KM — The Knowledge Machine 1.4.0:
KM’s Situation Mechanism

(Revision 1, for KM 1.4.0-beta38 and later.
See release notes for recent updates)

Peter Clark Bruce Porter
Mathematics and Computing Technology ~ Dept of Computer Science
The Boeing Company University of Texas at Austin
PO Box 3707, Seattle, WA 98124 Austin, TX 78712
peter.e.clark@boeing.com porter@cs.utexas.edu
Contents
1 Introduction 1
2 Situations 1
2.1 Creating and Entering Situations, 1
2.2 Viewing the Contents of Situations, 3
2.3 Quantifying over Situationso 4
3 The Situation Hierarchy 5
3.1 The Semantics of Situations L L 5
3.2 Inference. L e e e e e e 5
3.3 Fluents and Non-Fluents L o 7
3.4 Situation-Specific Slots L L 8
4 More About Situation Instances and Classes 9
4.1 Situation Instances Lo e e 9
4.2 Situation Classes e e e e e e e e e 11
5 Representing Actions 12
5.1 Representing Actions L 12
5.1.1 Preconditions, Add and Delete Lists 12
5.1.2 Representing Propositionso 0., 13
5.1.3 Manipulating Propositions oo o 0oL 14
5.1.4 Representing the Effects of Actions using Propositions 14
5.1.5 The Situation-Specificity of Actions 14
5.1.6 Ramifications e 15
5.2 Relating Situations and Actions 0oL 15

5.3 The Semantics of Actions o o e 16

5.3.1 Declarative Semantics Lo
5.3.2 Procedural Implementation 0oL
54 Example: A Switch oL L s
5.5 Example: Getting and Putting

Temporal Projection
6.1 OVErview oL e e e e e
6.2 Controlling Projection: Inertial and Non-Inertial Fluents

Testing the Preconditions of Actions

Simulation

8.1 Imtroduction e e e
8.2 Example: An Electrical Circuit 0o o0
8.3 Quantifying Over Intermediate Situations

Possible Worlds and Envisionments
9.1 Imtroduction L e e e
9.2 Creating Possible, Alternative Situations

10 Existence, and Actions which Create and Destroy

10.1 Introduction oL oL e e e e
10.2 Example: Baking a Cake. L o
10.3 Example: The Magician’s Rabbit

11 Some Limitations

11.1 Chronological Minimization o o000
11.2 Projection Back in Time Lo
11.3 Disjunctive Ramifications and Multiple Possible Extensions
11.4 Modeling Continuous Change i
11.5 The Situation-Action Dichotomy o000,

References

Master Index

ii

22
22
23

24

26
26
26
29

30
30
30

32
32
34
35

36
36
36
37
37
37

38

39

1 Introduction

This manual describes the use of situations in KM, providing the ability to represent and reason
about states of the world, and actions which change those states. The use of situations is optional
in KM — if the user has no need for them, this entire manual can be skipped.

Many tasks require reasoning about the dynamics of the world: that is, require consideration
of how a particular situation might change with time. For example, answering questions of the
form “what happensif...?”, “is it possible that...?”, and “how can I...?” all require reasoning about
changes in, and alternatives to, the current state of the world. In this manual, we describe how
KM represents and reasons with situations. Although this feature of KM was originally motivated
to represent world dynamics, it’s applicability is more general: it can be used to represent and
reason with any hypothetical or possible situation (even if it has no temporal relationship to other
situations). For example, KM might be reasoning about a fuel-tank, but not know whether it
is full or empty: it can spawn two separate branches or reasoning, one in which the tank is full
and the other in which it is empty, and examine the implications of both. Both branches are
maintained in KM’s memory, and can be explored and compared.

Although powerful, this kind of reasoning also raises some technical and philosophical chal-
lenges for Al (for example: the nature of persistence, temporal projection, lines of identity, and
multiple, possible futures). We discuss these throughout this manual. First we introduce the
notion of situations, then describe the representation of actions, and how (theories describing)
new situations resulting from actions can be computed. We then generalize this to simulating the
execution of plans (action networks), and finally to constructing and reasoning about possible,
alternative situations which can arise from an initial starting point.

The semantics of KM’s situations are based on Situation Calculus (see [1] and [2, Chapter 5)),
although there are some differences (for example, our notation differs, and we allow situations to
be organized hierarchically).

Logic Notation: As in the KM Manual, KM statements in this manual are accompanied by
their equivalent in logic notation. However, for those not fluent with logic, do not be intimidated:
These logic statements are not essential to decipher, as the accompanying text also provides
descriptions of what the KM statements mean. Conversely, for those requiring more rigor, the
logic equivalents will help to provide additional clarity.

2 Situations

2.1 Creating and Entering Situations

The key concept for reasoning about different configurations of the world is a situation. In-
tuitively, a situation describes the state of the world at a particular moment. A situation ac-
quires (‘imports’) all the axioms (ie. KM frames) from the ‘global’ (normal) KB, which we
refer to as the ‘global situation’, and can have additional, situation-specific facts asserted into it.
Implementation-wise, a situation can be thought of as a partition of the knowledge-base which
is (by default) ‘isolated’” from all other situations except the global (shared) KB. A user can tell
KM to ‘enter’ a situation, in which case future computation is performed only with axioms visible
in that situation, and the results stored in that situation. By default, KM works in the global
situation (as signified by the KM> prompt) — for instance, all the examples in the User Manual are
performed in the global situation.

Situations are objects in their own right in the KB (instances of the class Situation), and thus

supersituations supersituations
ersituations
—situati next-situation —
*Situationl next_siaton *Situation2 S *Situation3
prev-situation prev-situation
Project

Figure 1: Situations and their relationships in KM.

can be reasoned about. The global KB is also considered a situation, with name *Global, and is
the supersituation of all other situations. These relationships are shown in Figure 1, along with a
glimpse of the next-situation and prev-situation relationships and the projection operation.
We will ignore projection for now, and introduce later in this manual.

When in a (non-global) situation, KM prints the situation name as a prefix to the KM prompt
as shown below. We will sometimes refer to assertions made in a (non-global) situation as “local”
assertions, and assertions in the global situation as “global” assertions.

At the KM prompt, the user can create a situation, and enter a situation using the command
(in-situation situation):

;3 “Joe is a person, born in 1963.”

i35 isa(*xJoe, Person) A birthdate(xJoe, 1963)

KM> (*Joe has ; Global KB assertion
(instance-of (Person)) ; (visible to all Situations)
(birthdate (1963)))

;53 “Create a situation.”
555 s isa(s, Situation)
KM> (a Situation)
(_Situation5)

;3; “Enter that situation.”
KM> (in-situation _Situation5)
(Changing to situation _Situation5)

;53 “What is Joe’s birthdate (in this situation)?”
555 { d | holds-in(birthdate(xJoe, d), _Situation5) }

[_Situationb] KM> (the birthdate of *Joe) ; Global facts are visible
(1963) ; from a local situation

i35 “Joe is happy (in this situation).”
i35 holds-in(mood(xJoe, * Happy), _Situation’)
[_Situationb] KM> (*Joe has (mood (*Happy))) ; Make a local assertion

555 “What is Joe’s mood (in this situation)?”
555 { m | holds-in(mood(xJoe, m), _Situation5) }

[_Situationb] KM> (the mood of *Joe)
(*Happy) ; Assertion visible here

ees W

553 “Return to the global situation.”
[_Situation5] KM> (in-situation *Global)
(Changing to situation *Global)

555 “What is Joe’s (permanent) mood?”

i3 { m | mood(xJoe, m) }

KM> (the mood of *Joe) ; Local assertions are not
NIL ; visible to the global KB

;5; “Create and enter a new situation.”
KM> (in-situation (a Situation))
(Changing to situation _Situation6)

;55 “Joe is sad (in this new situation).”
i35 holds-in(mood(xJoe, xSad), _Situation)
[_Situation6] KM> (*Joe has (mood (*Sad))) ; Alternative assertion

;55 “What is Joe’s mood (in this situation)?”

555 { m | holds-in(mood(*Joe, m), _Situation6) }
[_Situation6] KM> (the mood of *Joe)
(xSad)

;55 “Return to the global situation.”
[_Situation6] KM> (in-situation *Global)
(Changing to situation *Global)

KM>

For convenience, the commmands (new-situation) both creates and enters a new situation;
(curr-situation) returns the name of the current situation, and (global-situation) returns
to the global KB:

KM> (new-situation)

(Changing to situation _Situation7)

[_Situation7] KM> (curr-situation)
(_Situation7)

[_Situation7] KM> (global-situation)
(Changing to situation *Global)

KM>

2.2 Viewing the Contents of Situations

As for non-situational KM, the contents of frames can be viewed with the (showme expr) com-
mand. When situations are used, however, this command also prints out the situation-specific
assertions, wrapped in an (in-situation ...) expression:

KM> (showme *Joe)
(*Joe has

(instance-of (Person))
(birthdate (1963)))

(in-situation _Situation6
(¥*Joe has
(mood (*Sad))))

(in-situation _Situationb
(*Joe has
(birthdate (1963))
(mood (*Happy))))

Note that, as for non-situational KM, KM only shows the facts explicitly asserted or computed
for this frame in response to queries, not all the deductively implied facts.
The command (showme-here expr) just shows the current situation’s part of expr:

KM> (in-situation _Situation5)

[_Situationb]> (showme-here *Joe)
(in-situation _Situationb
(*Joe has
(birthdate (1963))
(mood (*Happy))))

In addition, as for non-situational KM, (save-kb "myfile.km") writes out the current state of
the KB to the file "myfile.km”, and (write-kb) writes it out to the standard output. save-kb is
often useful for debugging, as standard editor functions can then be used to search the saved file
when viewed in a text editor.

2.3 Quantifying over Situations

In addition to explicitly entering a situation to ask situation-specific queries, the user can issue
situation-specific queries by passing the query as a second argument to the (in-situation ...)
command. In this case, KM will temporarily enter the situation to evaluate the query, then return
to the global situation:

;35 “What is Joe’s mood in _Situation5?”

555 { m | holds-in(mood(xJoe, m), _Situation5) }

KM> (in-situation _Situationb5 (the mood of *Joe))

(*Happy)

;55 “What is Joe’s mood in _Situation6?”

555 { m | holds-in(mood(xJoe, m), _Situation6) }

KM> (in-situation _Situation6 (the mood of *Joe))
(*Sad)

Note, thus, that KM can maintain knowledge of multiple situations at the same time.
We can use the (in-situation ...) expression to quantify over situations, for example to
ask “Is it ever the case that...?” questions. For instance:
555 “Is Joe ever happy?”

;55 (expressed as: “Does there exist a situation in which Joe is happy?”)
;33 oneof ({ s | isa(s, Situation) A holds-in(mood(xJoe,* Happy),s) })*

!where oneof() is a deterministic but unspecified function mapping a set onto one of its members (see the User
Manual for further details).

KM> (oneof (the all-instances of Situation)
where (in-situation It ((the mood of *Joe) = *Happy))))
(_Situationb) ; such a Situation exists (ie. "Yes")

Here, (the all-instances of Situation) computes the situations to quantify over (all-instances
is a built-in slot returning all the instances of a class, see the User Manual). We later show addi-
tional ways that a set of situations can be created and referred to automatically. This ability to
manipulate situations as KB objects in their own right has many useful applications, as we will
illustrate later in this manual.

3 The Situation Hierarchy

3.1 The Semantics of Situations

Semantically, making an assertion p in a situation s is to assert the proposition holds-in(p, s) in
a single theory corresponding the entire knowledge-base. This includes assertions in the ‘global
KB’, which is treated as a special situation with name *Global. Thus, strictly, asserting p in
the global situation (i.e., at the normal KM> prompt) asserts the proposition holds-in(p, *Global),
although we write just p as a shorthand for this in the KM manuals.

Situations are themselves instances, and can be organized into a situation hierarchy using the
built-in slot supersituations (and its inverse subsituations), which relates a situation to its
parent situations. Note that this is not the same as the superclasses relation (superclasses
relates classes to classes, while supersituations relates situation instances to situation instances).

By default, new situations are subsituations of the *Global situation. A situation can ‘see’
the assertions in all its supersituations, i.e., subsituations acquire all the assertions in their su-
persituations. The semantics of this is described by the axiom schema (i.e., by the infinite set of
axioms which the schema specifies):

“If a proposition prop holds in situation s, then it also holds in each subsituation s’”
Vs, s" holds-in(prop, s) A subsituations(s,s’) — holds-in(prop, s')

for all possible first-order logic statements prop.
Situations can have multiple supersituations, i.e., the situation ‘hierarchy’ can be a lattice. All
propositions from all supersituations hold in a situation.

3.2 Inference

When finding a frame’s slot-value in a situation S, KM also looks in that situation’s supersit-
uation(s) for information. This includes both ‘own properties’ (frame has ...) and ‘member
properties’ (every frame has ...) for that frame. Thus, an instance’s slot can acquire informa-
tion from a supersituation in two ways: first, it will acquire the values on that instance’s slot in
the supersituation; second, its classes will acquire the expressions (rules) on those classes in the
supersituation, which will subsequently be inherited down to that instance and evaluated. Thus
a situation acquires all the azioms of its supersituations (as we specified in Section 3.1), not just
ground literals. This is important because the same axiom may imply different things in different
situations, e.g., (r < y) implies y in situations where z is true, and —y in situations where z is
false. It also contrasts with projection, described later, where only ground literals are projected
between situations.

KM'’s tracing mechanism allows the user to observe how supersituations are used when compute
the answer to a question. An example is illustrated below.

;55 “A person’s age (in years) is today’s year minus their year of birth.”
i35 Vo, y, v, a isa(p, Person) A year(xTodays-Date, y) A year-of-birth(p,y') Na =y — ¢’

199

— age(p, a)

KM> (every Person has

199

(year-of-birth ((a Number))) ; (in years)
(age (((the year of *Todays-Date) - (the year-of-birth of Self)))))

; “Fred was born in 1963.”

i35 isa(xFred, Person) A year-of-birth(xFred, 1963)
KM> (*Fred has

(instance-of (Person))
(year-of-birth (1963)))

;55 “Create and enter a new situation.”
KM> (new-situation)

; “In this situation, the year is 2000.”

199

555 holds-in(year (xTodays-Date, 2000), _Situation0)
[_SituationO] KM> (*Todays-Date has

199

(year (2000)))

“

Switch on tracing in KM.”

[_Situation0] KM> (trace)

Now in the next query, note that Fred acquires year-of-birth 1963 from the supersituation. Note
also that Fred also inherits year-of-birth (a Number) from the class Person, i.e. both the “rule” on
Person and the “value” on Fred are passed down from the global situation to the local situation,

and combined.

; “What year was Fred born?”

199

[_Situation0] KM> (the year-of-birth of *Fred)

1
1
2
2
1
1
2
2
1
(

-> (the year-of-birth of *Fred)

(1) Look in supersituation(s)

-> (in-situation *Global (the year-of-birth of *Fred))

<- (1963) "(in-situation *Global (the year-of-birth of *Fred))"
(2) From inheritance: (a Number)

(1-2) Combine 1-2 together

-> ((1963) &% ((a Number)))

<- (1963) "((1963) &% ((a Number)))"
<- (1963) "(the year-of-birth of *Fred)"

1963)

; “How old is Fred in this situation?”

199

;3; Again note the multiple sources of information for computing Fred’s year-of-birth, and age.

[

1

W WNEFE NN

Situation0] KM> (the age of *Fred)
-> (the age of *Fred)
(1) Look in supersituation(s)
-> (in-situation *Global (the age of *Fred))
<- FAIL! "(in-situation *Global (the age of *Fred))"
(2) From inheritance: ((the year of *Todays-Date) - (the year-of-birth of *Fred))
-> ((the year of *Todays-Date) - (the year-of-birth of *Fred))
-> (the year of *Todays-Date)
(1) Look in supersituation(s)

4 -> (in-situation *Global (the year of *Todays-Date))

4 <- FAIL! "(in-situation *Global (the year of *Todays-Date))"

3 (2) Local value(s): 2000

3 <= (2000) "(the year of *Todays-Date)"

3 > ((the year-of-birth of *Fred))

4 -> (the year-of-birth of *Fred)

4 (1) Look in supersituation(s)

5 -> (in-situation *Global (the year-of-birth of *Fred))

5 <- (1963) "(in-situation *Global (the year-of-birth of *Fred))"
4 (2) Local value(s): 1963

4 (3) From inheritance: (a Number)

4 (1-3) Combine 1-3 together

5 -> ((1963) && ((a Number)))

5 <- (1963) "((1963) && ((a Number)))"

4 <- (1963) "(the year-of-birth of *Fred)"

3 <= (1963) "((the year-of-birth of *Fred))"

2 <= (37) "((the year of *Todays-Date) - (the year-of-birth of *Fred))"
1 <= (37) "(the age of *Fred)"

(37)

In the above, KM is searching in both the local and global situations for all the information
it needs (hence the long trace). It finds today’s date in the local situation, and then three values
for Fred’s year of birth, namely in the global situation (1963), the local situation (1963), and
by inheritance from Person ((a Number)), which it then combines. Although it might seem
redundant here to find the same value in three different ways, in general these three sources might
provide different values (which would then combine to produce a multi-valued answer), hence this
search is necessary in general. In this particular case, however, we know that a person’s year of
birth is not going to vary between situations (i.e., it is not a fluent), and we would like to tell KM
this to save it some work. We explain how to do this shortly in the next subsection.

Finally KM makes the necessary subtraction to find Fred’s age, returning 37.

By default, KM does not show the details of the computations in other situations besides the
current situation. For example, above, details of the computation of (in-situation *Global
(the year-of-birth of *Fred)) are not shown, although this itself might have involved several
inference steps in the global situation. To view such details, toggle the trace mode using the
tracing option +S.

3.3 Fluents and Non-Fluents

Slots whose values are situation-dependent are called fluents (for example, age above). In addi-
tion, as we discuss later, there is a special type of fluent which we call an inertial fluent, namely a
slot whose values are situation-dependent and whose values persist from one situation to another,
unless there is evidence to the contrary. For example we might decide to treat age as an inertial
fluent, if we want KM to assume someone’s age (in years) in a situation is the same as in the
immediately preceding situation, unless there is evidence to the contrary. However, best-move
for a chess game might be modeled as a non-inertial fluent, as the best chess move in any given
situation depends solely on the current state of the chess board, and has nothing to do with earlier
best moves. Finally, year-of-birth is an example of a non-fluent, as its value is the same in all
situations. We discuss inertial fluents and situation sequences in more detail in Section 6.

The user can declare the fluent status of a slot using the built-in slot’s slot fluent-status,
which can have one of three values:

Slot’s fluent-status Meaning

*Non-Fluent slot value(s) are the same in all situations
*Fluent slot value(s) may vary between situations
*Inertial-Fluent slot value(s) may vary between situations, but should persist

from one situation to the temporally next situation unless
there is evidence to the contrary.

For example:

557 “year-of-birth is not a fluent.’

KM> (year-of-birth has
(instance-of (Slot))
(fluent-status (*Non-Fluent)))

By default, KM considers allslots to be inertial fluents (i.e. fluent-statusis *Inertial-Fluent).
The user can change the fluent status for specific slots using fluent-status declarations (as
above), or, if he/she prefers, change the default for allslot using the function (default-fluent-status new-
status) , and then declare exceptions to this new status instead. For some applications, this latter
approach may be more concise. (default-fluent-status new-status) is used as follows:

557 “By default, consider all slots to be non-fluents.”
KM> (default-fluent-status *Non-Fluent)
By default, slots are now considered to be non-fluents.

Declaring which slots are/are not fluents requires a bit of extra work by the knowledge en-
gineer, but allows KM to avoid redundant computations: KM will only repeat computations in
supersituations for fluents (both inertial and non-inertial), and only repeat computations in previ-
ous situations for inertial fluents. This makes KM’s reasoning faster, and also simplifies the trace
for the user when debugging.

3.4 Situation-Specific Slots

Similarly, there are some slots which have no meaningful value in the global situation, for instance
age in the above example. Nevertheless, KM by default does not realize this, and will thus
needlessly try (and fail) to compute such slots’ values in the global situation when queried about
it. This behavior can be suppressed by declaring the slot situation-specific, meaning that it
has no meaningful values in the global situation, i.e., Va,y —slot(x,y):

KM> (age has
(instance-of (Slot))
(situation-specific (t)))

This will make reasoning a tiny bit more efficient, and also simplify tracing of KM’s inference.

Queries about situation-specific slots in the global situation will automatically return NIL.
There is also a second usage of the situation-specific attribute, which is as a ‘cheap trick’

to avoid problems with negation-as-failure and the closed-world assumption. Consider the rule:

(every Person has
(is-adult ((if ((the age of Self) >= 18) then *Yes else *No))))

Now in the global situation, a person does not have a value for age (as it varies from non-global
situation to non-global situation). Thus a query for whether a person is an adult will necessarily

return the answer *No (as the test fails), which is then passed down to all non-global situations!
This is not what we intended, as a situation may exist where the person’s age is greater than 18,
and thus a contradiction will arise. The best way to avoid this is to reformulate the rule so it does
not rely on negation as failure:

(every Person has
(is-adult ((if ((the age of Self) >= 18) then *Yes
else (if ((the age of Self) < 18) then *No)))))

However, another alternative, if we are sure that a person’s age will be computable in all non-
global situations, is to prevent KM from computing values for this slot in the global situation.
This can be done again by setting the slot’s situation-specific property to t:

KM> (is-adult has

(instance-of (Slot))
(situation-specific (t)))

In general, though, the first approach of reformulating the rule is the preferred way of dealing
with this issue.

4 More About Situation Instances and Classes

This Section describes more advanced features for declaring situations, and can be skipped if only
an introductory level to Situations is needed.

4.1 Situation Instances

Situations are instances (of the class Situation), and behave just like any other instances in KM.
This means that they can be given explicit names, can be qualified using a (situation has...)
or (a Situation with...) expression, and can be organized into classes (subclasses of the class
Situation).

It is important to be aware of which assertions are being made in the global situation, and
which in a local situation, especially when making assertions about situations themselves. This is
particularly important because, as mentioned earlier, assertions made in the global situation are
universal, and will be imported into all other situations. We elaborate on this further here with
some examples.

We can attach slot-values to a situation, for example:

;5 “Create a situation whose time/date is the morning of 4-20-00.”
i35 3s isa(s, Situation) A date(s, 4-20-00) A time(s, xMorning)
KM> (a Situation with
(date (4-20-00))
(time (*Morning)))
(_Situation2)

We can also create situations with explicit names, e.g.:

i35 “Pete’s Thursday Morning is a situation whose time/date is the morning of 4-20-00.”
i35 isa(*x Petes-Thursday-Morning, Situation) A date(x Petes-T hursday-M orning, 4-20-00) A
iy time(x Petes-Thursday-Morning, * Morning)

KM> (*¥Petes-Thursday-Morning has
(instance-of (Situation))
(date (4-20-00))
(time (*Morning)))

;55 “Enter this situation.”
KM> (in-situation *Petes-Thursday-Morning)

;57 “Pete was located on a chair in front of a computer on Thursday Morning.”
i35 Je, d holds-in(isa(c, Chair) A isa(d, Computer) A location(xPete, ¢) A in- front-of (¢, d),
5 * Petes-T hursday-Morning)
[*Petes-Thursday-Morning] KM> (*Pete has
(location ((a Chair with
(in-front-of ((a Computer)))))))

Now, the situation instance itself can refer to objects within the situation partition of the KB. For
example, I could say the agent in this situation is Pete by asserting:

[*Petes-Thursday-Morning] KM> (global-situation)

;53 “Pete is the main participant in the *Petes-Thursday-Morning situation.”
i35 main-participant (x Petes-T hursday-Morning, * Pete)
KM> (xPetes-Thursday-Morning has

(main-participant (*Pete)))

This declares *Pete as the main participant in *Petes-Thursday-Morning. Note that this is a
statement about a situation instance, rather than an assertion within the situation partition which
that instance refers to. It can be thought of as meta-knowledge about a situation, residing in the
global KB.

Similarly, statements within a situation partition can refer to objects associated with the
situation instance that denotes it, for example the second assertion below:

;57 “Create a situation whose main participant is a person.”
i35 38, p isa(s, Situation) A isa(p, Person) A main-participant(s,p)
KM> (a Situation with
(main-participant ((a Person))))
(_Situationl)

;3; “In that situation, the main participant is located on a chair.”
i35 Vp main-participant(_Situationl, p) — Je holds-in(isa(c, Chair)Alocation(p, c), _Situationl)
KM> (in-situation _Situationl

((the main-participant of _Situationl) has (location ((a Chair)))))

Here, the assertion within the situation partition refers to the main participant of the situation
instance denoting it.

KM allows these two kinds of assertions (about and within a situation) to be combined into
a single structure, by placing the in-situation assertions on the special slot called assertions
on situation instances. Assertions should be quoted KM expressions, and are a list of statements
which hold within the situation which the instance denotes. For example, the above two statements
could be combined into a single statement:

;5; “Create a situation whose main participant is a person who, in that situation,
;;; is located on a chair.”

10

i35 38, p isa(s, Situation) A isa(p, Person) A main-participant(s,p) A
i3 (Yp main-participant(s, p) — Jc holds-in(isa(c, Chair) A location(p, c), s))?
KM> (a Situation with
(main-participant ((a Person)))
(assertions (’((the main-participant of Self) has (location ((a Chair)))))))
(_Situation0)

The above statement creates _SituationO, and asserts that the main participant is on a chair
within it. The following query confirms that this assertion has been made:

;55 “Where is the main participant located in _Situation0?”

555 { U] Tp holds-in(main-participant(_Situation0, p) A location(p, 1), _Situation0) }

KM> (in-situation _Situation0 (the location of (the main-participant of _Situation0)))
(_Chair8)

Note that the alternative below would not capture what we want, althought it looks similar on
first glance:

;55 “Create a situation whose main participant is a person (permanently) located on a chair.”
555 38, p, cisa(s, Situation)Aisa(p, Person)Aisa(c, Chair)Amain-participant(s, p)Nlocation(p, c)
KM> (a Situation with

(main-participant ((a Person with (location ((a Chair)))))))

This would be problematic because it asserts in the global situation that the person is on the
chair, i.e. the person is permanently on the chair, rather than making the assertion in the local
situation. This is not what we intended to say. Care is needed!

4.2 Situation Classes

The user can also define classes of situations. Just as (in-situation situation expr) evaluates
exprin situation, (in-every-situation situation-class expr) will evaluate expr for every instance
of situation-class created. This evaluation is done once only for each situation, at the time
the situation is created. Just as Self refers to the instance under consideration in an every
clause, so the keyword TheSituation refers to the situation instance under consideration in an
in-every-situation clause, as illustrated below.

In the below example, we represent a specific, ongoing action (here, “falling”) as a situation,
and also define the class of all such situations (i.e. all “falling” situations). This is one way of
describing ongoing activities in KM.

;57 “Falling situations are situations.”
i35 superclasses(Falling-Situation, Situation)
KM> (Falling-Situation has (superclasses (Situation)))
;7 “Every falling situation involves a person.”?
i35 Vs isa(s, Falling-Situation) — dp isa(p, Person) A agent(s, p)
KM> (every Falling-Situation has

(agent ((a Person))))

;3; “In falling situations, the falling person feels scared.”
i35 Vs isa(s, Falling-Situation) — holds-in(Vp agent(p, s) — feelings(p, *Scared), s)

2This shows the built-in semantics of assertions(s,p), namely the quoted assertion p holds in situation s.
3i.e. we are really describing People-Falling-Situation rather than Falling-Situation

11

KM> (in-every-situation Falling-Situation
((the agent of TheSituation) has (feelings (*Scared))))

This last statement is equivalent to (and is in fact internally translated to):

;57 (Alternative syntax, but same semantics as the previous statement)
KM> (every Falling-Situation has
(assertions (’ ((the agent of Self) has (feelings (*Scared))))))

On creation of a situation instance of this class, the situation-specific assertions are made into
that situation’s partition, as shown below:

;5; “Pete is a person.”
i35 isa(xPete, Person)
KM> (*Pete has (instance-of (Person)))

;5; “There is a situation in which Pete is falling.”
555 s isa(s, Falling-Situation) A agent(s, xPete)
KM> (a Falling-Situation with (agent (*Pete)))
(COMMENT: Evaluating (in-situation _Falling-Situation9
((the agent of _Falling-Situation9) has (feelings (*Scared)))))
(_Falling-Situation9)

;57 “What are Pete’s feelings in that situation?”

555 { f | holds-in(feelings(xPete, f), _Falling-Situation9) }

KM> (in-situation _Falling-Situation9 (the feelings of *Pete))
(*Scared)

As before, note the below does not capture what we intended to say:

;55 “All falling situations involve a (permanently) scared person.”
i35 Vs isa(s, Falling-Situation) — 3p isa(p, Person) A agent(s,p) A feelings(p, *Scared)
KM> (every Falling-Situation has

(agent ((a Person with (feelings (*Scared))))))

because it asserts in the global situation that the person is scared, i.e. the person is permanently
scared, whereas our intent was to say the person is scared just during the falling (i.e. is a situation-
specific assertion).

5 Representing Actions

5.1 Representing Actions
5.1.1 Preconditions, Add and Delete Lists

Actions are events which change the state of the world. Thus, the application of an action in a
situation is modeled by the creation of a new situation, reflecting the new world state after the
action has been performed. Note that in this approach, the situation in which the action itself
is happening is not modeled (one might think of the actions as being instantaneous). Later, in
Section 11.5, we will suggest a variation of this approach in which actions-in-progress are also
modeled (in fact, where we remove the dichotomy between actions and states of affairs), but
for now we continue modeling the world as comprising of situations, and actions which change
situations.

12

In KM, actions are described using four lists, namely the ‘pcs-list’ (preconditions list), the
‘nes-list’ (negated preconditions list), the ‘add-list’ (add list), and the ‘del-list’ (delete list). The
pes-list contains a list of ground literals which are necessarily true before an action is performed,
the ncs-list contains a list of propositions which are necessarily false, the add-list contains propo-
sitions which are necessarily true after the action is performed (i.e., “become true” as a result of
the action), and the del-list contains those which are false (i.e., “become false”). (We describe
this formally in Section 5.3). These lists are stored on the pcs-list, ncs-1list, add-1list, and
del-list slots respectively on the frame representing the action. A proposition is a reified ex-
pression (ie. an expression represented as an object), and allows us to make statements about that
proposition P, for example “Fred believes P” — or, for our purposes here, “The result of doing X
is P”.

5.1.2 Representing Propositions

A proposition is represented in KM by the structure (:triple frame slot value), which denotes
(but does not make) the assertion that frame’s slot includes value. For example:

;;; The proposition “Pete is happy”

;5; "state (¥Pete, *Happy) ", where the string is just a constant denoting the proposition.
KM> (:triple *Pete state *Happy)

((:triple *Pete state *Happy))

Note that the above does not assert that “Pete is happy” is true; it merely denotes the statement
itself (which may be true or false).

When processing a :triple expression, KM does evaluate the three components (frame, slot,
value) of the triple. For example, (:triple Self state *Happy) does not denote the proposition
"state(Self,*Happy)", but the proposition "state (<p>, *Happy)", where p is the instance which
Self denotes. In our logic notation notation in this manual, <> signifies this “unquoting”, i.e.,
we write "<p>" to denote the value of p, rather than the string "p". Some examples are shown
below:

;53 “Every person believes that he/she is happy.”
i35 Vp isa(p, Person) — belief(p,"state (<p>, *Happy) ")
KM> (every Person has

(belief ((:triple Self state *Happy))))

i3 “Every person believes that all his/her pets are happy.”
i35 Vp isa(p, Person) —
55 Vt has-pets(p,t) — belief(p,"state(<t>,*Happy) ")
KM> (every Person has
(belief ((forall (the has-pets of Self)
(:triple It state *Happy)))))

i35 “Every person believes his/her house is beautiful.”
i33 Vp, b isa(p, Person) A house-lived-in(p, h) — belief (p,"appearance (<h>,*Beautiful)")*
KM> (every Person has

(belief ((:triple (the house-lived-in of Self) appearance *Beautiful))))

(assert (:triple f s v)) is equivalent to the assertion (f has (s (v))).

4This KM expression assumes that a person lives in at most one house.

13

5.1.3 Manipulating Propositions

To assert that a triple is actually true, the KM function (assert expr) is used, where expr evalu-
ates to zero or more triples. To test the truth-value of a triple, the KM functions (is-true expr),
(all-true expr), and (some-true expr) should be used, where expr evaluates to zero or more
triples. all-true tests whether all those triples are true, some-true tests that at least one is
true, and is-true is equivalent to all-true, except expects expr to evaluate to exactly one triple
and will generate an error otherwise. These tests denote success by returning the constant t, and
return NIL otherwise. For example:

;53 “Is the proposition that ‘Pete is happy’ true?”
KM> (is-true (:triple *Pete state *Happy))
NIL ; No

553 “Pete is happy”
KM> (assert (:triple *Pete state *Happy))
(:triple *Pete state *Happy)

;55 “Is the proposition that ‘Pete is happy’ true?”
KM> (is-true (:triple *Pete state *Happy))
() ; Now, yes!

;;; Another way to do the same test:
KM> ((the state of *Pete) = *Happy)
(t)

5.1.4 Representing the Effects of Actions using Propositions

To describe the preconditions and effects of actions, propositions are placed on the pcs-list,
ncs-1list, add-1list, and del-1ist slots of those actions. As an example, the action of switching
on a switch might be represented:

535 “Switching on is a type of action.”
i35 superclasses(Switching-On, Action)
(Switching-On has (superclasses (Action)))

557 “The effect of a Switching-On is that the switch’s position becomes Up.”

i35 Vs, 0 isa(s, Switching-On) A object(s, 0) —

HH pes-list(s,"position(<o>,*Down)") A

HH del-list(s,"position(<o>,*Down)") A

HH add-list(s,"position(<o>,*Up)")

(every Switching-On has
(object ((a Switch)))
(pcs-list ((:triple (the object of Self) position *Down)))
(del-1list ((:triple (the object of Self) position *Down)))
(add-1list ((:triple (the object of Self) position *Up))))

5.1.5 The Situation-Specificity of Actions

It is important to note that the effects of an action instance may vary, depending on the situation
in which it is performed. For example, the effect of toggling a switch will vary, depending on the
current position of a switch. As a result, it does not always make sense to ask what an action’s
effects are in the global situation, and so KM will ignore queries for the action’s pes/nes/add/del

14

lists if issued in the global situation. This ignoring happens because these four slots are internally
declared as ‘situation-specific’, meaning they only have meaningful values in non-global situations
(see Section 3.4). It is done to protect the user from possible problems with negation as failure,
which might arise if KM computed these lists in the global situation where the situation-specific
facts were absent.

In addition, these four slots are non-inertial fluents (i.e. KM does not project their values from
one situation to another), to ensure KM does not attempt to compute and combine the effects of
a single action instance in situations other than the one in which it is to be performed.

5.1.6 Ramifications

In general, an action may also have ramifications, i.e., ‘indirect’ effects as well as the ‘direct’ effects
described by the pes/nes/add/del lists. Ramifications are sometimes called “state constraints”
also in the literature. For example, switching a switch on may have the direct effect of the switch’s
position now being up, and the indirect effect (ramification) that a light comes on. What is a
direct effect and what is a ramification is a modeling decision, rather than an intrinsic property
of actions, determined by which effects the knowledge engineer explicitly listed on the action,
and which he/she left to be deduced from those explicit effects. This makes representing actions
much easier. In general, an action may have many indirect effects however, the add-1ist and
del-list only need to describe direct effects. Ramifications, if there are any, will be recomputed
by KM in the new situation from those direct effects (plus other persistent facts from the old
situation, discussed later in Section 6). Note that the semantics of actions with ramifications is
more complicated, as sometimes the resulting situation can have multiple, possible extensions (see
Section 11.3). Care is needed!

5.2 Relating Situations and Actions

In Situation Calculus, the situation resulting from doing action a in situation s is denoted by
the function do(a,s). In KM, we express this relationship differently using the predicate next-
situation(s, s', a), where s’ is the result of doing a in s (i.e., s’ = do(a, s)). As this is a non-binary
predicate, we use KM’s :args notation to denote this (see the KM User Manual). The inverse
slot of next-situation is prev-situation, and the “second inverse” (inverse2) for this ternary
predicate is before-situation, itself with inverse after—-situation. The semantics of this are
below, and illustrated in Figure 2:

Vs, s',a next-situation(s, s',a) < prev-situation(s’, s, a)
— before-situation(a, s,s') < after-situation(a, s', s)

These relationships are built-in, and the assertions are made automatically by KM after an action
is “performed” using KM’s do command (Section 5.3.2). If they were to be made manually,
however, they would look:
;57 “_Situation2 is the result of doing _Actionl in _Situationl.”
i35 next-situation(_Situationl, _Situation2, _Actionl)
KM> (_Situationl has
(next-situation ((:args _Situation2 _Actionl))))

;53 “What is the next situation (and the action which led to it) of Situation1?”

KM> (the next-situation of _Situationl)
((:args _Situation2 _Actionl))

15

Action

before—situation after—situation

before—situation—of after—situation—of

Situation next—situation Situation,

prev-situation

Figure 2: The relationship between situations and actions.

;55 “What situation was immediately before Actionl was performed?”
KM> (the before-situation of _Actionl)
((:args _Situationl _Situation2)) ; 1.e. ((:rargs <before-sitn> <after-stn>))

As described in the KM User Manual, there are some additional forms which can be used for ma-
nipulating ternary relations and :args structures. To recap these, (thel slot of...) retrieves
the second argument of a ternary relation (slot) given the first, (the2 slot of...) retrieves the
third argument given the first, and (the slot of...) retrieves both the second and third argu-
ments given the first, bundled into a (:args ...) structure. Similarly, (thel of (:args ...))
extracts the first element in an :args structure, and (the2 of (:args ...)) extracts the second.
Use of these is illustrated below:

;5 “What is the next situation of Situationl?”
KM> (thel next-situation of _Situationl)
(_Situation?2)

;5 “What action was performed in Situationl?”
KM> (the2 next-situation of _Situationl)

(_Actionl)

533 “Which situation followed from performing Actionl in Situation1?”

KM> (thel of ; Take first element of ...
(theoneof (the next-situation of _Situationl) ; the next-situation structure..
where ((the2 of It) = _Actionl))) ; whose second element is

(_Situation?2)

In the above example, we have just considered there to be a single next situation, resulting from
performing a single action _Actionl in _Situationl. However, KM will also allow multiple,
alternative next situations, resulting from performing different, alternative actions, thus allowing
alternative futures to be explored. We describe how this can be done later in Section 9.

5.3 The Semantics of Actions

5.3.1 Declarative Semantics

If &’ is the situation resulting from doing action a in situation s (i.e., next-situation(s, s’, a) is true),
then we can describe the semantics of actions as follows, quantifying over ground propositions p:

16

_Actioni

“All the preconditions will hold in situation s.”
Vs, s', p,a holds-in(pecs-list(a,p), s) A next-situation(s, s',a) — holds-in(p, s)

“All the negated preconditions will be false in situation s.”
Vs, s',p,a holds-in(ncs-list(a, p), s) A next-situation(s, s',a) — holds-in(—p, s)

“All the add effects will be true in situation s’.”
Vs, s', p,a holds-in(add-list(a,p), s) A next-situation(s,s’,a) — holds-in(p, s')

“All the delete effects will be false in situation s’.”
Vs, s', p,a holds-in(del-list(a,p), s) A next-situation(s, s',a) — holds-in(—p, s’)

5.3.2 Procedural Implementation

(do expr)
(do-and-next expr)

Procedurally, the user directs KM to compute these effects by executing the built-in command
(do expr) from within a situation (excluding the global situation), where expris a KM expression
evaluating to an action instance. This causes KM to build a new situation reflecting the result
of doing this action, and can be loosely thought of as ‘executing’ the action. More specifically,
(do expr) causes KM to:

1. create a new situation, which is the next-situation of the current situation.

2. e assert the preconditions in the action’s pcs-1ist in the current situation,

e assert constraints that the negated preconditions in the action’s ncs-1ist are not true
in the current situation (using (<> expr) constraint expressions, described in the User
Manual),

e ‘retract’ the propositions in the action’s del-1ist in the new situation, and

e asserts the propositions in the action’s add-1list in the new situation.

Note that KM asserts, rather than checks the truth of, the action preconditions, i.e., preconditions
are treated as assertions, not tests. Section 7 describes how preconditions can also be used as tests,
to see if an action is possible. This, of course, is only appropriate in the special case when the
KB has complete knowledge about action preconditions, i.e., when if a precondition is nprovable,
it can be assumed false.

The KM command (do-and-next expr) is similar to (do expr), except it additionally causes
KM to change to the new situation created.

Performing the null action (do-and-next nil) creates and changes to a new situation with
no changes, but still recorded as the next-situation of the original situation. For legibility, the
command (next-situation) simply does (i.e., is equivalent to) (do-and-next nil).

*Implemented by asserting the constraint that these facts do not hold the new situation, using (<> expr) con-
straint expressions. Note that KM does not literally delete (retract) these propositions, but instead these constraints
block their projection from the old to the new situation (thus appearing to delete them). This implementation is
thus quite different to many STRIPS-like planners.

17

5.4 Example: A Switch

The below represents the actions of Switching-0n and Switching-0£ff a switch (which can have
switch positions of either *Up or *Down):

5 - Switching-On

(Switching-0On has (superclasses (Action)))

557 “The effect of a Switching-On is that the switch’s position becomes Up.”

i35 Vs, 0 isa(s, Switching-On) A object(s, 0) —

033 pes-list(s,"position(<o>,*Down)") A

033 del-list(s,"position(<o>,*Down)") A

HH add-list(s,"position(<o>,*Up)")

(every Switching-On has
(object ((a Switch)))
(pcs-list ((:triple (the object of Self) position *Down)))
(del-list ((:triple (the object of Self) position *Down)))
(add-1ist ((:triple (the object of Self) position *Up))))

5 Switching-Off
(Switching-0ff has (superclasses (Action)))

; “The effect of a Switching-Off is that the switch position becomes Down.”

i Vs o isa(s, Switching-Of f) A object(s, 0) —

033 pes-list(s,"position(<o>,*Up)") A

033 del-list(s,"position(<o>,*Up)") A

033 add-list(s,"position(<o>,*Down)")

(every Switching-0ff has
(object ((a Switch)))
(pcs-1list ((:triple (the object of Self) position *Up)))
(del-list ((:triple (the object of Self) position *Up)))
(add-list ((:triple (the object of Self) position *Down))))

Let us now represent a simple the notion of a Switch itself, and a switch-controlled Light:

;53 “Switches are physical objects.”
i35 superclasses(Switch, Physobj)
(Switch has (superclasses (Physobj)))

i35 1sa(xUp, Switch-Position) A isa(xDown, Switch- Position)
(xUp has (instance-of (Switch-Position)))
(#*Down has (instance-of (Switch-Position)))

; “If the switch is up, then the light is bright; otherwise if it’s down the light is dark.”

55 Vl s isa(l, Light) —

55 (controlled-by(l, s) A position(s, xUp) — brightness(l, * Bright)

53 ; controlled-by(l, s) A position(s, * Down) — brightness(l,*Dark))%

(every Light has

(brightness ((if ((the position of (the controlled-by of Self)) = *Up)
then *Bright
else (if ((the position of (the controlled-by of Self)) = *Down)
then *Dark)))))

Swhere (X — Y ; Z) is a shorthand notation for (X — Y) A (not(X) — Z), where not() is negation by failure.

18

;57 “brightness is a ramification — don’t project it, recompute it for each new
;3; situation. In other words, it is a non-inertial fluent (see Section 6.2).”
(brightness has

(instance-of (Slot))

(fluent-status (*¥Fluent))) ; i.e. a non-inertial fluent
;33— Define a trivial Switch+Light circuit ———

555 1sa(xSwitchl, Switch)
(#Switchl has (instance-of (Switch)))

i35 isa(xLight1, Light) A controlled-by(x Light1, *Switch1)
(*Light1l has

(instance-of (Light))

(controlled-by (*xSwitchl)))

This defines a light (xLight1) controlled by a switch (¥*Switchl). We would now like KM to
reason about the effects of switching the switch up or down, including computing indirect effects
(ramifications, such as the resulting brightness of the light.

One piece of information is still missing before we can start — we must first define the initial
position of *Switchl. To do this, we create and enter a new situation (which we call the ‘initial
situation’). Note that we must not declare the initial switch position in the global situation, as
this implies the switch is always in this position and cannot be changed. (This follows as all facts
in the global situation are ‘visible’ to every other situation).

KM> (load-kb "light.km") ; File contains the above KB
KM> (new-situation)

(Changing to situation _Situation4)
(_Situation4)

; Create initial situation

;53 “In _Situationd, *Switchl is down.”
i35 holds-in(position(xSwitchl, *Down), Situation4)

[_Situation4] KM> (*Switchl has (position (*Down))) ; initial switch position
(*Switchl)

;57 “What is the brightness of *Light1 (in the current situation)?”

557 { b | holds-in(brightness(xLightl,b), _Situationd) }

[_Situation4] KM> (the brightness of *Lightl) ; Example of reasoning within
(*Dark) ; a situation.

;55 “Create an action of switching on *Switch1.”

555 Ja holds-in(isa(a, Switching-On), _Situationd) Aholds-in(object(a, *Switchl), _Situation4)
[_Situation4] KM> (a Switching-On with (object (*Switchl)))

(_Switching-0n7)

;57 “Compute the situation resulting from doing this action in the current situation.”
535 L(8)(next-situation(_Situationd, s, _Switching-OnT))7

[_Situation4] KM> (do-and-next _Switching-0n7) ; Do it!!

(Changing to situation _Situation8)

(_Situation8)

"Here using iota notation, where ¢(s)c(s) denotes the unique instance for which formula a(s) (containing free
variable s) is true. { ¢(s)a(s) } = { s | a(s) } when a(c) is true of just a single instance, and is an ill-formed
sentence otherwise. See [2, p47-48].

19

This last command to KM (do-and-next) causes a new situation to be created and entered. In
this new situation, the position of *Switchl is now *Up:

i35 “What is the position of *Switchl (in the new situation _Situation8)?”

555 { p | holds-in(position(xSwitchl, p), _Situation8) }

[_Situation8] KM> (the position of *Switchl)

(*Up) ; Note new switch position

;57 “What is the brightness of *Lightl (in the new situation _Situation8)?”

555 { b | holds-in(brightness(x Light1,b),_Situation8) }

[_Situation8] KM> (the brightness of *Lightl)

(*Bright) ; ...and its ramifications

Note that the direct effect of the Switching-0n action also has the indirect effect of causing the
light to become *Bright. KM computes these ramifications as appropriate; only the direct effects
need to be recorded in the action description itself.

Note also that knowledge of the old situation (_Situation4) is not lost — we can return to
_Situation4 to reason about it using the (in-situation ...) command:

;55 “What was the brightness of *Light1 in _Situation4?”

555 { b | holds-in(brightness(x Light1,b),_Situationd) }

[_Situation8] KM> (in-situation _Situation4 (the brightness of *Light1l))
(*Dark)

5.5 Example: Getting and Putting

In this second example, we represent the acts of adding and removing objects from a container.

(Getting has (superclasses (Action)))

;55 “Getting results in the object being no longer in (ie. contents of) the source.”
i35 [1] “Precondition: the object must be in the box before it can be got.”
i35 Vp isa(p, Getting) — Jo,b isa(o, Thing) A isa(b, Box) A object(p,0) A source(p,b) A
HH pes- l79t(p,"contents(<o>)") A
03 del-list(p,"contents (,<0>)")
(every Getting has
(object ((a Thing)))
(source ((a Box)))
(pcs-1list ((:triple (the source of Self) contents (the object of Self)))) ; [1]
(del-1list ((:triple (the source of Self) contents (the object of Self)))))

(Putting has (superclasses (Action)))

;55 “Putting results in the object being in (ie. contents of) the destination.”
i35 [1] “Negated precondition: the object mustn’t be in the box already!”
553 Vp isa(p, Putting) — Jo,b isa(o, Thing) A isa(b, Box) A object(p, o) A destination(p,b) A
555 nes-list(p,"contents (,<0>) ") A add-list(p," contents (,<0>) ")
(every Putting has
(object ((a Thing)))
(destination ((a Box)))
(ncs-list ((:triple (the destination of Self) contents (the object of Self)))) ; [1]
(add-1ist ((:triple (the destination of Self) contents (the object of Self)))))

20

The below illustrates these actions in use:

KM> (*#My-Box has (instance-of (Box))) ; Create a box...
KM> (*BlockA has (instance-of (Block))) ; and two blocks...
KM> (*¥BlockB has (instance-of (Block)))

KM> (new-situation) ; Enter a situation...
(_Situation194)

;53 “What happens (i.e., what situation results) if I put *BlockA in *My-Box?”

i35 ¢(8)(Ip holds-in(isa(p, Putting)Nobject(p, x Block A) Adestination(p, * My-Box), _Situation194) A

033 next-situation(_Situation194, s, p))

[_Situation194] KM> (do-and-next (a Putting with ; Put *BlockA in...
(object (*BlockA))
(destination (*My-Box))))

(Changing to situation _Situation198)

(_Situation198)

;55 “What is in *My-Box now?”

i3 { ¢ | holds-in(contents(xMy-Boz, c), _Situation198) }

[_Situation198] KM> (the contents of *My-Box)

(*BlockA) ; *BlockA there!

;57 “What happens (i.e., what situation results) if I now put *BlockB into *My-Box?”
i35 ¢(8)(Ip holds-in(isa(p, Putting)Nobject(p, x Block B)Adestination(p, * My- Box), _Situation198) A
HH next-situation(_Situation198, s, p))
[_Situation198] KM> (do-and-next (a Putting with ; Put *BlockB in...
(object (*BlockB))
(destination (*My-Box))))
(Changing to situation _Situation202)
(COMMENT: Projected *My-Box contents = (*BlockA) from _Situationl198 to _Situation202)
(_Situation202)

;55 “What is in *My-Box now?”

i3 { ¢ | holds-in(contents(xMy-Boz, ¢), -Situation202) }

[_Situation202] KM> (the contents of *My-Box)

(*BlockA *BlockB) ; Both blocks there!

;55 “Suppose I now take *BlockA out?”

i35 1(8)(Jg holds-in(isa(g, Getting) Nobject(g, * Block A) Adestination(g, * My- Box), _Situation202) A

H next-situation(_Situation198; s, g))

[_Situation202] KM> (do-and-next (a Getting with ; Take *BlockA out...
(object (*BlockA))
(source (*My-Box))))

(Changing to situation _Situation206)

(_Situation206)

;55 “What is in *My-Box now?”

555 { ¢ | holds-in(contents(xMy-Boz, ¢), _Situation206) }

[_Situation206] KM> (the contents of *My-Box)

(*BlockB) ; Just *BlockB left

21

;55 “Suppose I now take *BlockB out?”

[_Situation206] KM> (do-and-next (a Getting with ; Take *BlockB out
(object (*BlockB))
(source (*My-Box))))

(Changing to situation _Situation210)

(_Situation210)

;55 “What is in *My-Box now?”

ii; { ¢ | holds-in(contents(xMy-Bozx, ¢), _Situation210) }

[_Situation210] KM> (the contents of *My-Box)

NIL ; It’s empty again

Note that in one of the steps above (labelled with the COMMENT message), the contents of the box
were projected from one situation to another, reflecting the persistence of facts in the world in the
absence of evidence to the contrary. We now discuss the subject of temporal projection between
situations in more detail.

6 Temporal Projection

6.1 Overview

A key issue when reasoning about actions is how to deal with the “frame problem”, namely how
to formally state that, generally, things don’t change from one situation to another, i.e. they
persist. Substantial effort has been spent in Al understanding this issue. For an excellent, in-
depth discussion of the frame problem, see [1].

Axioms which express this persistence are sometimes referred to as frame axioms, and the
conclusion that a fact holds in situation s’ because it held in the previous situation s (and nothing
else affected it) is sometimes called the temporal projection of that fact from s to s’. KM’s
frame axioms are not explicitly represented, but instead built into its special-purpose machinery
for temporal projection. KM projects ground literals from one situation to another only if it is
consistent to do so, i.e., according to the schema using Reiter’s notation for normal default rules
(see [3] and [4, Section 6.6]):

“If holds-in(prop, s) is true, and holds-in(prop, s’) is consistent with what is already known,
then holds-in(prop, s’) is also true.”

holds=in(prop, s) A next-situation(s, s',a) : holds-in(prop, s")

V /
5.4 holds=in(prop,)
for all ground literals prop.

The implications of this axioms schema are computed as follows:

e For multivalued slots, all values from the previous situation will be projected from the
previous situation, and then unified (using the set unification operator &%) with any values
that slot may already have in the new situation — except for values which violate a constraint
on that slot (For example, the value *Fred will not be projected if the slot in the new
situation has the constraint (<> *Fred) on it; see the User Manual for details on stating
constraints).

e For single-valued slots, any value from the previous situation will be projected and unified
with any value that slot may already have in the new situation — unless that unification fails
(i.e. it cannot be consistently unified) or it violates a constraint on that slot.

22

Any KM expressions on slots are evaluated before being projected, i.e. only the instances resulting
from that evaluation are projected — the original expressions themselves are not. In other words,
only ground literals are projected; rules, constraints, paths etc. are not. Also, note that computing
projection is recursive: To find facts true in the previous situation, KM will look in the previous
situation to the previous situation etc.

A simple example of projection is shown in the last query below:

KM> (new-situation)

555 “Switchl is down.”
i35 holds-in(position(xSwitchl, *x Down), Situation142)
[_Situation142] KM> (#Switchl has (position (*Down)))

555 “Switchl is red.”
;33 holds-in(color(xSwitchl, xRed), _Situation142)
[_Situation142] KM> (*Switchl has (color (*Red)))

;55 “What situation results if I switch Switchl on?”
i35 0(s)(Fw isa(w, Switching-On) Aobject(w, xSwitchl) Anext-situation(-Situationl42, s, w))
[_Situation142] KM> (do-and-next
(a Switching-0On with (object (*Switchl))))
(Changing to situation _Situation145)
(_Situation145)

;55 “What color is the switch now?”

555 { ¢ | holds-in(color(xSwitchl, ¢), _Situation145) }

[_Situation145] KM> (the color of *Switchl)

(COMMENT: Projected *Switchl color = (*Red) from _Situationl42 to _Situation145)
*Red ; The switch is still red!

When tracing KM’s execution, KM by default displays that it is computing a slot’s value in
a previous situation, but not the details of that computation. To have KM show those details,
switch on “tracing in other situations” using the +S option at one of the trace points.

6.2 Controlling Projection: Inertial and Non-Inertial Fluents

As we discussed earlier in Section 3.3, projection is not appropriate for all slots. In particular,
ramifications (indirect effects of actions) should not be projected; rather, they should be recom-
puted from the (possibly projected) direct effects of actions in each new situation, in case some
of those direct effects no longer hold.

As Section 3.3 described, we can tell KM whether a slot’s values should be projectable or not by
setting its fluent-status to either *Inertial-Fluent (projectable), *Fluent (non-projectable,
but still varying between situations), and *Non-Fluent (values are the same in all situations).
Direct effects of actions should be *Inertial-Fluents, ramifications (indirect effects) should be
*Fluents, and slots whose values are constant should be *Non-Fluents. Values of non-fluent
slots are stored in the *Global situation, and thus always visible in all situations (so do not need
to be “projected”).

23

slot’s fluent-status Meaning

*xInertial-Fluent Use this for direct effects of actions (and direct effects in-
troduced by the user). Values will be projected from one
situation to the next, if consistent to do so.

*Fluent Use this for indirect effects (ramifications) of actions. Values
of this slot should be recomputed in each new situation.

*Non-Fluent Use this for slots whose values will not vary between
situations.

A slot’s fluent status is declared by setting its fluent-status attribute in the slot declaration:

;55 “Values for possible-actions should not be projected.”
KM> (possible-actions has

(instance-of (Slot))

(fluent-status (*Fluent)))

By default, all slots are *Inertial-Fluents. This default can be changed using the default-fluent-status
command, described earlier in Section 3.3.

Note that declaring slots for ramifications as *Inertial-Slots is not quite an error — rather,
it will cause KM to do extra work, and could lead to problems if the user has not declared all the
constraints on the KB. For example, if best-move in a chess game is a ramification (computable
from the direct piece positions), but we accidentally declare it as an *Inertial-Fluent rather
than a *Fluent, then KM will think the best-move for any position is the current best move
and all the projected, previous best moves from earlier situations in the game (i.e. there are
multiple best moves). We could fix this by constraining best-move to have only one value (by
declaring (best-move has (cardinality (N-to-1)))), but then KM will wonder if all these
different moves may be coreferential, and try and unify them together! We could add in further
constraints to avoid this unification succeeding (e.g. requiring the destination of a move to be
a unique square on the board), and then we will have the result we want: the unification will
fail, and thus the projection will not succeed. But this is a rather long-winded way of blocking
the projection that we could have avoided in the first place by simply declaring best-move as a
*Fluent (i.e., non-inertial fluent).

7 Testing the Preconditions of Actions

As described earlier in Section 5.3, the pcs-1ist slot of an action declares facts which are neces-
sarily true in the situation immediately preceding the performance of that action. Similarly, the
ncs-list declares those which are necessarily false. If our knowledge-base is designed to have
complete knowledge of these facts (i.e., so that failure to prove them implies they are false), then
we can also use the precondition list to test whether an action is indeed possible in a particular
situation. To do this, we can apply KM’s operators (all-true expr), and (some-true expr),
described earlier in Section 5.1.2, to the preconditions and negated preconditions of an actions, to
see if they hold. This can be conveniently done by creating something like an is-possible slot
on actions, which tests the preconditions and returns a non-nil value if they are all satisfied:

;37 “An action is possible if its preconditions are true, and its negated preconditions are false.”
KM> (every Action has
(is-possible (((all-true (the pcs-list of Self))
and (not (some-true (the ncs-list of Self)))))))

24

Before proceeding, however, there are two complications which we must take care of. First, as
is-possible is a ramification of the state of the world, its value should not be projected from
situation to situation, and instead recomputed afresh in each situation. To do this, we declare
it as a non-inertial fluent, by setting its fluent-status slot to *Fluent (also see Section 6.2).
Second, in general, the preconditions of an action may be situation-dependent (see Section 5.1.5),
and thus there may be no universally true preconditions, i.e., asking for the preconditions in the
global situation will return the empty set (). However, we do not want KM to therefore conclude,
in the global situation, that these (zero) preconditions are universally satisfied. To do this, KM
should avoid computing the value of is-possible in the global situation, to circumvent this
problem with negation as failure. We can do this by making this slot situation-specific (See
Section 3.4):

;57 “is—-possible is a non-inertial fluent, and has no meaningful global value.”
KM> (is-possible has

(instance-of (Slot))

(fluent-status (*Fluent))

(situation-specific (t)))

We can now combine this with the definitions of Getting and Putting from Section 5.5 earlier,
to compute which action(s) are actually doable in a particular situation:

;;; Define some initial objects
KM> (xMy-Box has (instance-of (Container)))

KM> (*¥BlockA has (instance-of (Block)))
KM> (*BlockB has (instance-of (Block)))
KM> (new-situation)

[_Situation29] KM> (the contents of *My-Box)
NIL ; *My-Box is initally empty

;;; “For all the potential actions I can do, which are actually possible?”
[_Situation29] KM>
(allof (:set (a Getting with (object (*BlockA)) (source (*My-Box)))
(a Getting with (object (*BlockB)) (source (*My-Box)))
(a Putting with (object (*BlockA)) (destination (*My-Box)))
(a Putting with (object (*BlockB)) (destination (*My-Box))))
where (the is-possible of It))
(_Putting32 _Putting33) ; Can put *BlockA or *BlockB in *My-Box

;53 Do the first put action, putting *BlockA in the box...
[_Situation29] KM> (do-and-next _Putting32)
(Changing to situation _Situation40)
(_Situation40)

;;; Check it’s there...
[_Situation40] KM> (the contents of *My_BOX)
(*BlockA)

;3; “Now which actions are possible?”
[_Situation40] KM> (allof (:set

25

(a Getting with
(a Getting with
(a Putting with
(a Putting with

where (the is-possible
(_Getting4l _Putting44)

(object (*BlockA)) (source (*¥My-Box)))
(object (*BlockB)) (source (*My-Box)))
(object (*BlockA)) (destination (xMy-Box)))
(object (*BlockB)) (destination (*My-Box))))
of It))

; Either you can get *BlockA out, or

; put *BlockB back in.

In this example, we have rather crudely enumerated all the potential actions which we want KM
to consider. We show later in Section 9 how this set can be computed automatically instead.

& Simulation

8.1 Introduction

The do-and-next command simulates the execution of a single action, and causes KM to move to
a new situation (representing the post-action state of the world). We can thus straightforwardly
simulate the execution of a plan, eg. (here) a sequence of actions, by repeatedly performing a
do-and-next operation. Note that (unlike a STRIPS planner) the intermediate situations during
execution are retained in the KB and are still accessible — we can thus ask questions about the
entire execution eg. “Did light 2 ever go on?”.

8.2 Example: An Electrical Circuit

Consider the simple representation of an electrical circuit fragment, shown in Figures 3 and 4. This
describes two lights connected to two switches, and the actions Switching-0n and Switching-0£ff.
Now, we can represent a Plan as a sequence of actions, for example the plan:

Turn
*Switchl
on

Turn
*Switch2

on

Turn
—— | *Switchl

off again

could be represented as below. (Here we assume KM will preserve action ordering. More generally,
something like a next-action slot should be used to relate actions in a sequence):

(*My-Plan has

(instance-of (Plan))

(subevents (

(a Switching-0On with (object (*Switchl))) ; step 1

(a Switching-0On with (object (*Switch2))) ; step 2

(a Switching-0ff with (object (*Switchl))) ; step 3
)))

We can execute the plan by manually stepping through each of the three action steps:

;;; Find the subevents in the plan...
KM> (the subevents of *My-Plan)
(_Switching-0n2 _Switching-0n3 _Switching-0ff4) ; The three steps

KM> (new-situation)

; Define initial situatiomn

[_Situationb] KM> (*Switchl has (position (*Down)))

26

*Switchl *Light1l

+__./_ i }‘_

*Switch2 *Lig\ht{

|#
i35 “*My-Circuit has two lights and two switches.”
(*My-Circuit has
(instance-of (Circuit))
(switches (*Switchl *Switch2))
(lights (#Lightl *Light2))
(parts ((the lights of Self) (the switches of Self))))

;55 “*Light1 is controlled by *Switch1.”
(*Light1 has
(instance-of (Light))
(controlled-by (*xSwitchl)))

;55 “*Light2 is controlled by *Switch2.”
(*Light2 has
(instance-of (Light))
(controlled-by (*xSwitch2)))

(xSwitchl has (instance-of (Switch)))
(*xSwitch2 has (instance-of (Switch)))

033 - Ramifications (non-inertial fluents) -

(illuminated-lights has (instance-of (Slot)) (fluent-status (*Fluent)))
(brightness has (instance-of (Slot)) (fluent-status (*Fluent)))
(is-possible has (instance-of (Slot)) (fluent-status (*Fluent)))
(possible-actions has (instance-of (Slot)) (fluent-status (*Fluent)))
(applicable-actions has (instance-of (Slot)) (fluent-status (xFluent)))

;;; — Circuit
(Circuit has (superclasses (Physobj)))

;33 “The illuminated lights in a circuit are all those which are bright.”
(every Circuit has
(illuminated-lights (
(allof (the lights of Self)
where ((the brightness of It) = *Bright)))))

i35 “If & light’s switch is *Up, then the light is on (ie. is *Bright).”
(every Light has
(brightness ((if ((the position of (the controlled-by of Self)) = *Up)
then *Bright
else (if ((the position of (the controlled-by of Self)) = *Down)
then *Dark)))))

Figure 3: A simple representation of an electrical circuit (Part 1).

27

;;; — Define a test of preconditions for actions

(every Action has
(is-possible (((all-true (the pcs-list of Self))
and (not (some-true (the ncs-list of Self)))))))

35 - Switching-On, Switching-Off -

;53 Define Switching-On and Switching-Off actions...
(Switching-0On has (superclasses (Action)))

;55 “Switching-On causes the switch to move *Up. Can only do this if the
;;; switch position is initially *Down.”
(every Switching-On has
(object ((a Switch)))
(pcs-list ((:triple (the object of Self) position *Down)))
(del-list ((:triple (the object of Self) position *Down)))
(add-list ((:triple (the object of Self) position *Up))))

(Switching-0ff has (superclasses (Action)))

(every Switching-0ff has
(object ((a Switch)))
(pcs-list ((:triple (the object of Self) position *Up)))
(del-1list ((:triple (the object of Self) position *Up)))
(add-1ist ((:triple (the object of Self) position *Down))))

55— Switch ———
(Switch has (superclasses (Physobj)))

;3; Things you can potentially do to a switch: Switching-On and Switching-Off.
(every Switch has
(applicable-actions (
(a Switching-0ff with (object (Self)))
(a Switching-On with (object (Self))))))

;33— Physobj ———

;53 “The actions I can perform on a physical object are
i35 [1] those applicable actions which are also possible
i35 [2] (recursively) the actions I can perform on its parts.”
(every Physobj has
(possible-actions (
(allof (the applicable-actions of Self)

where (the is-possible of It)) ; [
(the possible-actions of (the parts of Self))))) i [2]
1y mem==== END =

Figure 4: A simple representation of an electrical circuit (Part 2).

28

[_Situation5] KM> (*Switch2 has (position (*Down)))

[_Situation5] KM> (do-and-next _Switching-0n2) ; Do step 1
(Changing to situation _Situation6)

[_Situation6] KM> (do-and-next _Switching-0n3) ; Do step 2
(Changing to situation _Situation7)

[_Situation7] KM> (do-and-next _Switching-0ff4) ; Do step 3
(Changing to situation _Situation8)

553 “Which lights are now on?”

555 { 1] holds-in(illuminated-lights(xMy-Clircuit,l), _Situation8) }

[_Situation8] KM> (the illuminated-lights of *My-Circuit) ; Result?
(*Light2) ; Just *Light2 on

More concisely, we can execute the plan with a single command using a forall expression:

KM> (new-situation) ; Define initial state
[_Situation237] KM> (*Switchl has (position (*Down)))

[_Situation237] KM> (*Switch2 has (position (*Down)))

;;; Now do all the subevents!

[_Situation237] KM> (forall (in-situation *Global (the subevents of *My-Plan))
(do-and-next It))

(Changing to situation _Situation239)

(Changing to situation _Situation241)

(Changing to situation _Situation243)

553 “Which lights are now on?”

i3 { U] holds-in(illuminated-lights(x My-Clircuit,l),_Situation8) }

[_Situation243] KM> (the illuminated-lights of *My-Circuit) ; Result?

(COMMENT: Projected *Switch2 position = (*Up) from _Situation241 to _Situation243)
(*Light2) ; Just *Light2 on

In this example, the forall expression iterates over the steps of the plan, executing each one in
order using the do-and-next command.

8.3 Quantifying Over Intermediate Situations

In addition to simulating the plan execution, we can quantify over the intermediate situations
that were created:

;3 “Are the switches ever both up at the same time?”
i35 (i.e., “Does there exist a Situation in which both *Switchl is *Up and *Switch2 is *Up?”)
i35 oneof ({ s | isa(s, Situation) A
033 holds-in(position(xSwitchl, *Up), s) A holds-in(position(xSwitch2, *Up), s) })
KM> (oneof (the all-instances of Situation)

where (in-situation It (((the position of *Switchl) *Up)

and ((the position of *Switch?2) *Up)))))

(COMMENT: Projected *Switch2 position = (*#Down) from _Situation237 to _Situation239)
(COMMENT: Projected *Switchl position = (*Up) from _Situation239 to _Situation241)
(_Situation241) ;35 Answer: Yes! (both are #Up in _Situation241)

29

Instead of explicitly listing the intermediate situations, we could ask KM to compute them, eg.:

;;; Define future-situations as the transitive closure of next-situation.
i35 Vs, 8’ isa(s, Situation) A next-situation(s, s’) — future-situations(s, s’)
553 Vs, 8’y 8" isa(s, Situation) Anext-situation(s, ')A future-situations(s, s”) — future-situations(s,s”)
KM> (every Situation has
(future-situations ((the next-situation of Self)
(the future-situations of (the next-situation of Self)))))

;3 “What are the future situations of Situation2377?”
55 { s | future-situations(_Situation237,s) }

KM> (the future-situations of _Situation237)
(_Situation239 _Situation241 _Situation243)

;53 “Are the switches ever both up at the same time?”

;;; (Here we just name the initial situation, _Situation237)

555 oneof ({ s | s € {_Situation237} U {s'| future-situations(_Situation237,s")}

S A holds-in(position(xSwitchl, «Up), s) A holds-in(position(xSwitch2, «Up), s) })
KM> (oneof (:set _Situation237 (the future-situations of _Situation237))

where (in-situation It (((the position of *Switchl) = *Up)
and ((the position of *Switch2) = *Up))))
(_Situation241) ;3 ; Answer: Yes!

9 Possible Worlds and Envisionments

9.1 Introduction

As well as simulating execution of a plan, which traces out a single chain of events in the world, we
can have KM explore possible, alternative events which could occur, and the alternative consequent
situations. As KM retains knowledge about these different situations, we can then ask questions
such as “Is it possible that X?” (ie. “For all possible future situations, does there exist one in
which X77), or “What outcome does X hope for by doing A?” (ie. “For all possible outcomes of
A, which one is most preferred by X7”). Answering these questions requires KM to construct and
reason about an envisionment of the world — namely a graph of possible future situations. This
is similar to the creation and use of envisionments in qualitative reasoning, except in this case
each situation is represented as a first-order logic (ie. KM) theory, rather than a set of parameter
values.

9.2 Creating Possible, Alternative Situations

To explore alternative situations which could arise from performing alternative actions in some
situation S, we can ask KM to try doing different actions from the same starting situation. These
alternative next situations are stored on the next-situation slot of the current situation frame,
with a different action associated with each (bundled as a (:args ...) structure, as described
earlier in Section 5.2). For example, continuing with the example circuit KB in Section 8, we
might ask KM to consider both actions possible from the initial state (namely switching *Light1
on, and switching *Light2 on):

KM> (new-situation) ; Define initial situation

[_Situation7] KM> (*Switchl has (position (*Down)))

30

_Situation8

“SwichLUp |
Situation7 *Switch2 Down |
[*Gwiten] PBown *Light1 Bright
| *Switchz Down o @@ |tigh2Dark |
| *Light1 Dark N
| *Light2 Dark
| *My-Circuit
possible—-acts:
| _Switching—0On246
_ Switching—On250 o
L= _Situation9
[“«Switch1 Down |

*Switch2 Up |
*Lightl Dark |
| *Light2 Bright |

—_——

Figure 5: Creating and exploring possible futures (see Section9.2).

[_Situation7] KM> (*Switch2 has (position (*Down)))

;55 “What possible things can I do from here?”

555 { a | holds-in(possible-actions(x My-Circuit, a), _Situation7) }
[_Situation7] KM> (the possible-actions of *My-Circuit)
(_Switching-0n246 _Switching-0n250)

;53 “Which situation(s) arise from doing these action(s)?”
i35 { 8| Ya holds-in(possible-actions(x My-Circuit, a), -Situation7) Anext-situation(-Situation?, s,a) }
[_Situation7] KM> (forall (the possible-actions of *My-Circuit)
(do It))
(Changing to situation _Situation8)
(Changing to situation _Situation7)
(Changing to situation _Situation9)
(Changing to situation _Situation7)
(_Situation8 _Situation9)

;;; Now note the multiple next situations, and actions which led to them,
;;; which were created. (See Section 5.2 for details).
[_Situation7] KM> (showme _Situation7) ; Note: Still in initial situation
(_Situation7 has
(next-situation ((:args _Situation8 _Switching-0n246)
(:args _Situation9 _Switching-0n250))))

Note above that using the do command, rather than do-and-next command, means that KM
doesn’t change to the new situation after performing the action. Thus each new situation is
created as an alternative future of the current situation. Had we used do-and-next instead, KM
would have created a single sequence of situations, corresponding to applying each action one
after the other. The situations created and their relationships are shown in Figure 5. We can now
query this simple one-step envisionment:

;3 “What are the possible futures of this situation?”

;;; (Note, thel extracts just the situation from the (:arg sitn action) bundle)
555 { s | Va next-situation(-Situation?, s, a) }

[_Situation7] KM> (thel next-situation of _Situation7)

31

(_Situation9 _Situation8)

;55 “Is *Light1 on in Situation8?”

i35 { b | holds-in(brightness(x Light1,b),_Situation8) }

[_Situation7] KM> (in-situation _Situation8 (the brightness of *Light1l))
(*Bright) ; (i.e., yes)

;55 “Is *Light1 on in Situation9?”

555 { b | holds-in(brightness(xLightl,b), _Situation9) }

[_Situation7] KM> (in-situation _Situation9 (the brightness of *Lightl))
(xDark) ; (i.e., no)

;55 “Is there a possible future in which *Light1 is *Bright?”
i3 oneof ({ s | Va next-situation(_Situation, s, a) Aholds-in(brightness(xLight1, * Bright), s) })
KM> (oneof (thel next-situation of _Situation7)

where (in-situation It ((the brightness of *Lightl) = *Bright))))
(_Situation8) ; Yes!

557 “What do I do to achieve it?” (i.e., “Which action created this situation?”)

i35, t(a)(Vs prev-situation(_Situation8, s,a))

KM> (the2 prev-situation of _Situation8)

(_Switching-0On1) ; Answer: Do _Switching-0Onl

535 “Which switch does Switching-Onl switch on?”

555 { o | holds-in(object(_Switching-Onl, o), _Situation7) }

KM> (in-situation _Situation7 (the object of _Switching-0n1))
(*Switchl)

In this example, a single command (annotated above as “What are the possible futures?”) issued
from the global situation caused KM to create the (one-step-deep) envisionment. We can then
quantify over those possible futures to see if *Light1 is ever *Bright. Again note this is beyond
the capabilities of a STRIPS-like reasoner in two ways: First we are quantifying over possible
futures, and second we are querying about indirect effects of actions (Switching-0n’s only direct
effect is to move the switch — inference is required to conclude that therefore the light will become
on).

10 Existence, and Actions which Create and Destroy

10.1 Introduction

Some actions (e.g., baking a cake) have the effect of creating or destroying entities. Modeling
these kinds of actions raises some perplexing issues concerning the nature of existence. What
does it mean to say something exists (or no longer exists)? In language, it seems we can talk
about non-existent objects (““My pet dragon”), objects which no longer exist (“Alan Turing was
a brilliant mathematician”), and objects which never quite existed (“The strike was averted”).
And, seemingly paradoxically, it seems we have to always assert the existence (3) of such non-
existent objects before we can say anything about them in logic.

There are several alternative philosophies about this (see Hirst’s paper [5] for an insightful
exposition and discussion of these), but for simplicity we describe just two, drawing heavily from
the Hirst paper. What sort of objects should we allow in our universe of discourse, i.e., what sort of
things should we allow the logical quantifier ‘3’ to quantify over? Or in KM terms, what instances

32

should actually allow the creation of? The first philosophy, called the Russell-Quine position, only
allows ‘real’ objects into this universe, such as houses and trees, but not dragons because they
don’t exist (although Russell and Quine would, we assume, allow the idea of dragons to exist).
Thus “dragons don’t exist” would be expressed as (say) =3z dragon(z). Their claim was that
natural language statements apparently about non-existent entities can always be reformulated in
a way which does not require their denotation (as, after all, they don’t exist). We can count how
many houses (dragons, etc.) there are in the world (which our theory describes) by counting how
many (non-coreferential) constants are in that theory with the property of interest.

The second philosophy is one which Hobbs refers to as “ontological promiscuity” [6], proposed
by various authors in different forms [5]. This approach allows ‘everything’ to be in the universe
of discourse, including unreal objects such as dragons, and then treats existence (in the colloquial
form) to be just another property of an object, denoted for example using a predicate (e.g.
exists(x)). This approach makes a clear distinction between logical existence (3) and common-
sense existence, the former simply meaning that we can talk about it and nothing more, while
the latter is a short-hand for a whole collection of properties (e.g. has mass, physical location).
So what are these properties? In fact, as Hirst shows [5], (common-sense) existence can mean
many different things depending on what we are talking about, and so he proposes an ontology
of different ‘existence predicates’ to capture these different nuances.

Our approach in KM follows this second philosophy®. In fact, when we start talking about
situations and changes with time (where objects can come and go from material existence), it is
difficult to see how to avoid denoting such objects in situations where they no longer exist (one
cannot “destroy a constant”). However, if we do admit non-existent objects into the universe, we
then need to annotate objects as to their existence status. One approach to this (as Hobbs took)
is to ascribe an existence property to every object, e.g. using a slot like existence-status with
values such as *Real, *Imaginary, etc. This seems workable, although also rather cumbersome
as we now need to check and propagate the existence status of objects through every action (e.g.
baking a cake: “If I have some flour, and the flour exists, and I have some eggs, and the eggs
exist, and.... then this will result in a cake, and the cake will exist, and the flour will no longer
exist, and the eggs will no longer exist, and”). It might be possible to reduce this problem
by expressing these constraints at a more general level (e.g. “Every physical action requires that
all its agents, patients, and instruments exist as real objects, as preconditions for that action to
occur.”). Also, when we ask “How many X’s are there?”, we need to be clear whether X includes
immaterial, hypothetical etc. objects, as well as material objects.

In fact, using an existence predicate (slot) can still lead to confusion. What exactly does it
mean to have an existence-status of *Real? Is Alan Turing no longer ‘real’ after he died?
We can still talk about him, and relate him to other objects (e.g., “Sue loves Alan Turing”).
“Going out of existence” seems to mean that some, but not all, propositions about an object
become false — and the choice of which those are seems to vary. If my house is destroyed it
ceases to have material properties, but still retains other properties (e.g., date of construction).
An alternative approach (which may be no better) is to avoid mentioning “existence” at all,
and instead, as for any other action, list the specific properties which become true/false after a
creation or destruction action is performed. This approach views ‘existing’ simply as a shorthand
for a whole collection of properties (e.g., physical location). Creating and destroying objects now
explicitly adds and deletes these properties for objects, just like any other property. A precondition

81n fact, as KM answers questions through the creation and reasoning about instances, we have already deviated
from the Russell-Quine position as these instances do not necessarily denote real-world objects. Rather, they are
hypothetical objects which KM is constructing in order to answer queries.

33

that an object ‘exists’ now becomes a precondition that it has the physical properties that we care
about (e.g., location). This approach avoids confusion about the many meanings of ‘existence’
by forcing us to be explicit, which itself requires making some modeling decisions (e.g. can
an imaginary object have mass? And if not, we must be careful not to make statements such as
(every Airplane has (mass (...))), where the class Airplane covers both real and imaginary
airplanes). Davis takes something like this approach in his theory of cutting [2], where he uses
the predicate material(z) (meaning “is physically material”), rather than exists(x), to be explicit
about what property the cutting is affecting.

10.2 Example: Baking a Cake

Below is a simple representation of baking a cake, which uses the slot material to denote whether
the object is physically material or not. It asserts that the ingredients are material before the
action (but the cake is not), and that the cake is material afterwards (but the ingredients are
not). Note that we can still refer to the ingredients and the cake in any situation, they just may
not be physically material in those situations.

i35 [1] preconditions: The ingredients must exist before the baking
i35 [2] negated preconditions: The cake mustn’t exist before the baking
i35 [3,4] effects: The material status of the objects change.
KM> (every Baking has
(agent ((a Persomn)))
(ingredients ((must-be-a Food)))

(result ((must-be-a Food))) ; (sometimes violated in practice... :-))
(pcs-1list ((forall (the ingredients of Self)

(:triple It is-material t)))) ; [1]

(ncs-list ((:triple (the result of Self) is-material t))) ; [2]

(add-list ((:triple (the result of Self) is-material t))) ; [3]
(del-list ((forall (the ingredients of Self)

(:triple It is-material t))))) ; [4]

KM> (Baking-A-Cake has (superclasses (Baking)))

KM> (every Baking-A-Cake has
(ingredients ((a Piece-0f-Flour) (a Piece-0f-Sugar) (a Piece-0f-Butter)
(a Egg) (a Egg)))
(result ((a Cake))))

KM> (*#Pete has (instance-of (Persomn)))
KM> (new-situation)

;;; Create a baking action...

[_Situation0] (a Baking-A-Cake with

(agent (*Pete)))

;53 Do the action...
[_Situation0] (do-and-next (the Baking-A-Cake))

;55 “Is the cake physically material now?”

[_Situationl] KM> (the is-material of (the result of (thelast Baking-A-Cake)))
(t)

34

;33 “Is the flour physically material now?”
[_Situationl] KM> (the is-material of

(the Piece-0f-Flour ingredients of (thelast Baking-A-Cake)))
NIL

;55 “Was the flour physically material before?”
[_Situationl] KM> (in-situation (the prev-situation of (curr-situation))
(the is-material of
(the Piece-0f-Flour ingredients of
(thelast Baking-A-Cake))))
(t)

Note that in the above example, the cake is visible in all situations, but has no physical properties
(e.g. being owned by someone, having a mass) until it has materialized in the oven.

10.3 Example: The Magician’s Rabbit

We now suggest an alternative approach, also worthy of consideration. In this approach, we
consider the class Thing to include everything (real, imaginary, to-be-real, was-real), while normal
classes like Rabbit only refer to physically material objects. Thus destroying a rabbit (say) is
modeled by removing it from the class Rabbit, although it (the symbol denoting the ex-rabbit) is
now just in the class Thing. Similarly, creating a rabbit creates an instance in class Rabbit in the
situation in which it was created, while prior to that the to-be-a-rabbit is merely in class Thing.
This is illustrated below, in which we model a (real) magician creating a rabbit out of thin air,
turning it into a dove, and then making it disappear again. Throughout the scenario, the symbol
*MyThing denotes the identity of this object, including before and after it materially exists.

KM> (new-situation)

;;; “Create a rabbit.” (Set *MyThing’s class to Rabbit).
[_SituationO] KM> (do-and-next
(a Create with
(created (*MyThing))
(will-be-a (Rabbit))
(add-1ist ((:triple (the created of Self)
instance-of
(the will-be-a of Self))))))
(COMMENT: Changing to situation _Situation2)
;53 “Now change it into a dove.” (Changing *MyThing’s class from Rabbit to Dove).
[_Situation2] KM> (do-and-next
(a Change with
(changed (*#MyThing))
(will-be-a (Dove))
(del-list ((:triple (the changed of Self) instance-of
(the instance-of of (the changed of Self)))))
(add-1list ((:triple (the changed of Self) instance-of
(the will-be-a of Self))))))
(COMMENT: Changing to situation _Situation4)

i35 “Now make it disappear again.” (Changing *MyThing’s class from Dove to Thing).

35

[_Situation4] KM> (do-and-next
(a Destroy with
(destroyed (*MyThing))
(del-list ((:triple (the destroyed of Self) instance-of
(the instance-of of (the destroyed of Self)))))))
(COMMENT: Changing to situation _Situation6)

;55 “Print out what *MyThing was in each situation in the sequence.”
[_Situation6] KM> (forall (the instances of Situation)
(km-format t "In “a, *MyThing was a ~a.”%"

It (in-situation It (the instance-of of *MyThing))))
In (_SituationO), *MyThing was a (Thing).
In (_Situation2), *MyThing was a (Rabbit).
In (_Situation4), *MyThing was a (Dove).
In (_Situation6), *MyThing was a (Thing).

The advantage of this approach is that it avoids repeatedly testing an existence status predicate,
as objects in subclasses of Thing are considered to materially exist already (i.e., class membership
tests implicitly test existence also). However, it does require the inference engine to tolerate
dynamically changing classes (which KM does). Further experimentation is needed to decide if
this approach is most suitable.

11 Some Limitations

11.1 Chronological Minimization

KM'’s projection algorithm implements what is referred to as “temporal minimization”; that is, it
assumes that things won’t change in the world until explicitly told otherwise (thus “minimizing”
the changes with respect to time). This assumption, however, is not always valid. Consider the
following “stolen car” scenario [1, p79]: I park my car, then I go and do some things, then I
come back and my car is gone (someone stole it). When was my car stolen? Using chronological
minimization, KM will project the location of my car (i.e., in the car park) through all the
situations until the one when I return and find my car missing, and thus it will conclude that my
car was stolen at just the moment before I returned, clearly too strong a conclusion. Lifschitz and
others have studied this problem and suggested an alternative set of assumptions for reasoning
about actions, based instead on “causal minimization” (minimize the unexplained changes in a
scenario, rather than the temporal changes), which offers a solution to this problem. Further
discussion about these approaches can be found in [1, Chapter 5].

11.2 Projection Back in Time

It is often valid to project information backwards in time, as well as forwards. For example, if
my cup is on the table, then I should be able to conclude that 10 minutes ago it was also on the
table (if I know that no intervening actions occurred which affected its location). KM’s projection
mechanism, however, does not currently project information back in time in this way, and thus
will miss such conclusions. If it were to do so, it would need some policy for handling cases where
forward-projected and backward-projected information conflicted (for example, as would happen
in the stolen car scenario in Section 11.1). Some formalisms for the event calculus (e.g. [7]) have
explored adding this capability.

36

11.3 Disjunctive Ramifications and Multiple Possible Extensions

We stated earlier (Section 5.1.6), that an action representation need only describe its ‘direct’
effects. Then, rules could be used to compute the ‘indirect’ effects (ramifications). While this
approach can greatly simplify describing actions, it can also introduce ambiguity as to what the
result of an action might be. For example, suppose a and b are true in situation Sp, then an
action is performed which makes a and b mutually exclusive in situation So: now there are two
equally valid, possible models for Sy, namely {a,—b} and {—a,b}. Which should be preferred?
As a concrete illustration, suppose Rachel (age 4) has dual nationalities of British and Swiss, but
then the “event” of her reaching the age of 18 occurs (when, let’s say, she must choose one of
these). The direct effect of the action is that her age becomes 18. But the ramification is now
that if her nationality is still British then she will also not be Swiss, and similarly if she is still
Swiss then she will also not be British. T'wo possible extensions of the new situation are possible.
This phenomenon only arises when actions have disjunctive (a V b) effects — and as KM does not
allow the direct effects of actions to be disjunctive, it only occurs in KM when ramifications are
involved (allowing an effect to have some disjunctive ramifications).

KM does not have special purpose machinery for handling this phenomenon, and will instead
make an arbitrary choice as to which extension it constructs, based on which literals are pro-
jected first (in turn determined by which questions are asked the system). In the above situation
where values become mutually inconsistent, KM may also project neither value, or (inconsistently)
both values, depending on how the rest of the KB is constructed and which queries are issued.
Disjunctive ramifications are probably best avoided!

11.4 Modeling Continuous Change

One inherent limitation of situation calculus is that it is not easy to model continuously changing
processes (e.g., filling a bath tub), although there has been some work looking at ways in which
this can be done (e.g., [8]). Of course, continuous change can always be shoe-horned into discrete
actions (e.g., the bath changes from ‘empty’ to ‘full’), but this loses some of the information that
we may care about, in particular those related to time (e.g., “How full is the bath at time t7”).
Continuous processes are probably better modeled using qualitative modeling (e.g., [9]), or the
event calculus (e.g., [1]), rather than situation calculus. For example the qualitative model might
be specified using KM (e.g. using slots such as Q+, Q-), and then an external qualitative simulator
would then reason with that model for answering questions. This approach was taken in the
TRIPEL system for the Botany Knowledge-Base project [10].

11.5 The Situation-Action Dichotomy

Traditional Situation Calculus forces the user to divide the world into “facts” and “actions”. This
division sometimes feels awkward, as in natural language we frequently treat an action as an
instantaneous event in one sentence, and then as an ongoing situation in another. For example,
“John flew from Boston to Seattle” suggests an action which deletes John being in Boston and
adds John being in Seattle, while “During the flight he slept” suggests a situation in which the
flying is on-going. Consider, which of the following are actions: flying, eating, growing, eating,
being? It seems clear that the answers are situation- and task-dependent.

There is a modified approach we can adopt to avoids this dichotomy, namely to also model the
situation during an action occurring. Situation Calculus normally ignores this “during-situation”,
only modeling the “before-situation” and “after-situation”. If we adopt this modified approach,

37

however, then we must also flag the (reified instances denoting) actions as “happening” in those
“during situations’, and then not happening in the situation when the action is finished. In this
way, the fact that an action is ongoing can be treated just like any other fact, and similarly every
other fact can be thought of as being a kind of “ongoing action”, e.g., “Sue loves John” is a
(probably rather long) during-situation of some wider event.

For example, “John flew from Boston to Seattle” now becomes an action which deletes that
John is in Boston (i.e. John is in Boston in the before-situation, but not after), and adds that
John is in Seattle (i.e. John is in Seattle in the after-situation, but not before), but also creates a
during-situation in which this flying action (_Flying231, say), has the value t for its is-ongoing
(say) slot (but not in the preceding or subsequent situations). KM can now reason about the
during-situation, including implications of flying being ongoing. We could also break down the
during-situation further into subsituations (Section 3), if we were interested in modeling different
parts of the flying activity (e.g., takeoff, cruising, landing).

This extended representation of actions would require a small extension to KM, in which a
new do command (e.g. do-with-during) was introduced which explicitly created this during-
situation. This has not been implemented yet but could be quite easily should there be sufficient
demand and interest.

References

[1] Murray Shanahan. Solving the Frame Problem. MIT Press, Apr 1997.
[2] Earnest Davis. Representations of Commonsense Knowledge. Kaufmann, CA, 1990.
[3] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132, 1980.

[4] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations for Artificial Intelligence.
Kaufmann, CA, 1987.

[5] Graeme Hirst. Existence assumptions in knowledge representation. Artificial Intelligence,
49:199-242, 1991.

[6] Jerry Hobbs. Ontological promiscuity. In Proc 23rd Meeting of the ACL, pages 61 69, NJ,
1985. ACL.

[7] R. A. Kowalski. Database updates in the event calculus. Journal of Logic Programming,
12:121-146.

[8] R. Reiter. Natural actions, concurrency and continuous time in the situation calculus. In
Proc Knowledge Representation ’96 (KR’96), pages 2—13, 1996.

[9] Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowl-
edge. MIT Press, Sept 1994.

[10] J. W. Rickel and B. W. Porter. Automated modeling of complex systems to answer prediction
questions. Artificial Intelligence, 1997.

38

Index

t(p)a(p), iota notation 19 fluent-status slot 7,23
"<p>", unquoting notation 13 fluent status, default 8,24
fluents, inertial 7,23
actions 12 fluents, non-inertial 7,23,24,25,27
actions, effects 12,16 fluents 7,23
actions, examples 18,20,26,34,35 (forall exprl [where expr0] expr2) 29,36
actions, indirect effects 15,23 frame problem 22,23
actions, ongoing 37
actions, preconditions 12,24 global KB 1
actions, semantics 16 *Global situation 1,5
add-list slot 12 global situation 1
add-1list slot, examples 18,20,28,34 (global-situation) 3
after-situation slot 15
(all-true expr) 13,24 *Inertial-Fluent, fluent status 7,23
(allof exprl where expr() 25,27 inertial fluents 7,23

inheritance, and situations 11

:args, keyword 16
iota notation 19

(assert expr) 14

assertions slot 11 (in-every-situation sitn-class expr) 11

(in-situation expr! [expr2]) 2,20
(is-true expr) 13,14,24

before-situation slot 15
blocking projection 23

causal minimization 36 (km-format t string [args]) 36

changing situations 2

) LT multiargument predicates 16
choronological minimization 36

closed-world assumption 8 N-ary predicates 16

complete slot 23 ncs-1ist slot 12,24

continuous change 37 ncs-1list slot, examples 20,34
creation, actions 32 negated preconditions, representing 12
(curr-situation) 3 negation as failure 8

(new-situation) 3
(next-situation) 17
next-situation slot 15
non-inertial fluents 23,24,25,27
*Non-Fluent, fluent status 7,23
null actions 17

debugging, projection 23
(default-fluent-status) 8,24
del-list slot 12

del-list slot, examples 18,20,28,34
destruction, actions 32

(do expr) 17,30

(do-and-next expr) 17 (oneof exprl where expr() 5
dragons 32 “ontological promiscuity” 33
envisionments 30 pcs-1list slot 12,24

event calculus 37 pcs-1list slot, examples 18,20,28,34
existence, representation of 32 persistence 22,23,36

extensions, multiple 37 plans, representing 26

possible worlds 30

*Fluent, fluent status 7,23,24,25,27 preconditions, representing 12,18,20,28,34,35

39

preconditions, testing 24
predicates, N-ary 16
prev-situation slot 15
printing frames 3

projection 22,23.37
projection, back in time 36
projection, blocking 23
projection, debugging 23
projection, tracing 23
propositions, representing 13

qualitative modeling 37

ramifications 15,23,27,37
reified expressions 13
Russell-Quine, existence 33

+/-8, tracing options 7,23
(save-kb filename) 4
(showme ezpr) 3
(showme-here expr) 4
simulation 26

Situation, class 1

situation classes 11

situation hierarchy 5
situation instances 9
situation-action dichotomy 37

situation-specific slot 8,9,25

situations 1
situations, entering 2

situations, quantifying over 4,29

situations, viewing 3
(some-true expr) 13,24

state constraints (ramifications) 15,23

stolen car problem 36
subsituations slot 5
supersituations 2
supersituations slot 2,5

supersituations, semantics 5

temporal projection 22,23

temporal projection, back in time 36

ternary predicates 16
(thel of expr) 16

(thel slot of expr) 16
(the2 of expr) 16

(the2 slot of expr) 16
TheSituation, keyword 11

(trace) 5

tracing 5,23

tracing, projection 23
(:triple expr expr expr) 13

unquoting 13
viewing frames 3

(write-kb) 4

