabled(final(S.\beta))$$
 (2)

By Assumption 5, γ is nonempty, and by Assumption 6 $\gamma_1.tid \neq \beta_1.tid$. By Equation 2 and Requirement 3 of Definition 1.6 of preemption-bound persistent sets,

$$\beta_1.tid \in enabled(final(S.\alpha.\beta))$$

Thus, γ_1 requires a preemption from $final(S.\alpha.\beta)$. Assume that a transition α_i , $2 \le i \le len(\alpha)$, requires a preemption in $S.\beta.\alpha.\gamma$. By Equation 1, α_i also requires a preemption in $S.\alpha.\beta.\gamma$.

Assume that γ_1 requires a preemption from $final(S.\beta.\alpha)$. Then,

$$last(\alpha).tid \in enabled(final(S.\beta.\alpha))$$

By Equation 1,

$$last(\alpha).tid \in enabled(final(S.\alpha))$$

Because $\beta \leftrightarrow \alpha$, $\beta_1.tid \neq last(\alpha).tid$. Thus, β_1 requires a preemption from $final(S.\alpha)$. Assume that a transition γ_i , $2 \leq i \leq len(\gamma)$, requires a preemption in $S.\beta.\alpha.\gamma$. Because $\beta \leftrightarrow \alpha$, $final(S.\alpha.\beta.\gamma_1) = final(S.\beta.\alpha.\gamma_1)$. Thus, by Definition 1.5 of the preemption bound, γ_i also requires a preemption in $S.\alpha.\beta.\gamma$. Thus, for each preemption in $S.\beta.\alpha.\gamma$ there exists a unique preemption in $S.\alpha.\beta.\gamma$ and

$$Pb(S.\beta.\alpha.\gamma) \le Pb(S.\alpha.\beta.\gamma) \le c$$

Thus, $\beta.\alpha.\gamma$ is a sequence of transitions from s in $A_{G(Pb,c)}$.

Theorem 4. If T is a nonempty preemption-bound persistent set in a state s in $A_{R(Pb,c)}$, then T is local sufficient in s.

Proof. Let s be a state in $A_{R(Pb,c)}$ and let l be a local state reachable from s in $A_{G(Pb,c)}$ via a nonempty sequence ω of transitions.

Case 4.1. $\forall i \in dom(\omega) : \omega_i \notin T$.

Let t be any transition in T. By Requirement 1 of Definition 1.6 of preemption-bound persistent sets, $Pb(S.t) \leq Pb(S.\omega_1)$. Let $\beta = t$ if $Pb(S.t) < Pb(S.\omega_1)$, and let $\beta = ext(s,t)$ otherwise. Consider the sequence $\omega' = \beta.\omega$. By Requirements 2 and 3 of Definition 1.6 of preemption-bound persistent sets, $\beta \leftrightarrow \omega$ and $\forall i \in dom(\omega) : \beta \leftrightarrow next(final(S.\omega_1 \dots \omega_i), \omega_i.tid)$. Thus, by Lemma 2 $\beta.\omega$ is a sequence of transitions from s in $A_{G(Pb,c)}$ and by Definition 1.1 of a trace, $\omega.\beta \in [\omega']$. By Definition 1.2 of the prefix function, $\omega \in Prefix([\omega'])$. Thus, T is local sufficient in s.

Case 4.2. $\exists i \in dom(\omega) : \omega_i \in T$. Let $\omega = \alpha . \beta . \gamma$ such that

1. $\forall i \in dom(\alpha) : \alpha_i \notin T$ 2. $\beta_1 \in T$ 3. $\forall i \in dom(\beta) : \beta_i.tid = \beta_1.tid$ 4. if $Pb(S.\beta_1) < Pb(S.\alpha_1)$ then $len(\beta) = 1$ 5. if $Pb(S.\beta_1) = Pb(S.\alpha_1)$ and γ is nonempty, then $\gamma_1.tid \neq \beta_1.tid$

Assume that α is empty. Then, T is local sufficient in s because $\omega_1 \in T$ and l is reachable via ω . Assume that α is nonempty. By Requirement 1 of Definition 1.6 of preemption-bound persistent sets, $Pb(S.\beta_1) \leq Pb(S.\alpha_1)$.

Case 4.2a. γ is nonempty, or γ is empty and

 $\beta_1.tid \notin enabled(final(S,\beta))$, or $Pb(S,\beta_1) < Pb(S,\alpha_1)$. Consider the sequence $\omega' = \beta.\alpha.\gamma$, i.e., ω with β moved to the beginning. By Requirements 2 and 3 of Definition 1.6 of preemption-bound persistent sets, $\beta \leftrightarrow \alpha$ and $\forall i \in$ $dom(\alpha) : \beta \leftrightarrow next(final(S,\alpha_1...\alpha_i),\alpha_i.tid)$. Thus, by Lemma 3 ω' is a sequence of transitions from s in $A_{G(Pb,c)}$ and by Definition 1.1 of a trace $\omega' \in [\omega]$. By Definition 1.2 of the prefix function $\omega \in Prefix([\omega'])$, so T is local sufficient in s.

Case 4.2b. γ is empty, $\beta_1.tid \in enabled(final(S.\beta))$, and $Pb(S.\beta_1) = Pb(S.\alpha_1)$.

Let $\beta' = ext(s, \beta_1)$. Consider the sequence $\omega' = \beta'.\alpha$. By Requirement 3 of Definition 1.6 of preemption-bound persistent sets, $\beta' \leftrightarrow \alpha$ and $\forall i \in dom(\alpha) : \beta' \leftrightarrow$ $next(final(S.\alpha_1 \dots \alpha_i), \alpha_i.tid)$. Thus, by Lemma 2 $\beta'.\omega$ is a sequence of transitions from s in $A_{G(Pb,c)}$ and by Definition 1.1 of a trace $\omega.\beta' \in [\omega']$. By Definition 1.2 of the prefix function $\omega \in Prefix([\omega'])$, so T is local sufficient in s.

Lemma 5. Whenever a state s = final(S) is backtracked by Algorithm 1, the set T of transitions explored from s is preemption-bound persistent in s, provided that postcondition PC holds for every recursive call **Explore**(S.t) for all $t \in T$. Algorithm 1 BPOR with bound function *Bv* and bound *c*

1: Initially, **Explore**(ϵ) from s_0 2: procedure Explore(S) begin Let s = final(S)3: # Add backtrack points for all $(u \in Tid)$ do 4: for all $(v \in Tid \mid v \neq u)$ do 5: # Find most recent dependent transition if $(\exists i = \max(\{i \in dom(S) \mid$ 6: S_i next(s, u) and $S_i.tid = v$)) then 7: **Backtrack**(S, i, u)# Continue the search by exploring successor states **Initialize**(S) 8: Let *visited* = \emptyset 9: 10: while $(\exists u \in (enabled(s) \cap backtrack(s) \setminus visited))$ do add u to visited 11: if $(Bv(S.next(s, u)) \le c)$ then 12: **Explore**(S.next(s, u))13:

Algorithm	2 BPOR for	preemption-bounded search

1: procedure Initialize(S) begin if $(last(S).tid \in enabled(final(S)))$ then 2: add last(S).tid to backtrack(final(S))3: else 4: 5: add any u \in enabled(final(S))to backtrack(final(S))6: procedure Backtrack(S, i, u) begin AddBacktrackPoint(S, i, u)7: if $(j = \max(\{j \in dom(S) \mid j = 0 \text{ or } S_{i-1}.tid \neq$ 8: $S_j.tid$ and $j < i\})$ then 9: AddBacktrackPoint(S, j, u)10: procedure AddBacktrackPoint(S, i, u) begin if $(u \in enabled(pre(S, i)))$ then 11: Add *u* to backtrack(pre(S, i))12: 13: else backtrack(pre(S, i)) = enabled(pre(S, i))14:

Proof. Let $T = next(s, u) \mid u \in backtrack(s)$. Show that if T violates any requirement in Definition 1.6 of preemptionbound persistent sets, then we have a contradiction.

Case 5.1. T violates Requirement 1.

Proceed by contradiction. Assume that there exist transitions $t \in T$ and $t' \notin T$ such that t and t' are both enabled in s and Pb(S.t') < Pb(S.t). By Definition 1.5 of the preemption bound

$$t'.tid = last(S).tid$$

Thus, by Line 3 of Algorithm 2, $t'.tid \in backtrack(s)$ and thus $t' \in T$, and we have a contradiction.

Case 5.2. T violates Requirement 2.

Proceed by contradiction. Assume that there exists a nonempty sequence α of transitions from s in $A_{G(Pb,c)}$ and a transition $t \in T$ such that, if we let $u = \text{last}(\alpha).tid$:

- 1. $\forall i \in dom(\alpha) : \alpha_i \notin T$
- 2. $Pb(S.t) < Pb(S.\alpha_1)$
- 3. t is dependent with last(α) or with $next(final(S.\alpha), u)$

Let $n = len(\alpha)$ and let $\omega = \alpha_1 \dots \alpha_{n-1}$, i.e., α with its last transition removed. Let there be no prefixes of α that also meet the criteria above, and thus

4. $t \leftrightarrow \omega$ and $\forall i \in dom(\omega) :$ $t \leftrightarrow next(final(S.\omega_1 \dots \omega_i), \omega_i.tid)$

Assume that t.tid = u. Because $t \leftrightarrow \omega$,

 $t = next(final(S), u) = next(final(S.\omega), u) = last(\alpha)$

Thus, $last(\alpha) \in T$ and we have a contradiction.

Assume that $t.tid \neq u$. Let $\omega' = \omega$ if t is dependent with $last(\alpha)$, and let $\omega' = \alpha$ if $t \leftrightarrow \alpha$ and t is dependent with $next(final(S.\alpha), u)$. Consider the postcondition

$$Post(S.t.\omega', len(S) + 1, u)$$

for the recursive call **Explore**(*S.t*). By Lemma 2, $t.\omega'$ is a sequence of transitions from s in $A_{G(Pb,c)}$. Because $t \leftrightarrow \omega'$, t is the most recent transition by t.tid that is dependent with $next(final(S.t.\omega'), u)$. Thus, by Definition 1.8 of *Post*, either $u \in backtrack(s)$, or backtrack(s) = enabled(s) and thus $\alpha_1 \in T$. In either case, we have a contradiction.

Case 5.3. T violates Requirement 3.

Proceed by contradiction. Assume that there exists a nonempty sequence α of transitions from s in $A_{G(Pb,c)}$ and a transition $t \in T$ such that, if we let $u = \text{last}(\alpha).tid$ and let $\beta = ext(s,t)$:

1.
$$Pb(S.t) = Pb(S.\alpha_1)$$

- 2. $\forall i \in dom(\alpha) : \alpha_i \notin T$
- 3. a transition in β is dependent with $last(\alpha)$ or with $next(final(S.\alpha), u)$

Let $n = len(\alpha)$, and let $\omega = \alpha_1 \dots \alpha_{n-1}$, i.e., α with its last transition removed. Let there be no prefixes of α that also meet the criteria above, and thus

4.
$$\beta \leftrightarrow \omega$$
 and $\forall i \in dom(\omega) : \beta \leftrightarrow next(final(S.\omega_1 \dots \omega_i), \omega_i.tid))$

Assume that $\beta_1.tid = u$. Because $\beta \leftrightarrow \omega$,

 $\beta_1 = next(final(S), u) = next(final(S, \omega), u) = last(\alpha)$

Thus, $last(\alpha) \in T$ and we have a contradiction.

Assume that $\beta_1.tid \neq u$. Let β_k be the last transition in β that is dependent with $last(\alpha)$ or with $next(final(S.\alpha), u)$. Let $\omega' = \omega$ if β_k is dependent with $last(\alpha)$, and let $\omega' = \alpha$ if $\beta \leftrightarrow \alpha$ and β_k is dependent with $next(final(S.\alpha), u)$. By Lemma 2, $\beta . \omega'$ is a sequence of transitions from s in $A_{G(Pb,c)}$. Consider the postcondition

$$Post(S.\beta.\omega', len(S) + 1, u)$$

for the recursive call **Explore** (S,β_1) . Because $\beta \leftrightarrow \omega'$, β_k is the most recent transition by $\beta_1.tid$ that is dependent with $next(final(S,\beta,\omega'), u)$. Because $Pb(S,\beta_1) = Pb(S,\alpha_1)$, by Definition 1.5 of the preemption bound either $\beta_1.tid \neq last(S).tid$, or S is empty. Because all transitions in β are by the same thread, β_1 is the most recent such location to β_k . Thus, by Requirement 2 of Definition 1.8 of postcondition *Post*, either $u \in backtrack(s)$, or *backtrack*(s) = enabled(s)and thus $\alpha_1 \in T$. In either case, we have a contradiction.

Thus, if postcondition *PC* holds in each state s that Algorithm 1 explores with the **Backtrack** procedure from Algorithm 2, then the set of transitions Algorithm 1 explores from s is preemption-bound persistent in s.

Next, we prove that postcondition *PC* holds in each state *s* that Algorithm 1 explores. First, we prove a lemma that simplifies the inductive step. Lemma 6 differs from the similar lemma used in depth-bounded and context-bounded search because it must account for the more complex postcondition that preemption-bounded search requires.

Lemma 6. Let s = final(S) be a state in $A_{R(\text{Pb},c)}$, let ω and ω' be nonempty sequences of transitions from s in $A_{G(\text{Pb},c)}$ such that $\text{Pb}(S.\omega'_1) \leq \text{Pb}(S.\omega_1)$, and let u be a thread such that

1. $\exists \beta : \omega.\beta \in [\omega']$ and $\beta \leftrightarrow \text{next}(\text{final}(S.\omega), u)$, or 2. $\exists \beta : \omega'.\beta \in [\omega]$ and $\beta \leftrightarrow \text{next}(\text{final}(S.\omega), u)$

Then, $Post(S.\omega', len(S) + 1, u) \implies Post(S.\omega, len(S), u).$

Proof. Because $\beta \leftrightarrow next(final(S.\omega), u)$,

$$next(final(S.\omega), u) = next(final(S.\omega'), u)$$

Assume that in Definition 1.8 of postcondition *Post*, $i \leq k$ for $Post(S.\omega, len(S), u)$. Then, i and j have the same values in $Post(S.\omega', len(S), u)$ that they have in $Post(S.\omega, len(S), u)$ because $\beta \leftrightarrow next(final(S.\omega), u)$.

Assume that i > k for $Post(S.\omega, len(S), u)$. Because $Pb(S.\omega'_1) \le Pb(S.\omega_1)$, by Definition 1.5 of the preemption bound either S is empty or $\omega_1.tid \ne last(S).tid$. Thus, $j \ge k$ for $Post(S.\omega, len(S), u)$, so Definition 1.8 of *Post* does not require any backtrack points. In either case,

$$Post(S.\omega', len(S), u) \implies Post(S.\omega, len(S), u)$$
 (3)

Because Requirement 1 of Definition 1.8 of *Post* requires that $i \leq k$ and Requirement 2 of Definition 1.8 of *Post* requires that j < k

$$Post(S.\omega', len(S) + 1, u) \implies Post(S.\omega', len(S), u)$$

Thus, by Equation 3,

$$Post(S.\omega', len(S) + 1, u) \implies Post(S.\omega, len(S), u)$$

Theorem 7. Whenever a state s = final(S) is backtracked during the search performed by Algorithm 1 in an acyclic state space, the postcondition Post for **Explore**(S) is satisfied, and the set T of transitions explored from s is preemption-bound persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

Because the search is acyclic, is performed in depth-first order, and the preemption bound provides a zero-cost transition in each state, the first backtracked state must be a deadlock state in which no transition is enabled. Thus, the postcondition for the first backtracked state is

$$\forall u : Post(S, len(S), u)$$

and is directly established by Lines 4-7 in Algorithm 1.

Inductive case.

Assume that each recursive call to **Explore**(S.t) satisfies its postcondition. By Lemma 5, T is preemption-bound persistent in s. Show that **Explore**(S) satisfies its postcondition for any sequence ω of transitions from s in $A_{G(Pb,c)}$ and for any thread u.

Case 7.1. $\forall i \in dom(\omega) : \omega_i \notin T$ and $u \in backtrack(s)$. Because $u \in backtrack(s)$, $next(s, u) \in T$. By Definition 1.5 of preemption-bound persistent sets, $next(s, u) \leftrightarrow \omega$, and thus

$$next(final(S.\omega), u) = next(s, u)$$

Thus, $next(final(S.\omega), u) \leftrightarrow \omega$, and $Post(S.\omega, len(S), u)$ iff Post(S, len(S), u). The latter is directly established by Lines 4-7 in Algorithm 1.

Case 7.2. $\forall i \in dom(\omega) : \omega_i \notin T$ and $u \notin backtrack(s)$. Because $u \notin backtrack(s)$, $next(s, u) \notin T$. Let t be any transition in T, and thus $t.tid \neq u$. Let $\beta = t$ if $Pb(S.t) < Pb(S.\omega_1)$, and let $\beta = ext(s,t)$ otherwise. Consider the

sequence $\omega' = \beta . \omega$. By Definition 1.6 of preemption-bound persistent sets, 1. Ph(St) < Ph(St)

1.
$$Pb(S.t) \leq Pb(S.\omega_1)$$

2. $\beta \leftrightarrow \omega$
3. $\forall i \in dom(\omega) : \beta \leftrightarrow next(final(S.\omega_1 \dots \omega_i), \omega_i.tid)$

By Lemma 2, ω' is a sequence of transitions from s in $A_{G(Pb,c)}$. Because $\beta \leftrightarrow \omega$, $\omega.\beta \in [\omega']$. By the inductive hypothesis for the recursive call **Explore**(S.t),

$$Post(S.\omega', len(S) + 1, u)$$

Assume that $next(final(S.\omega'), u)$ is dependent with a transition in β . Because $\beta \leftrightarrow \omega$, the most recent dependent transition to $next(final(S.\omega'), u)$ by $\beta_1.tid$ must be in β . If β_1 is the most recent dependent transition, then by Requirement 1 of Definition 1.8 of *Post* either $u \in backtrack(s)$, or backtrack(s) = enabled(s) and thus $\omega_1 \in T$. If the most recent dependent transition is another transition in β , then $Pb(S.t) = Pb(S.\omega_1)$ because otherwise β would contain only a single transition, and thus either S is empty or $last(S).tid \neq \beta_1.tid$. Thus, j must be len(S) in Definition 1.8, and thus either $u \in backtrack(s)$, or backtrack(s) = enabled(s) and thus $\omega_1 \in T$. In either case, we have a contradiction.

Assume that $\beta \leftrightarrow next(final(S.\omega'), u)$. Because $\beta_1.tid \neq u$, $next(final(S.\omega), u) = next(final(S.\omega'), u)$ and

$$\beta \leftrightarrow next(final(S.\omega), u)$$

Thus, by Lemma 6 where $\omega.\beta \in [\omega']$,

$$Post(S.\omega, len(S), u)$$

Case 7.3. $\exists i \in dom(\omega) : \omega_i \in T$. Let $\omega = \alpha . \beta . \gamma$ such that

1.
$$\forall i \in dom(\alpha) : \alpha_i \notin T$$

2. $\beta_1 \in T$
3. $\forall i \in dom(\beta) : \beta_i.tid = \beta_1.tid$

4. if $Pb(S.\beta_1) < Pb(S.\alpha_1)$ then $len(\beta) = 1$

5. if $Pb(S.\beta_1) = Pb(S.\alpha_1)$ and γ is nonempty, then $\gamma_1.tid \neq \beta_1.tid$

Assume that α is empty. Then, $\omega_1 \in T$ and by the inductive hypothesis,

$$Post(S.\omega, len(S) + 1, u)$$

Because Requirement 1 of Definition 1.8 of *Post* requires that $i \leq k$ and Requirement 2 of Definition 1.8 of *Post* requires that j < k,

$$\textit{Post}(S.\omega, \textit{len}(S), u)$$

as required.

Assume that α is nonempty. By Requirement 1 of Definition 1.6 of preemption-bound persistent sets, $Pb(S.\beta_1) \leq Pb(S.\alpha_1)$.

Case 7.3a. γ is nonempty, or γ is empty and

 $\beta_1.tid \notin enabled(final(S.\beta))$, or $Pb(S.\beta_1) < Pb(S.\alpha_1)$. Consider the sequence $\omega' = \beta.\alpha.\gamma$, i.e., ω with β moved to the beginning. By Requirements 2 and 3 of Definition 1.6 of preemption-bound persistent sets, $\beta \leftrightarrow \alpha$ and $\forall i \in$ $dom(\alpha) : \beta \leftrightarrow next(final(S.\alpha_1...\alpha_i), \alpha_i.tid)$. Thus, by Definition 1.1 of a trace, $\omega' \in [\omega]$. By Lemma 3, ω' is a sequence of transitions from s in $A_{G(Pb,c)}$. By the inductive hypothesis for the recursive call **Explore**(S.\beta_1),

$$Post(S.\omega', len(S) + 1, u)$$

and thus by Lemma 6 where β is empty and $\omega' \in [\omega]$,

$$Post(S.\omega, len(S), u)$$

Case 7.3b. γ is empty, $\beta_1.tid \in enabled(final(S.\beta))$, $Pb(S.\beta_1) = Pb(S.\alpha_1)$, and $u \in backtrack(s)$.

Because γ is empty, $\omega = \alpha.\beta$. Consider the sequence $\omega' = \beta$. By Requirement 3 of Definition 1.6 of preemption-bound persistent sets, $\beta \leftrightarrow \alpha$ and thus

$$\omega'.\alpha \in [\omega]$$

Because $u \in backtrack(s)$, $next(s, u) \in T$ and $next(s, u) \leftrightarrow \alpha$. If $\beta_1.tid = u$, then $next(final(S.\omega), u)$ is a transition in $ext(s, \beta_1)$ and by Requirement 3 of Definition 1.6 of preemption-bound persistent sets $next(final(S.\omega), u) \leftrightarrow \alpha$. If $\beta_1.tid \neq u$, then $next(s, u) = next(final(S.\omega), u)$. In either case,

$$next(final(S.\omega), u) \leftrightarrow \alpha$$

Because $Pb(S.\beta_1) = Pb(S.\alpha_1)$ and all transitions in β are by the same thread and thus do not require a preemption, ω' is a sequence of transitions from s in $A_{G(Pb,c)}$. By the inductive hypothesis for the recursive call **Explore** $(S.\beta_1)$,

$$Post(S.\omega', len(S) + 1, u)$$

and thus by Lemma 6 where $\beta = \alpha$ and $\omega' \cdot \alpha \in \omega$,

$$Post(S.\omega, len(S), u)$$

Case 7.3c. γ is empty, $\beta_1.tid \in enabled(final(S.\beta))$, $Pb(S.\beta_1) = Pb(S.\alpha_1)$, and $u \notin backtrack(s)$.

Because γ is empty, $\omega = \alpha.\beta$. Let β' be the unique, nonempty sequence of transitions from $final(S.\beta)$ such that $\beta.\beta' = ext(s,\beta_1)$. Consider the sequence $\omega' = \beta.\beta'.\alpha$. By Requirement 3 of Definition 1.6 of preemption-bound persistent sets, $\beta.\beta' \leftrightarrow \alpha$ and $\forall i \in dom(\alpha) : \beta.\beta' \leftrightarrow$ $next(final(S.\alpha_1...\alpha_i), \alpha_i.tid)$. Thus, by Lemma 2, ω' is a sequence of transitions from s in $A_{G(Pb,c)}$. Because $\beta.\beta' \leftrightarrow \alpha$,

$$\omega.\beta' \in [\omega']$$

By the inductive hypothesis for **Explore** $(S.\beta_1)$,

$$Post(S.\omega', len(S) + 1, u)$$

Assume that $next(final(S.\omega'), u)$ is dependent with a transition in β' . Then, because $\beta.\beta' \leftrightarrow \alpha$, the most recent dependent transition to $next(final(S.\omega'), u)$ by $\beta_1.tid$ is in β' . Thus, by Definition 1.8 of *Post*, either $u \in backtrack(s)$ or backtrack(s) = enabled(s) and thus $\omega_1 \in T$. In either case, we have a contradiction.

Assume that $\beta' \leftrightarrow next(final(S.\omega'), u)$. Because $\beta_1 \in T$ and $u \notin backtrack(s)$, $\beta_1.tid \neq u$. Thus, it must be the case that $next(final(S.\omega), u) = next(final(S.\omega'), u)$, and

$$\beta' \leftrightarrow next(final(S.\omega), u)$$

Thus, by Lemma 6 where $\beta = \beta'$ and $\omega \beta' \in [\omega']$,

$$Post(S.\omega, len(S), u)$$

2.2 Fair-bounded search

Let $A_{R(Fb,c)}$ be the reduced state space explored by a selective search that explores a fair-bound persistent set in each state. We provide two lemmas to manage the bound, and a theorem stating that a nonempty fair-bound persistent set is local sufficient.

Lemma 8. Let α be a nonempty sequence of transitions from s = final(S) in $A_{G(\text{Fb},c)}$ and let t be a transition enabled in s such that

Fb(S.t) ≤ c
 t is not a release operation
 t ↔ α

Then, $t.\alpha$ is a sequence of transitions from s in $A_{G(Fb,c)}$.

Proof. Because $t \leftrightarrow \alpha$, $t.\alpha$ is a sequence of transitions from s in A_G . Because t is not a release operation,

$$\forall i \in dom(\alpha) :$$

enabled(final(S.t. $\alpha_1 \dots \alpha_i)$) \subseteq enabled(final(S. $\alpha_1 \dots \alpha_i)$)

Thus, by Definition 1.9 of the fair bound, the transitions in α cost no more in $S.t.\alpha$ than they do in $S.\alpha$. By Assumption 1, t is within the bound from s. Thus, by Definition 1.9 of the fair bound,

$$Fb(S.t.\alpha) \le c$$

and $t.\alpha$ is a sequence of transitions from s in $A_{G(Fb,c)}$.

Lemma 9. Let T be a nonempty fair-bound persistent set in a state s = final(S) in $A_{R(\text{Fb},c)}$ and let $\alpha.t.\gamma$ be a sequence of transitions from s in $A_{G(\text{Fb},c)}$ such that α is nonempty, $\forall i \in \text{dom}(\alpha) : \alpha_i \notin T$, and $t \in T$. Then, $t.\alpha.\gamma$ is a sequence of transitions from s in $A_{G(\text{Fb},c)}$.

Proof. By Requirement 3 of Definition 1.10 of fair-bound persistent sets, $t \leftrightarrow \alpha$. Thus, $t.\alpha.\gamma$ is a sequence of transitions from s in A_G . By Requirements 1 and 2 of Definition 1.10 of fair-bound persistent sets, $Fb(S.t) \leq c$ and t is not a release operation. Thus, by Lemma 8,

$$Fb(S.t.\alpha) \leq Fb(S.\alpha)$$

Assume that γ_1 exceeds the bound from $final(S.t.\alpha)$, yet t does not exceed the bound from $final(S.\alpha)$ and γ_1 does not exceed the bound from $final(S.\alpha.t)$. Then, t must be a release operation that enables a transition t' such that t'.tid has a lower yield count than $\gamma_1.tid$ has in $final(S.t.\alpha)$, because otherwise γ_1 would also exceed the bound from $final(S.\alpha)$. Because t is not a release operation, we have a contradiction. Thus,

$$Fb(S.t.\alpha.\gamma_1) \le c$$

Because $t \leftrightarrow \alpha$, final $(S.t.\alpha.\gamma_1) = final(S.\alpha.t.\gamma_1)$ and thus each transition in γ executes from exactly the same state in

Algorithm 3 BPOR procedures for fair-bounded search

```
1: procedure Initialize(S) begin
```

- 2: **if** (len(S) > MAX) then
- 3: report livelock and exit
- 4: **Backtrack**(S, len(S), u) where u is a lowest cost enabled thread in final(S)
- 5: procedure Backtrack(S, i, u) begin
- 6: **if** $(u \in enabled(pre(S, i))$ and next(pre(S, i), u) is not a release operation) **then**
- 7: add u to backtrack(pre(S, i))
- 8: else
- 9: backtrack(pre(S, i)) = enabled(pre(S, i))

 $S.t.\alpha.\gamma$ as it does in $S.\alpha.t.\gamma$. Thus, by Definition 1.9 of the fair bound,

$$Fb(S.t.\alpha.\gamma) \le c$$

Thus, $t.\alpha.\gamma$ is a sequence of transitions from s in $A_{G(Fb,c)}$.

Theorem 10. If T is a nonempty fair-bound persistent set in a state s in $A_{R(Fb,c)}$, then T is local sufficient in s.

Proof. Let *s* be a state in $A_{R(Fb,c)}$ and let *l* be a local state reachable from *s* in $A_{G(Fb,c)}$ via a nonempty sequence ω of transitions.

Case 10.1. $\forall i \in dom(\omega) : \omega_i \notin T$.

Let t be any transition in T. Consider the sequence $\omega' = t.\omega$. By Requirement 3 of Definition 1.10 of fair-bound persistent sets, $t \leftrightarrow \omega$. Thus, $\omega.t \in [\omega']$, and $\omega \in Prefix([\omega'])$. By Requirements 1 and 2 of Definition 1.10 of fair-bound persistent sets, $Fb(S.t) \leq c$ and t is not a release operation. Thus, by Lemma 8, $t.\omega$ is a sequence of transitions from s in $A_{G(Fb,c)}$ and T is local sufficient in s.

Case 10.2. $\exists i \in dom(\omega) : \omega_i \in T$.

Let $\omega = \alpha.t.\gamma$ such that $\forall i \in dom(\alpha) : \alpha_i \notin T$ and $t \in T$. Assume that α is empty. Then, T is local sufficient in s because $\omega_1 \in T$ and l is reachable via ω .

Assume that α is nonempty. Consider the sequence $\omega' = t.\alpha.\gamma$, i.e., ω with t moved to the first position. By Requirement 3 of Definition 1.10 of fair-bound persistent sets, $t \leftrightarrow \alpha$. Thus, $\omega' \in [\omega]$ and $\omega \in Prefix([\omega'])$. By Lemma 9, $t.\alpha.\gamma$ is a sequence of transitions from s in $A_{G(Fb,c)}$, and T is local sufficient in s.

Lemma 11. Whenever Algorithm 1 backtracks a state s = final(S), the set T of transitions explored from s is fairbound persistent in s, provided that postcondition PC holds for every recursive call **Explore**(S.t) for all $t \in T$.

Proof. Let $T = next(s, u) | u \in backtrack(s)$. Show that if T violates any requirement in Definition 1.10 of fair-bound persistent sets, then we have a contradiction.

Case 11.1. T violates Requirement 1.

Proceed by contradiction. Assume that for some $t \in T$, Fb(S.t) > c. By Line 12 in Algorithm 1, the search explores only transitions that do not exceed the bound from *s*. Thus, we have a contradiction.

Case 11.2. T violates Requirement 2.

Proceed by contradiction. Assume that there exists a transition $t \in T$ such that t is a release operation and a thread $u \in enabled(s)$ such that $next(s, u) \notin T$. Because t is a release operation Line 9 in Algorithm 3 must add it to backtrack(s). Because $u \in enabled(s)$, Line 9 also adds uto backtrack(s) and thus $next(s, u) \in T$ and we have a contradiction.

Case 11.3. T violates Requirement 3.

Proceed by contradiction. Assume that there exists a nonempty sequence α of transitions from s in $A_{G(Fb,c)}$ such that $\forall i \in dom(\alpha) : \alpha_i \notin T$, and a transition $t \in T$ such that

1. $Fb(S.t) \leq c$

2. t is not a release operation

3. t is dependent with $last(\alpha)$

Let $n = len(\alpha)$ and let $\omega = \alpha_1 \dots \alpha_{n-1}$, i.e., α with its last transition removed. Let there be no prefixes of α that also meet the criteria above, and thus

3. $t \leftrightarrow \omega$

Let $u = \text{last}(\alpha)$.tid. Assume that t.tid = u. Because $t \leftrightarrow \omega$,

$$t = next(final(S), u) = next(final(S, \omega), u) = last(\alpha)$$

Thus, $last(\alpha) \in T$ and we have a contradiction.

Assume that $t.tid \neq u$. Consider the postcondition

$$Post(S.t.\omega, len(S) + 1, u)$$

for the recursive call **Explore**(*S*.*t*). By Lemma 8, $t.\omega$ is a sequence of transitions from s in $A_{G(Fb,c)}$. Because $t \leftrightarrow \omega$, t is the most recent transition by t.tid that is dependent with $next(final(S.t.\omega), u)$. Thus, by Definition 1.12 of *Post*, $u \in backtrack(s)$ and thus a transition in α must be in T so we have a contradiction.

Thus, if postcondition *PC* holds in each state s explored by Algorithm 1 with the **Backtrack** procedure from Algorithm 3, then the set of transitions explored from s is fairbound persistent in s. Next, we prove that postcondition *PC* holds in each state s explored by Algorithm 1. First, we prove a lemma to simplify the inductive step.

Lemma 12. Let s = final(S) be a state in $A_{R(\text{Fb},c)}$, let ω and ω' be nonempty sequences of transitions from s in $A_{G(\text{Fb},c)}$, and let u be a thread such that

1. $\exists \beta : \omega . \beta \in [\omega']$ and $\beta \leftrightarrow \text{next}(\text{final}(S.\omega), u)$, or 2. $\exists \beta : \omega' . \beta \in [\omega]$ and $\beta \leftrightarrow \text{next}(\text{final}(S.\omega), u)$

Then, $\operatorname{Post}(S.\omega', \operatorname{len}(S) + 1, u) \implies \operatorname{Post}(S.\omega, \operatorname{len}(S), u).$

Proof. Because $\beta \leftrightarrow next(final(S.\omega), u)$,

 $next(final(S.\omega), u) = next(final(S.\omega'), u)$

Assume that in Definition 1.12 of $Post(S.\omega, len(S), u)$ for some thread v, i > k. Then, *Post* does not require any backtrack points for v.

Assume that for some thread v in Definition 1.12 of $Post(S.\omega, len(S), u), i \leq k$. Then, i is the same for thread v in $Post(S.\omega', len(S), u)$ because $\beta \leftrightarrow next(final(S.\omega), u)$. Because $i \leq len(S)$, the yield counts for all threads are the same in pre(S, i), as well. Thus, by Definition 1.12 of Post,

$$Post(S.\omega, len(S), u) \text{ iff } Post(S.\omega', len(S), u)$$
 (4)

Because Definition 1.12 of *Post* requires that i be less than or equal to k,

$$Post(S.\omega', len(S) + 1, u) \implies Post(S.\omega', len(S), u)$$

Thus, by Equation 4,

$$Post(S.\omega', len(S) + 1, u) \implies Post(S.\omega, len(S), u)$$

Theorem 13. Whenever a state s = final(S) is backtracked during the search performed by Algorithm 1, the postcondition Post for **Explore**(S) is satisfied, and the set T of transitions explored from s is fair-bound persistent in s.

Proof. The proof is by induction on the order in which states are backtracked.

Base case.

If the stack depth exceeds *MAX*, then the search terminates and reports a livelock. Thus, the state space that the search may explore without reporting a livelock is a subset of the cyclic state space. Assume that the test does not contain a livelock. Because the search is performed in depth-first order, and the fair bound always provides a zero-cost transition, the first backtracked state must be a deadlock state in which no transition is enabled. Thus, the postcondition for the first backtracked state is

$$\forall u : Post(S, len(S), u)$$

and is directly established by Lines 4-7 in Algorithm 1.

Inductive case.

Assume that each call to **Explore**(S.t) satisfies its postcondition. By Lemma 11, T is fair-bound persistent in s. Show that **Explore**(S) satisfies its postcondition for any sequence ω of transitions from s in $A_{G(Fb,c)}$ and for any thread u. If ω is empty then the postcondition is directly established by Lines 4-7 in Algorithm 1, so assume that ω is nonempty.

Case 13.1. $\forall i \in dom(\omega) : \omega_i \notin T$ and $u \in backtrack(s)$. Because $u \in backtrack(s)$, $next(s, u) \in T$. Thus, by Requirement 3 of Definition 1.10 of fair-bound persistent sets, $next(s, u) \leftrightarrow \omega$, and thus

$$\mathit{next}(\mathit{final}(S.\omega), u) = \mathit{next}(s, u)$$

Thus, $next(final(S.\omega), u) \leftrightarrow \omega$, and thus $Post(S.\omega, len(S), u)$ iff Post(S, len(S), u). The latter is directly established by Lines 4-7 in Algorithm 1.

Case 13.2. $\forall i \in dom(\omega) : \omega_i \notin T$ and $u \notin backtrack(s)$. Let t be any transition in T. Consider the sequence $\omega' = t.\omega$. By Definition 1.10 of fair-bound persistent sets, $Fb(S.t) \leq c$ and $t \leftrightarrow \omega$. Because ω is nonempty and $\omega_1 \notin T$, by Requirement 2 of Definition 1.10 of fair-bound persistent sets, t is not a release operation. Thus, by Lemma 8, ω' is a sequence of transitions from s in $A_{G(Fb,c)}$. Because $t \leftrightarrow \omega$,

$$\omega.t \in [\omega']$$

By the inductive hypothesis for Explore(S.t),

$$Post(S.\omega', len(S) + 1, u)$$

If t is dependent with $next(final(S.\omega'), u)$, then because $t \leftrightarrow \omega$, ω'_1 must be the most recent dependent transition to $next(final(S.\omega'), u)$ by t.tid. Thus, by Definition 1.12 of *Post*, either $u \in backtrack(s)$ or backtrack(s) = enabled(s), in which case $\omega_1 \in T$. In either case, we have a contradiction. Thus, $t \leftrightarrow next(final(S.\omega'), u)$ and additionally, $t \leftrightarrow next(final(S.\omega), u)$. Thus, by Lemma 12 where $\beta = t$ and $\omega.t \in [\omega']$,

$$Post(S.\omega, len(S), u)$$

Case 13.3. $\exists i \in dom(\omega) : \omega_i \in T$. Let $\omega = \alpha.t.\gamma$ such that

1. $\forall i \in dom(\alpha) : \alpha_i \notin T$ 2. $t \in T$

Assume that α is empty. Then, $\omega_1 \in T$, and by the inductive hypothesis

$$Post(S.\omega, len(S) + 1, u)$$

Thus, because Definition 1.12 of *Post* requires that $i \leq k$,

$$Post(S.\omega, len(S), u)$$

as required.

Assume that α is nonempty. Consider the sequence $\omega' = t.\alpha.\gamma$, i.e., ω with t moved to the beginning. By Definition 1.10 of fair-bound persistent sets, $Fb(S.t) \leq c$ and $t \leftrightarrow \alpha$. Thus, by Definition 1.1 of a trace,

 $\omega' \in [\omega]$

By Lemma 9, ω' is a sequence of transitions from s in $A_{G(Fb,c)}$. By the inductive hypothesis for the recursive call **Explore**(S.t),

$$Post(S.\omega', len(S) + 1, u)$$

and thus by Lemma 12 where β is empty and $\omega' \in [\omega]$,

$$Post(S.\omega, len(S), u)$$

References

- [1] GODEFROID, P. Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion Problem. Springer-Verlag, 1996.
- [2] MUSUVATHI, M., AND QADEER, S. Partial-order reduction for context-bounded state exploration. Tech. Rep. MSR-TR-2007-12, Microsoft Research, 2007.