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Abstract
Static and dynamic power constraints are steering chip man-
ufacturers to build single-ISA Asymmetric Multicore Pro-
cessors (AMPs) with big and small cores. To deliver on
their energy efficiency potential, schedulers must consider
core sensitivity, load balance, and the critical path. Apply-
ing these criteria effectively is challenging especially for
complex and non-scalable multithreaded applications. We
demonstrate that runtimes for managed languages, which
are now ubiquitous, provide a unique opportunity to abstract
over AMP complexity and inform scheduling with rich se-
mantics such as thread priorities, locks, and parallelism—
information not directly available to the hardware, OS, or
application.

We present the WASH AMP scheduler, which (1) auto-
matically identifies and accelerates critical threads in con-
current, but non-scalable applications; (2) respects thread
priorities; (3) considers core availability and thread sensi-
tivity; and (4) proportionally schedules threads on big and
small cores to optimize performance and energy. We intro-
duce new dynamic analyses that identify critical threads and
classify applications as sequential, scalable, or non-scalable.
Compared to prior work, WASH improves performance by
20% and energy by 9% or more on frequency-scaled AMP
hardware (not simulation). Performance advantages grow to
27% when asymmetry increases. Performance advantages
are robust to a complex multithreaded adversary indepen-
dently scheduled by the OS. WASH effectively identifies and
optimizes a wider class of workloads than prior work.
Categories and Subject Descriptors D.3.4 [Processors]:
Run-time environments
Keywords Scheduling, Asymmetric, Multicore, Heteroge-
neous, Managed Software, Performance, Energy

1. Introduction
For decades, faster processors delivered hardware perfor-
mance improvements transparently to software, allowing
software and hardware to innovate independently. To ad-
dress technology constraints, vendors introduced multicore
processors and recently single-ISA Asymmetric Multicore
Processors (AMPs), which have the potential to significantly
increase performance under static and dynamic power con-
straints [10, 13, 19]. The more transparent system designers
make this complex evolving hardware to software develop-
ers, the better for software and hardware innovation.
Hardware trends AMPs combine big high-performance
cores and small energy-efficient cores to improve perfor-
mance and energy, while meeting power and area con-
straints [10, 13]. Big cores accelerate critical latency-sensitive
threads, while numerous small cores deliver throughput for
parallel workloads and energy efficiency for non-critical
tasks. AMPs are already in mobile systems [19] and ex-
pected in desktops and servers. Because extracting perfor-
mance from AMPs is hardware specific and further compli-
cated by multiprogramming, application programmers can-
not be required to manage this complexity nor to continu-
ously adapt their software to specific and evolving hardware.
Challenges To achieve the performance and energy effi-
ciency promises of AMP is challenging because the run-
time must reason about core sensitivity, which thread’s ef-
ficiency benefits most from which core; priorities, executing
non-critical work on small cores and prioritizing the critical
path to big cores; and load balancing, effectively utilizing
available hardware resources. Prior work addresses some but
not all of these challenges. For instance, prior work acceler-
ates the critical path on big cores [8, 11, 12, 22], but needs
programmer hints and new hardware. Other work manages
core sensitivity and load balancing with proportional fair
scheduling [6, 7, 20, 21] but is limited to scalable appli-
cations with equal numbers of threads and hardware con-
texts, an unrealistic assumption in a multiprogrammed con-
text. Many real-world parallel applications also violate this
assumption. For instance, the eclipse IDE manages logical
asynchronous tasks with more threads than cores. Even if
the application matches threads to cores, (1) some runtimes
add compiler and garbage collection helper threads, and (2)



many programs exhibit messy non-scalable parallelism. We
experimentally show prior work performs inconsistently, es-
pecially on messy workloads.
A Managed Language AMP Runtime This paper tar-
gets managed applications. Managed languages are increas-
ingly popular and thus important for mobile, desktops, and
servers. We show managed runtimes offer a unique opportu-
nity to transparently abstract over AMP hardware, because
they already profile, optimize, and schedule applications.

Our AMP-aware runtime uses dynamic analysis to clas-
sify application behavior as single threaded, non-scalable
multi-threaded, and scalable multi-threaded and then cus-
tomizes its scheduling decisions accordingly. For instance,
it proportionally fair schedules scalable applications and ac-
celerates the critical path in non-scalable applications.

A key contribution of our work is a new dynamic analy-
sis that automatically identifies bottleneck threads that hold
contended locks and prioritizes them by the cumulative time
other threads wait on them. None of the prior work automat-
ically identifies and prioritizes threads. We show this analy-
sis finds and accelerates the critical path, improving messy
non-scalable workloads. For efficiency, we piggyback it on
the VM’s biased locking [1, 2]. Our VM profiling periodi-
cally monitors thread progress, thread core sensitivity, and
communicates scheduling decisions to the OS with thread
affinity settings.
Evaluation We implement our AMP runtime in a high per-
formance Java VM for desktops and servers. Its mature com-
piler, runtime, and benchmarking ecosystems make it a bet-
ter evaluation platform than immature mobile systems. We
evaluate benchmarks from active open source projects on an
AMD Phenom II x86 with core-independent frequency scal-
ing (DVFS) configured as an AMP. Prior work establishes
this methodology [5, 21], which dramatically increases ex-
periments compared to simulation, which is slow and less ac-
curate. On a range of AMP configurations, WASH improves
energy and performance over prior work: 9% average energy
and 20% performance, and up to 27% as hardware asymme-
try increases on all workload types.

Figure 1 shows a sample result for messy non-scalable
multi-threaded workloads on a three big / three small AMP
configuration. It compares WASH to: (a) The default round-
robin Linux scheduler [16, 18], (b) Proportional core-sensitive
Fair Scheduling (PFS) [7, 21], the closest related work, and
(c) bindVM [5], which simply binds VM helper threads to
small cores and application threads to big cores. Lower
is better. These results reveal that: (1) simple round robin
scheduling is usually better than PFS because PFS does not
identify the critical thread in messy workloads; (2) simply
binding helper threads to small cores means critical appli-
cation threads often get more resources, and thus bindVM
often outperforms round robin; and (3) WASH identifies
and prioritizes bottleneck threads that hold locks in messy
non-scalable workloads with a small amount of overhead,
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Figure 1: Messy non-scalable performance with WASH,
Linux (Oblivious), PFS, and bindVM on three big / three
small AMP. All prior work exhibits very inconsistent per-
formance. WASH is more consistent and improves average
performance by 15%.

resulting in a 15% average performance improvement on
these most challenging applications. These results probably
understate AMP benefits with optimized microarchitectures.

Our VM scheduler is just as effective in a multipro-
grammed workload consisting of a complex multithreaded
adversary scheduled by the OS. Our VM approach adjusts
even when the OS is applying an independent scheduling al-
gorithm. A sensitivity analysis of our core model shows that
we need a good predictor, but not a perfect one. In summary,

1. We demonstrate the power of information available
within the VM for scheduling threads on AMP hardware.

2. We present automatic, accurate, and low-overhead VM
dynamic analysis that: (a) classifies parallelism, (b) pre-
dicts core capabilities, (c) prioritizes threads holding con-
tended locks, and (d) monitors thread progress.

3. We exploit this information in the WASH scheduler to
customize its optimization strategy to the workload, sig-
nificantly improving over other approaches.

4. Our implementation is available from the Jikes RVM
research archive.

2. Related Work and Motivating Results
Table 1 qualitatively compares our approach to prior work
with respect to algorithmic features and target workload. As
far as we are aware, our approach is the only one to auto-
matically identify bottlenecks in software and to compre-
hensively optimize critical path, core sensitivity, priorities
and load balancing. Next, we overview how related work
addresses these individual concerns and then present a quan-
titative analysis that further motivates our approach.
Critical path Amdahl’s law motivates accelerating the crit-
ical path by scheduling it on the fastest core [8, 10–13, 22].
However, no prior work automatically identifies and prior-
itizes the critical path in software as we do. For instance,
Joao et al.[12] use programmer hints and hardware to prior-
ize threads that hold locks. Du Bois et al. [8] identify and



accelerate critical thread(s) by measuring its useful work and
the number of waiting threads with new hardware, but do not
integrate into a scheduler. Our software approach automati-
cally optimizes more complex workloads.
Priorities Scheduling low priority tasks, such as VM helper
threads, OS background tasks, and I/O tasks, on small cores
improves energy efficiency [5, 17], but these systems do
not schedule the application threads on AMP cores. No
prior AMP scheduler integrates priorities with application
scheduling, as we do here.
Core sensitivity Prior work chooses the appropriate cores
for competing threads using a cost benefit analysis based on
speedup, i.e., how quickly each thread retires instructions
on a fast core relative to a slow core [3, 6, 7, 14, 20, 21].
Systems model and measure speedup. Direct measurement
executes threads on each core type and uses IPC to choose
among competing threads [3, 7, 14]. To avoid migrating only
for profiling and to detect phase changes, systems train pre-
dictive models offline with features such as ILP, pipeline-
stalls, cache misses, and miss latencies collected from per-
formance counters [6, 7, 20, 21]. At execution time, the
models prioritize threads to big cores based on their relative
speedup [6]. We combine profiling and a predictive model.
Load balancing Static schedulers do not migrate threads
after choosing a core [14, 20], while dynamic schedulers
adapt to thread behaviors [3, 7, 21] and load imbalance [15].
Li et al. schedule threads on fast cores first and ensure load
is proportional to core capabilities, but do not consider core
sensitivity nor complex workloads [15]. Saez et al. [21]
and Craeynest et al. [7] both perform proportional core-
sensitive fair scheduling (PFS) on scalable applications. The
OS scheduler load balances by migrating threads between
core types based on progress, thread sensitivity, and core ca-
pabilities. They simplify the problem by assuming the num-
ber of threads never exceed the number of cores: |threads| ≤
|cores| (pg. 20 [21]). Craeynest et al. compare to a scheduler
that binds threads to cores for their entire execution, a poor
baseline. Our approach dynamically adapts to thread behav-
ior and handles |threads| > |cores|.
Quantitative Analysis We first examine the performance
of PFS [7, 21], the best software only approach and com-
pare it to the default round-robin Linux (Oblivious) scheduler,
which seeks to keep all cores busy, and avoids thread migra-
tion [16, 18], and to Cao et al. [5] (bindVM), which simply
binds VM helper threads to small cores. We execute 14 Da-
Capo Java benchmarks [4]. (Section 7 describes methodol-
ogy in detail.) Figure 2 shows the performance on a one big
/ five small AMP configuration organized by workload type:
sequential (ST), non-scalable multi-threaded (non-scalable
MT), and scalable multi-threaded (scalable MT). We can see
that (a) no one approach dominates across workload type;
(b) bindVM performs best on sequential and non-scalable; (c)
Oblivious and PFS perform essentially the same on scalable
workloads, because in these workloads, threads out-number

Table 1: Qualitative comparison of WASH to related work.

Algorithmic Features Workload
core load critical needs limited to non-

Approach sens. bal. path priorities hints |T| ≤ |C| seq. scale scale

Becchi et al.[3] [3] 3 no no 3
Kumar et al. [14] 3 no yes 3
Craeynest et al. [7] 3 3 no yes 3 3 3
Saez et al. [21] 3 3 no yes 3 3
Du Bois et al. [8] 3 yes yes 3
Suleman et al. [22] 3 yes yes 3 3
Joao et al. [12] 3 3 yes yes 3 3 3
Li et al. [15] 3 no no 3 3 3
Cao et al. [5] limited 3 no no 3 3 3

VM + WASH 3 3 3 3 no no 3 3 3
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Figure 2: Quantitative time comparison of Linux (Oblivious),
PFS, and bindVM on one big / five small (1B5S) AMP nor-
malized to Oblivious. Lower is better. No approach domi-
nates.

cores, and thus both reduce to round-robin scheduling across
all cores. Since Oblivious and bindVM dominate PFS, we use
them as our baseline throughout the paper. While bindVM is
best on non-scalable workloads, WASH is better.

3. Workload Analysis
This section shows how to classify workloads based on their
response to more cores. We explore scalability on small
numbers of homogeneous cores by configuring a 6-core Phe-
nom II to execute with 1, 3, and 6 cores at two speeds: big
(B: 2.8 GHz) and small (S: 0.8 GHz). It then examines the
strengths and weakness of Oblivious and bindVM as a func-
tion of workload type to motivate our approach.
Workload characteristics Figure 3(a) shows workload ex-
ecution time on a big homogeneous multicore configura-
tion and Figure 3(b) shows a small homogeneous multicore
configuration, both normalized to Oblivious on one big core.
Lower is better. Based on these results, we classify four of
nine multithreaded benchmarks (lusearch, sunflow, spjbb and
xalan) as scalable because they improve both from 1 to 3
cores, and from 3 to 6 cores. Five other multithreaded bench-
marks respond well to additional cores, but do not improve
consistently. For instance, avrora performs worse on 3 big
cores than on 1; eclipse performs the same on 3 and 6 cores;
and pjbb2005 does not scale in its default configuration. We
create a scalable version of pjbb2005 by increasing its work-
load (spjbb). The original pjbb2005 is labeled nspjbb. The
number of application threads and these results yield our sin-
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(a) Time on one, three and six 2.8 GHz big cores.
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(b) Time on one, three and six 0.8 GHz small cores.

Figure 3: Response to homogeneous parallelism with Linux
(Oblivious) normalized to one big core where lower is bet-
ter results in three workload types: single threaded, non-
scalable multithreaded (MT), and scalable MT.

gle threaded, non-scalable multithreaded and scalable multi-
threaded categories.

Note single threaded applications in Figure 3 improve
slightly as a function of core count. Because managed run-
times include VM helper threads, such as garbage collection,
compilation, profiling, and scheduling, the VM process itself
is multithreaded. Observing speedup as a function of cores
in the OS cannot differentiate single-threaded from multi-
threaded applications in managed workloads. For example,
fop and hsqldb have similar responses to the number of cores,
but fop is single threaded and hsqldb is multithreaded.
AMP scheduling insights Consider again the results in
Figure 2. Cao et al. previously showed that bindVM improves
over Oblivious on one big and five small (1B5S) and the
figure confirms this result. Regardless of the hardware con-
figuration (1B5S, 2B4S, or 3B3S), bindVM performs best for
single-threaded benchmarks because VM threads are non-
critical and execute concurrently with the application thread.
For performance, the application threads should always have
priority over VM threads on big cores.

On scalable applications, Oblivious performs best and
much better on 1B5S because bindVM restricts the appli-
cation to the one big core, leaving small cores underutilized.
On this Phenom II, one big core and five small cores has
41.6% more instruction execution capacity than six small
cores. Ideally, a scalable parallel program will see this im-
provement on 1B5S. For scalable benchmarks, exchanging

one small core for a big core with Oblivious boosts perfor-
mance by 33%, short of the ideal 41.6%.

For non-scalable MT workloads, bindVM performs best
on 1B5S, but improvements on 2B4S and 3B3S are limited.
Intuitively, with only one big core, binding the VM threads
gives application threads more access to the big core. With
more big cores, Oblivious does a better job of load balancing.
Each scheduler performs well for some workloads, but no
scheduler is best on all workloads.

4. Dynamic Bottleneck Analysis
This section describes a new dynamic analysis that automati-
cally classifies application parallelism and prioritizes bottle-
neck threads that hold locks. The VM periodically performs
this analysis based on a configurable scheduling quantum. It
is straightforward for the VM to count application threads
separately from those it creates for GC, compilation, profil-
ing, and other VM services. We add to the VM additional
analysis of multithreaded applications that classify them as
scalable or non-scalable by exploiting the Java Language
Specification and lock implementation.

To identify threads that hold contended locks and accel-
erate them, we modify the VM to compute the ratio between
the time each thread contends (waits) for another thread to
release a lock and the total execution time of the thread thus
far. When this ratio is high and the thread is responsible
for a threshold of execution time as a function of the total
available hardware resources (e.g., 1% with 2 cores, 0.5%
with 4 cores, and so on), we categorize the benchmark as
non-scalable. We set this threshold based on the number of
cores and threads. The highest priority bottleneck thread is
the lock-holding thread that is delaying the most work.

To prioritize among threads that hold locks, the VM pig-
gybacks on the lock implementation and thread scheduler.
When a thread tries to acquire a lock and fails, the VM
scheduler puts the thread on a wait queue, a heavyweight op-
eration. We time how long the thread sits on the wait queue
using the RDTSC instruction, which incurs an overhead of
around 50 cycles each call. At each scheduling quanta, the
VM computes the waiting time for each thread waiting on a
lock, then sums them, and then prioritizes the thread(s) that
make other threads wait the longest to big cores. The VM im-
plements biased locking, which lowers locking overheads by
‘biasing’ each lock to an owner thread, making the common
case of taking an owned lock very cheap, at the expense of
more overhead in the less common case where an unowned
lock is taken [2]. Many lock implementations are similar. We
place our instrumentation on this less frequent code path of
a contended lock, resulting in negligible overhead.

Our critical thread analysis is more general than prior
work because it automatically identifies bottlenecks in mul-
tithreaded applications with many ready threads and low pri-
ority VM threads, versus requiring new hardware [6] or de-
veloper annotations [11, 12]. Our analysis may be adopted
in any system that uses biased locking or a similar optimiza-
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Figure 4: Fraction of time spent waiting on locks / cycles,
per thread in multithreaded benchmarks. Left benchmarks
(purple) are scalable, right (pink) are not. Low ratios are
highly predictive of scalability.

tion. Modern JVMs such as Jikes RVM and HotSpot already
implement it. Although by default Windows OS and Linux
do not implement biased locking, it is in principle possi-
ble. For example, Android implements biased locking in its
Bionic implementation of the pthread library [1, 2].

Figure 4 shows the results for representative threads from
the multithreaded benchmarks executing on the 1B5S con-
figuration. Threads in the scalable benchmarks all have low
locking ratios and those in the non-scalable benchmarks all
have high ratios. A low locking ratio is necessary but not
sufficient. Scalable benchmarks typically employ homoge-
neous threads (or sets of threads) that perform about the
same amount and type of work. When we examine the ex-
ecution time of each thread in these benchmarks, their pre-
dicted sensitivity, and retired instructions, we observe that
for spjbb, sunflow, xalan, and lusearch threads are homo-
geneous. Our dynamic analysis inexpensively observes the
progress of threads, scaled by their core assignment, and de-
termines whether they are homogeneous or not.

5. Speedup and Progress Prediction
To effectively schedule AMPs, the system must consider
sensitivity to core features. When multiple threads compete
for cores, the scheduler should execute the threads on big
cores that benefit the most. For example, memory bound
threads benefit little from a higher instruction issue rate.

Similar to prior work [7, 21], we create a predictive model
offline that we use at run time. The model takes as input
performance counters and predicts slow down and speedup,
as appropriate. We use linear regression and Principal Com-
ponent Analysis (PCA) to learn the most significant perfor-
mance monitoring events and their weights. Since each pro-
cessor may use only a limited number of performance coun-
ters, PCA analysis selects the most predictive ones.

Predicting speedup from little to big when the microar-
chitectures differ is often not possible. For example, with a
single issue little core and a multiway issue big core, if the
single issue core is always stalled, it is easy to predict that the
thread will not benefit from more issue slots. However, if the

Performance counters
Intel AMD

A: INSTRUCTIONS RETIRED X: RETIRED INSTRUCTIONS
B: UNHALTED REFERENCE CYCLES Y: RETIRED UOPS
C: UNHALTED CORE CYCLES Z: CPU CLK UNHALTED
D: UOPS RETIRED:STALL CYCLES W: REQUESTS TO L2:ALL
E: L1D ALL REF:ANY
F: L2 RQSTS:REFERENCES
G: UOPS RETIRED:ACTIVE CYCLES

linear prediction models
(-608B+609C+D+17E+27F-14G)/A 1.49+(1.87Y-1.08Z+27.08W)/X

Figure 5: PCA selects best performance counters to predict
core sensitivity of threads with linear regression.
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Figure 6: Accurate prediction of thread core sensitivity. Y-
axis is predicted. X-axis is actual speedup.

single issue core is operating at its peak issue rate, no perfor-
mance counter on it will reveal how much potential speedup
will come from multi-issue. With a frequency-scaled AMPs,
our model can and does predict both speedups and slow
downs because the microarchitecture does not change.

We explore the generality of our methodology and mod-
els using the frequency-scaled Phenom II and a hypothetical
big/little design composed of an Intel Atom and i7. We exe-
cute and measure all of the threads with the comprehensive
set of the performance monitoring events, including the en-
ergy performance counter on Sandy Bridge. We only train
on threads that contribute more than 1% of total execution
time, to produce a model on threads that perform significant
amounts of application and VM work. We use PCA to com-
pute a weight for each component (performance event) on a
big core to learn the relative performance on a small core. We
incrementally eliminate performance events with the same
weights (redundancy) and those with low weights (not pre-
dictive), to derive the N most predictive events, where N
is the number of simultaneously available hardware perfor-
mance counters. We set N to the maximum that the archi-
tecture will report at once, four on the AMD Phenom II and
seven on the Intel Sandy Bridge. This analysis results in the
performance events listed in Figure 5. Figure 5 also shows a
sample linear model for each architecture.

Figures 6(a) and 6(b) show the predictive power of the
models for relative performance of the Intel processors and
the frequency-scaled AMD Phenom II. We predict each ap-
plication thread from a model trained on all the other appli-
cations threads, using leave-one-out validation. When exe-
cuting a benchmark, we use the model trained on the other
benchmarks in all experiments. The results show good pre-
dictive power of the PCA analysis.
Progress monitoring Our dynamic analysis monitors thread
criticality and progress. It uses the retired instructions per-



formance counter and scales it by the executing core ca-
pacity. Like many adaptive optimization systems, we pre-
dict that a thread will execute for the same fraction of time
in the future as it has in the past. To correct for differ-
ent core speeds, we normalize retired instructions based on
the speedup prediction we calculate from the performance
events. This normalization gives threads executing on small
cores an opportunity to out-rank threads that execute on the
big cores. Our model predicts fast-to-slow well for the i7 and
Atom (Figure 6(a)). Our model predicts both slow-to-fast
and fast-to-slow with frequency scaled AMD cores (Fig-
ure 6(b)). Thread criticality is decided based on predicted
gain if it stays on or migrates to a big core. We present a
sensitivity analysis to the model accuracy in Section 8.4.

6. The WASH Scheduling Algorithm
This section describes how we use core sensitivity, thread
criticality, and workload to schedule threads when applica-
tion and runtime threads exhibit varying degrees of hetero-
geneity and parallelism. We implement the WASH algorithm
by setting thread affinities with the standard POSIX inter-
face, which directs the OS to bind thread execution to one
or more nominated cores. The VM assesses thread progress
periodically (a 40 ms quantum) by sampling per-thread per-
formance counter data and adjusts core affinity as needed.
We require no changes to the OS. Because the VM mon-
itors the threads and adjusts the schedule accordingly, even
when the OS shares VM-scheduled cores with other compet-
ing complex multiprogrammed workloads (see Section 8.6),
the VM scheduler adapts to OS scheduling choices.
Overview The scheduler starts with a default policy that
assigns application threads to big cores and VM threads to
small cores when they are created, following prior work [5].
For long-lived application threads, the starting point is im-
material. For very short lived application threads that do
not last a full time quantum, this fallback policy accelerates
them. All subsequent scheduling decisions are made period-
ically based on dynamic information. Every time quantum,
WASH assesses thread sensitivity, criticality, and progress
and adjusts the threads’ affinity to cores accordingly.

We add to the VM the parallelism classification and the
core sensitivity models described in Sections 4 and 5. The
core sensitivity model takes as input performance counters
for each thread and predicts how much the big core benefits
the thread. The dynamic parallelism classifier uses a thresh-
old for the waiting time. It examines the number of threads
and dynamic waiting time to classify applications as single
threaded, scalable, or non-scalable.

The VM stores a log of the execution history for each
thread using performance counters and uses it: (1) to detect
resource contention among application threads by compar-
ing expected progress of each thread on its assigned core
with its actual progress; and (2) to ensure that application
threads have equal access to the big cores when there exist
more ready application threads than big cores.

Algorithm 1 WASH
1: function WASH(TA,TV ,CB ,CS ,t)
2: TA: Set of application threads
3: TV : Set of VM services threads, TA ∩ TV = ∅
4: CB : Set of big cores
5: CS : Set of small cores, CB ∩ CS = ∅
6: t: Thread to schedule, where t ∈ TA ∪ TV

7: if |TA| ≤ |CB | then
8: if t ∈ TA then Set Affinity of t to CB return
9: else Set Affinity of t to CB ∪ CS return

10: else if t ∈ TA then
11: if ∀τ ∈ TA(Lock%(τ) < LockThresh) then
12: Set Affinity of t to CB ∪ CS return
13: else
14: TActive ← {τ ∈ TA : IsActive(τ)}
15: TContd ← {τ ∈ TA : Lock%(τ) > LockThresh}
16: if ExecRank(t, TActive) < ERThresh|CB | or
17: LockRank(t, TContd) < LRThresh|CB | then
18: Set Affinity of t to CB return
19: else Set Affinity of t to CB ∪ CS return
20: else Set Affinity of t to CS return

Algorithm 1 shows the pseudo-code for the WASH
scheduling algorithm. WASH makes three main decisions.
(1) When the number of application threads is less than or
equal to the number of big cores, WASH schedules them
on the big cores (line 8). (2) WASH classifies a workload
as scalable when no thread is a bottleneck and there is no
contention. For simplicity, the pseudo-code omits the code
that detects contention using thread progress from histori-
cal information. For scalable workloads, the algorithm gives
all threads equal access to the big cores (lines 11-12). This
strategy follows the default round robin OS scheduler. If
we detect contention (not shown), we schedule the appli-
cation threads as if the application is non-scalable. (3) For
non-scalable workloads (line 14-19), the algorithm priori-
tizes application threads whose instruction retirement rates
on big cores match the rate at which the big cores can retire
instructions weighted by its historical access to big cores,
computing an execution rank (line 16). WASH also uses the
accrued lock waiting time to prioritize the bottleneck threads
on which other threads wait the most, computing a lock rank
(line 17). WASH prioritizes a thread to the big cores in both
cases. VM service threads are scheduled to the small cores
(line 20), unless the number of application threads is less
than the number of big cores. The next 3 subsections discuss
each case in more detail.
Single-Threaded and Low Parallelism When the appli-
cation creates a thread, WASH’s fallback policy sets the
thread’s affinity to big cores. At each time quantum, WASH
assesses the thread schedule. When WASH dynamically de-
tects one application thread or the number of application
threads |TA| is less than or equal to the number of big cores
|CB |, then WASH sets the affinity for the application threads
to |TA| of the big cores (line 8). WASH also sets the affinity



for the VM threads such that they may execute on the re-
maining big cores or on the small cores. It sets the affinity of
VM threads to all cores (line 9), which translates to the rela-
tive complement of CB ∪ CS with respect to |TA| big cores
being used by TA. If there are no available big cores, WASH
sets the affinity for all VM threads to execute on the small
cores, following Cao et al. [5]. Single-threaded applications
are the most common example of this scenario.
Scalable multithreaded When the VM detects a scalable
|TA| >|CB | and homogenous workload, then the analysis
in Section 3 shows that Linux’s default CFS scheduler does
an excellent job of scheduling application threads. We use
our efficient lock contention analysis to establish scalabil-
ity (line 11). We empirically established a threshold of 0.5
contention level (time spent contended / time executing) be-
yond which a thread is classified as contended (see Figure 4).
WASH monitors the execution schedule from the OS sched-
uler and ensures that all of the homogeneous application
threads make similar progress (not shown in the pseudo-
code). If any thread falls behind, for example, by spending
a lot of time on a small core or because the OS has other
competing threads to schedule, WASH boosts its priority and
binds it to a big core. It thus reprioritizes the threads based
on their expected progress. In this case, WASH treats the
application as non-scalable and schedules it accordingly, as
described below.
Non-scalable multithreaded WASH The most challenging
case is how to prioritize non-scalable application threads
when the number of threads outstrips the number of cores
and all threads compete for both big and small cores. Our al-
gorithm is based on two main considerations: (a) how critical
the thread is to the overall progress of the application (lock
information), and (b) the relative capacity of big cores com-
pared to small cores to retire instructions for each thread.

We rank threads based on their relative capacity to retire
instructions, seeking to accelerate threads that dominate in
terms of productive work (line 16). For each active thread
(non-blocked for the last two scheduling quantum), we com-
pute ExecRank: a rank based on the running total of retired
instructions, corrected for core capability and their access
to big and small cores in previous scheduling quantas. If
a thread runs on a big core, we accumulate its retired in-
structions from the dynamic performance counter. When the
thread runs on a small core, we increase its retired instruc-
tions by multipling it by predicted speedup from executing
on the big core. Thus we assess importance on a level play-
ing field — judging each thread’s progress as if it had access
to large cores. Then, we compose this amount with the pre-
dicted speedup for all threads. Notice that threads that will
benefit little from the big core will naturally have less impor-
tance (regardless of which core they are running on in any
particular time quantum), and that conversely threads that
will benefit greatly from the big core will have be ranked
accordingly. We call this rank computation adjusted prior-

ity and compute it for all active threads. We rank all ac-
tive threads based on this adjusted priority. We also com-
pute a LockRank, which prioritizes bottlenecks based on
the amount of time other threads have been waiting for it
(line 17).

We use the relative rank to select a set threads to execute
on the big cores. Note, rank 1 is the top ranked most im-
portant thread and |TA| is the lowest. We do not size the set
according to the fraction of cores that are big (B/(B + S)),
but instead size the thread set according to the big cores’
relative capacity to retire instructions (BRI/(BRI + SRI)).
For example, in a system with one big core and five small
cores, where the big core can retire instructions at five times
the rate of each of the small cores, the size of the set would
be BRI/(BRI + SRI) = 0.5. In that case, we will assign to
the big cores the 1 to N most important threads such that the
adjusted retired instructions rate of those N threads is 0.5 of
the total in this example (line 16). We also select a set of the
highest lock-ranked threads to execute on the big cores. We
size this set according to the fraction of cores that are big
(B/(B + S)) (line 17).

The effect of this algorithm is twofold. First, overall
progress is maximized by placing the threads that are both
critical to the application and that will benefit from the
speedup on the big cores. Second, we avoid over or un-
der subscribing the big cores by scheduling according to the
relative capacity of those cores to retire instructions. VM
helper threads actually benefit from the big core in some
cases [5] (see Section 8.5), but WASH ensures application
threads get priority over them. Furthermore, WASH explic-
itly focuses on non-scalable parallelism. By detecting con-
tention and modeling total thread progress (regardless of
core assignment), our model corrects itself when threads
compete for big cores yet cannot get them.
Summary The WASH application scheduler customizes its
strategy to the workload, applying targeted heuristics, accel-
erating the critical path, prioritizing application threads over
low-priority helper threads to fast cores, and proportionally
scheduling parallelism among cores with different capabili-
ties and effectiveness based on the thread progress.

7. Methodology
We measure and report performance, power, and energy,
leveraging prior tools and methodology [4, 5, 9]. Our system
is publicly available in the Jikes RVM research repository.
Hardware configuration methodology We measure and re-
port performance, power, and energy on the AMD Phenom
II because it supports independently clocking each core with
DVFS. Prior work establishes this methodology for evalu-
ating AMP hardware [5, 21]. Concurrently with this work,
Qualcomm announced AMP Snapdragon hardware with 4
big and 4 little cores, but it was not available when we started
and it uses the ARM ISA, whereas our tools target x86.
Compared to simulation, there are no accuracy questions,
but we explore fewer hardware configurations. We measure



Table 2: Experimental processors.
i7 Atom Phenom II

Processor Core i7-2600 AtomD510 X6 1055T
Architecture Sandy Bridge Bonnell Thuban
Technology 32 nm 45 nm 45 nm
CMP & SMT 4C2T 2C2T 6C1T
LLC 8 MB 1 MB 6 MB
Frequency 3.4 GHz 1.66 GHz 2.8 GHz & 0.8 GHz
Transistor No 995 M 176 M 904 M
TDP 95 W 13 W 125 W
DRAM Model DDR3-1333 DDR2-800 DDR3-1333

existing hardware orders of magnitude faster than simulation
and consequently explore more software configurations.

Table 2 lists characteristics of the machines we use. (We
only use the Sandy Bridge and Atom to show the core pre-
diction model generalizes in Section 4). We statically config-
ure the Phenom II as an AMP by setting each core’s voltage
and frequency at boot time. To measure power and energy,
we use Cao et al.’s Hall effect sensor methodology [5, 9].
All the performance, power, and energy results in this sec-
tion use the Phenom II.
Operating System We use Ubuntu 12.04 with the default
3.8.0 Linux kernel. The default Linux CFS scheduler is
oblivious to different core capabilities, seeks to keep all
cores busy and balanced based on the task numbers on each
core, and tries not to migrate threads between cores [16, 18].
Virtual machine configuration We add our analysis and
scheduler to Jikes RVM [23]. The VM scheduler executes
periodically. We choose a 40 ms time quantum following
prior work [6], which shows no discernible thread migra-
tion overhead on shared-LLC AMP processors with 25 ms.
All measurements follow Blackburn et al.’s best practices
for Java performance analysis with the following modifica-
tions of note [4]. We measure first iteration, since we explore
scheduling JIT threads. We use concurrent Mark-Sweep col-
lection, and collect every 8 MB of allocation for avrora, fop
and luindex, which have the highest rates of allocation, and
128 MB for the others. We configure the number of collec-
tion threads to be the same as available cores. We use default
JIT settings in Jikes RVM, which intermixes compilation
with execution. Jikes RVM does not interpret. A baseline
compiler JITs code upon first execution and then the com-
piler optimizes at higher levels when its cost model predicts
the optimized code will amortize compilation costs.
Workload We use thirteen Java benchmarks taken from Da-
Capo: bloat, eclipse, fop, chart, jython and hsqldb (DaCapo-
2006); avrora, luindex, lusearch, pmd, sunflow, and xalan
(DaCapo-9.12); and from SPEC, pjbb2005 [4]. We use all the
DaCapo benchmarks that execute on the unmodified Jikes
RVM. These benchmarks are non-trivial real-world open
source Java programs under active development [4]. Find-
ing that pjbb2005 does not scale well, we create a second
scalable version by increasing the number of transactions
from 10,000 to 100,000, yielding spjbb, which scales on our
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Figure 7: Geomean time, power and energy with Oblivious,
bindVM, and WASH on all three hardware configs.

six core machine. We use the workload classification from
Section 3 to organize the results and analysis.
Comparisons We compare WASH to two baselines: the de-
fault OS scheduler (Oblivious) with no VM direction and
bindVM [5], which simply binds VM helper threads to the
small cores using the OS set affinity interface. We use the un-
modified bindVM implementation from the Jikes VM repos-
itory. These schedulers are the only ones that handle gen-
eral workloads automatically, e.g., messy non-scalable MT
workloads with a mix of application and VM threads, no
programmer intervention to identify bottleneck locks, and/or
no new hardware. Section 8.5 shows that an approxima-
tion of the closest prior work [7, 21] performs much worse
than WASH, Linux, and bindVM because it does not consider
thread priorities (VM versus application threads) nor priori-
tize threads that create bottlenecks by holding locks, contri-
butions of our work.
Measurement Methodology We execute each configura-
tion 20 or more times, reporting first iteration results, which
mix compilation and execution. We omit confidence inter-
vals from graphs. For the WASH scheduling algorithm, the
largest 95% confidence interval for time measurements with
20 invocations is 5.22% and the average is 1.7%. For bindVM,
the largest 95% confidence interval for time measurements
with 20 invocations is 1.64% and the average is 0.72%. Obliv-
ious has the largest 95% confidence interval; with 20 invo-
cations, the largest interval is 15% and the average is 5.4%.
Thus, we run the benchmarks with Oblivious for 60 invoca-
tions, lowering the largest error to 9.6% and the average er-
ror to 3.7%. The relatively high confidence intervals result
because performance is sensitive to the thread core mapping
and all the systems have non-determinism due to dynamic
triggers for scheduling, garbage collection, and JIT compi-
lation. The 95% confidence intervals are a good indicator of
performance predictability of the algorithms.

8. Results
Figure 7 summarizes the performance, power, and energy
results on three AMD hardware configurations: 1B5S (1
Big core and 5 Small cores), 2B4S and 3B3S. We weight
each benchmark group (single threaded, scalable, and non-
scalable) equally. Figure 8 shows all the individual bench-
mark results on the same three hardware configurations. We
normalize to Oblivious, lower is better.



Figure 7 shows that WASH improves performance and
energy on all three hardware configurations on average.
Oblivious has the worst average time on all of the config-
urations and even though it has the lowest power cost, up
to 16% less power than WASH, it still consumes the most
energy. Oblivious treats all the cores the same and evenly
distributed threads, with the result that the big core may be
underutilized and critical threads may execute unnecessarily
on a small core.

WASH attains its performance improvement by using
more power than Oblivious, but at less additional power than
bindVM. The bindVM scheduler has lower average time com-
pared to Oblivious, but it has the worst energy and power cost
in all hardware settings, especially on 2B4S. bindVM uses
up to 18% more energy than WASH. The bindVM scheduler
overloads big cores with work that can be more efficiently
performed by small cores, leading to higher power and un-
derutilization of small cores.

WASH and bindVM are especially effective compared to
Oblivious on 1B5S, as the importance of correct scheduling
decisions is most exposed. On 1B5S, WASH reduces the ge-
omean time by 27% compared to Oblivious, and by about 5%
comparing to bindVM. For energy, WASH saves more than
14% compared to bindVM and Oblivious. WASH consistently
improves over bindVM on power. The following subsections
structure a detailed analysis based on workload categories.
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(a) Single-threaded benchmarks.
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(b) Scalable multithreaded.
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(c) Non-scalable multithreaded.0.4$
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Figure 9: Normalized geomean time, power and energy for
different benchmark groups. Lower is better.

8.1 Single-Threaded Benchmarks
Figure 9a) shows that for single-threaded benchmarks,
WASH performs very well in terms of total time and energy
on all hardware settings, while Oblivious performs poorly.
WASH consumes the least energy on all hardware settings.
Compared to Oblivious scheduling, WASH reduces execu-
tion time by as much as 44%. WASH lowers energy by 19%
but increases power by as much as 39% compared to Obliv-
ious. Oblivious performs poorly because it is unaware of the
heterogeneity among the cores, so with high probability in
the 1B5S case, it schedules the one application thread onto
a small core. With only one application thread and one big
core, both WASH and bindVM will schedule the the thread
to the big core and VM threads to the small cores. When
the number of big cores increases, there is a smaller dis-
tinction between the two policies because the VM threads
may be scheduled on big as well as small cores. In steady
state the other VM threads do not contribute greatly to total
time, as long as they do not interfere with the application
thread. Note that power consumption is higher for bindVM
and WASH than for Oblivious. When the one application
thread migrates to the small cores, it consumes less power
compared to bindVM and WASH, but the loss in performance
more than outweighs the decrease in power. Thus total en-
ergy is reduced by WASH. In the single-threaded scenario,
WASH and bindVM perform very similar to each other on all
AMP configurations.
8.2 Scalable Multithreaded Benchmarks
Figure 9b) shows that for scalable MT benchmarks, WASH
and Oblivious perform very well in both execution time and
energy on all hardware configurations, while bindVM per-
forms poorly. Compared to WASH and Oblivious scheduling,
bindVM increases time by as much as 36%, increases energy
by as much as 50%, and power by as much as 15%. The
reason bindVM performs poorly is that it simply binds all ap-
plication threads to the big cores, leaving the small cores
under-utilized. Unsurprisingly, as the number of small cores
decreases and the number of large cores increases, the dif-
ference between bindVM compared to Oblivious and WASH
reduces.

Scalable benchmarks with homogeneous threads benefit
from round-robin scheduling policies as long as the sched-
uler migrates threads among the fast and slow cores fre-
quently enough. When threads out number cores, as they
often do in multithreaded managed workloads, Oblivious is
forced to migrate threads. Therefore even though Oblivious
does not reason explicitly about the relative core speeds,
it migrates threads frequently enough, achieving very good
performance, power, and energy.

By using the contention information it gathers online,
WASH correctly identifies scalable benchmarks. WASH
and Oblivious generate similar results, but through different
means. WASH reasons explicitly about relative core speeds
using historical execution data to migrate threads propor-
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Oblivious bindVM WASH (a) Time on 1B5S.
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Oblivious bindVM WASH (b) Power on 1B5S.
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Oblivious bindVM WASH (c) Energy on 1B5S.
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Oblivious bindVM WASH (d) Time on 2B4S.
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Oblivious bindVM WASH (e) Power on 2B4S.
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Oblivious bindVM WASH (f) Energy on 2B4S.
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Oblivious bindVM WASH (g) Time on 3B3S.
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Oblivious bindVM WASH (h) Power on 3B3S.
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Oblivious bindVM WASH (i) Energy on 3B3S.
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Figure 8: Time, power, and energy for all benchmarks on all hardware configurations.

tionally between slow and fast cores. This analysis adds a
small amount of overhead in some cases, but in others re-
sults in slightly better scheduling of application threads to
small cores. On average, WASH and Oblivious both achieve
similar good results on scalable multithreaded applications.
8.3 Non-scalable Multithreaded Benchmarks
Figure 9c) shows that WASH on average performs best and
neither Oblivious or bindVM is consistently second best in the
more complex setting of non-scalable MT benchmarks. For
example, eclipse has about 20 application threads and hsqldb
has about 80. They each have high degrees of contention.
In eclipse, the Javaindexing thread consumes 56% of all of
the threads’ cycles while the three Worker threads consume
just 1%. In avrora threads spend around 60-70% of their
cycles waiting on contended locks, while pmd threads spend
around 40-60% of their cycles waiting on locks. These messy
workloads make scheduling challenging.

For eclipse and hsqldb in Figure 8, the results for WASH
and bindVM are similar with respect to time, power, and
energy in most hardware settings. The reason is that even
though eclipse has about 20 and hsqldb has 80 threads, in
both cases only one or two of them are dominant. In eclipse,
the threads Javaindexing and Main are responsible for more
than 80% of the application’s cycles. In hsqldb, Main is re-

sponsible for 65% of the cycles. WASH will correctly place
the dominant threads on big cores, since they have higher
priority. Most other threads are very short lived, shorter than
our 40 ms scheduling quantum. Since before the profile is
gathered, WASH binds application threads to big cores, the
short-lived threads will just stay on big cores. Since bindVM
will put all application threads on big cores and for these
two benchmarks, one thread dominates, the results for the
two policies are similar.

WASH improves energy efficiency with similar perfor-
mance compared to bindVM. The benchmarks avrora, nspjbb,
and pmd in Figure 8 are good examples of WASH choos-
ing to execute on a small core application threads that will
not benefit as much from a big core. Particularly, for 1B5S,
compared to WASH, bindVM time is lower; however, be-
cause WASH makes better use of the small cores, WASH
decreases power usage compared to bindVM. Since bindVM
does not reason about core sensitivity, it does not make a
performance/power trade-off. WASH makes better use of
small cores, improving average energy efficiency compared
to bindVM for avrora, nspjbb, and pmd on all hardware con-
figurations.
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Figure 10: WASH with best (default) model, second best
model, and a bad model (inverse weights) on 1B5S.
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Figure 11: WASH significantly out-performs PFS [7, 21]
which lack lock analysis and VM vs application priority on
1B5S.
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Figure 12: Performance with eclipse adversary on 1B5S.

8.4 Sensitivity to Speedup Model
Figure 10 shows the sensitivity of WASH to its speedup
model with a) the default best model from Section 5, b) a
model using the next best 4 different hardware performance
counters from the same training set, and c) a model with
the additive inverse weights of the default one. WASH only
degrades by 2-3% when we change the model to slightly
worse one. However, a bad model for the speedup prediction,
degrades performance by 9%.
8.5 Thread & Bottleneck Prioritization
We build a version of Proportional core-sensitive Fair Schedul-
ing (PFS) [7, 21], by removing features unique to WASH:
a priori knowledge to preferentially schedule application
threads to big cores and automatically prioritizing among
contended locks. The resulting PFS scheduler performs pro-
portional fair scheduling for homogeneous workloads on

AMP and prioritizes threads based on core sensitivity. Fig-
ure 11 shows that as expected, these schedulers (red — no
lock + no APP/VM) perform well on scalable benchmarks,
consistent with prior results [7, 21] that test on workloads
with total |threads| = |cores| and with parallelism that, for
the most part, is homogeneous and scalable. However, the
prior work performs poorly on sequential and non-scalable
parallel benchmarks. The orange bars (no App/VM) show
just disabling prioritization of application over VM threads,
revealing that this feature is critical to good performance
for managed single-threaded and non-scalable workloads.
We find that the JIT thread benefits from big cores more
than most application threads, so core sensitivity schedul-
ing alone will mistakenly schedule it on the big core even
though it is often not critical to application performance.
WASH correctly deprioritizes JIT threads to small cores.
Highly concurrent messy workloads, such as avrora and
eclipse, suffer greatly when the scheduler does not priori-
tize contended locks. Avrora uses threads as an abstraction
to model high degrees of concurrency for architectural sim-
ulation. Eclipse is a widely used Integrated Development
Environment (IDE) with many threads that communicate
asynchronously. Both are important examples of concur-
rency not explored, and consequently not addressed, by the
prior work. WASH’s comprehensive approach correctly pri-
oritizes bottleneck threads in these programs, handling more
general and challenging settings.
8.6 Multiprogrammed Workloads
This section presents an experiment with multiprogrammed
workload in the system, of which our VM is unaware. We
use eclipse as the OS scheduled adversarial workload across
all cores and WASH scheduling on each of our benchmarks.
Eclipse has 20 application threads with diverse needs and
is demanding both computationally and in terms of memory
consumption.

Figure 12 shows the performance of WASH and bindVM
compared to Oblivious in the presence of the eclipse ad-
versary. Although bindVM’s overall performance is largely
unchanged compared to execution with no adversary, it de-
grades on both nspjbb and spjbb. WASH performs very well
in the face of the adversary, with average performance 27%
better than and a number of benchmarks performing twice
as well as Oblivious. WASH’s worse case result (nspjbb) is
only 7% worse.

Summary The results show that WASH improves perfor-
mance and energy on average over all workloads, each com-
ponent of its algorithm is necessary and effective, and it is
robust to the introduction of a non-trivial adversary. WASH
utilizes both small and big cores as appropriate to improve
performance at higher power compared to Oblivious, which
under-utilizes the big cores and over-utilizes little cores be-
cause it does not reason about them. On the other hand,
WASH, uses its workload and core sensitivity analysis to



improve performance and lower power compared to bindVM
which under utilizes the little cores for the scalable and non-
scalable MT benchmarks.

9. Conclusion
Hardware heterogeneity is a promising approach to improv-
ing performance and energy. However, only if this com-
plexity is transparent to applications is software likely to
benefit from it as hardware continues to evolve. This paper
shows how to modify a VM to analyze bottlenecks, AMP
sensitivity, and progress to deliver transparent, portable per-
formance, and energy efficiency. We introduce new fully
automatic dynamic analyses that identify scalable paral-
lelism, non-scalable parallelism, bottleneck threads, and
thread progress. We show that this system delivers substan-
tial improvements in performance and energy efficiency on
frequency-scaled processors over prior software approaches.
Our results likely understate the advantages from more
highly optimized commercial AMP systems that vendors
are beginning to deliver.
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