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1 Introduction

1.1 Overview

This manual describes KM, a powerful and mature frame-based knowledge representation lan-
guage. It is similar in spirit to KRL [1], and has some similarities with KL-ONE representation
languages such as LOOM [2] and CLASSIC [3]. Its early origins are from the Theo system [4], and
(an earlier version) was the basis for the Botany Knowledge Base project and other KB projects
at University of Texas at Austin [5, 6]. It is the reasoning engine used in Shaken, a knowledge
acquisition and reasoning system used for several projects including the Rapid Knowledge For-
mation (RKF) project [7], Vulcan’s Project Halo, and Project EPCA, and has also been used for
other projects within Boeing and the University of Texas at Austin. Over the years it has evolved
to handle a wide variety of representational phenomena, as described in this manual.

In addition to this Users Manual, there is also a Situations Manual [8] describing KM’s ad-
vanced (but optional) capability for reasoning about different situations, the (Lisp) KM imple-
mentation itself, a PowerPoint tutorial, and the example KBs for these manuals, all available
at

http://www.cs.utexas.edu/users/mfkb/km

Users are also advised to check the KM release notes at this Web address for any updates to KM
which go beyond the information described in this manual.

KM is unusual because it continues to work with a frame-based syntax and organization of
knowledge. In the 1970’s, frame-based representation languages were popular, but many were
abandoned in favor of conventional logic syntax because their semantics were imprecise and be-
cause they were not expressive enough. In contrast, KM has stayed with the frame-based syntax,
and has been extended in multiple ways to accommodate many of the expressiveness requirements
that real-world knowledge representation makes, while making sure that its logical semantics re-
main clearly defined. The result is a logic-based language with an unusual but expressive and,
once learned, intuitive syntax for representing and reasoning about the world.

1.2 Features of KM

Before describing the language in detail, we briefly summarize some of the its important features
and design goals:

Inference-capable: Perhaps most importantly, KM has been designed to be inference-capable,
that is to not only represent but also reason with a wide variety of representational forms.
Many of the representational features in the language, in particular using frames and access
paths, have been chosen with this in mind.

Expressive: As reflected by this manual, KM is highly expressive, and includes support for many
fundamental representational phenomena including existential and universal quantification
patterns, contexts, defined classes, constraints, intensional representations, situations, and
metaclasses.

Formal Semantics: Statements in KM have straightforward and well-defined semantics in (mostly)
first-order logic, as described throughout this Manual.

Set-Oriented Evaluation: A technically innovative feature of KM is that it deals with value
sets, rather than individual values, when finding “the value of a slot” (ie. values for a binary
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predicate’s second argument, given its first). This enables coreferences between statements
at different levels of abstraction to be correctly determined (Section 10). For example, if
an airplane has two wings, and a 747 airplane has two large wings, KM will heuristically
conclude these two wing sets are coreferential, and thus the 747 has two (not four) wings.
In contrast, languages such as Prolog which perform “tuple-oriented evaluation”, i.e., would
‘compute’ (ie. search for values for) the wings of a 747 on a value by value basis, often
struggle with identifying such coreferences.

Explanations: KM includes a mechanism for producing English-like justifications for its conclu-
sions, using the proof tree supporting those conclusions.

Lazy Unification: To manage the inherent intractability of first-order logic when unifying coref-
erential instances together, KM performs “lazy unification”, meaning it delays computing
details of the unified instance until those details are required by some future computation.

Reasoning for Situations: In addition to the features described in this manual, KM supports
representation and reasoning about situations, where a situation can be thought of as a
“snapshot” of the world at a particular moment of time, implemented as a separate partition
of the knowledge-base which inherits from the main knowledge-base. This capability is
an inference-capable implementation of situation calculus, and allows KM to reason about
actions and dynamic worlds. It is described described separately in the Situations Manual
[8].

Mature: KM has evolved and been used over a long period, and thus it is a relatively mature
language, including support for tracing and debugging, and user documentation.

Free: KM is available, including the source code, under the GNU Lesser General Public License
(but without warranty). To see a copy of the license, type (license) at the KM or Lisp
prompt. Further information on the GNU LGPL is also available at http://www.gnu.org/
copyleft/lesser.html.

The reader should also note that (like all expressive knowledge representation languages) KM’s
inference is not logically complete. A discussion of the areas of inferential incompleteness is given
in Section 30.

KM is implemented in Common Lisp, and has been tested under Allegro Lisp, (available on
both Sun and PC platforms), Harlequin Lisp, and Mac CommonLisp (for the Apple Macintosh).

KM runs under Allegro (ANSI) Common Lisp (alisp), but not under the case-sensitive
Allegro Modern Lisp (mlisp). KM does not run under some versions of GNU Lisp due to a GNU
implementation bug, in which the function readtable-case is not visible in the user package as
required by the ANSI Lisp standard.

1.3 Representation and Reasoning in KM

Syntactically, the basic representational unit in KM is a frame, which contains slots and values,
for example as shown in Figure 1. Values may be atomic, or may be expressions which refer to
other frames. Semantically, a frame encodes a set of Horn-clause axioms in order-sorted logic,
where frames are sorts (types,classes) or instances, slots are binary relations, and values are the
bodies of the Horn-clauses, describing how to compute values for the relation’s second argument
given the first. A frame can be thought of as a convenient grouping of axioms sharing the same
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type restriction for their head predicates’ first argument (very loosely, grouping all those axioms
“about” a concept).

To access information in the knowledge base (KB), the user (or an application system) issues
a query to the KB – this may be a request for the value of a slot, or may be a more sophisticated
expression. A query interpreter answers the query by evaluating the query expression, to find
which value(s) the expression refers to. If those value(s) found are themselves expressions, they
in turn are evaluated etc. In this way, the query interpreter performs inference. The language for
slot-value expressions and the language for queries are the same, and is described in this document.

Questions are typically posed and answered in terms of instances. For example, the query
“what is the weight of a car?” will be answered by first creating an instance of a car, and then
computing the filler(s) of its “weight” slot. If the filler is atomic (an instance, number, or string)
then it is returned. If it is an expression (for example, informally, “the weight of the engine + the
weight of the body”), then it is (recursively) evaluated and the result returned. As these instances
are ‘anonymous’ (ie. here do not refer to any specific car, but instead could be any car), any
conclusions will thus apply to all instances with the same description. In this example, if the car’s
weight was computed as 1 ton, then it follow that (according to the KB) all instances of car will
have this weight.

The set of instances created during query answering is a (partial) model of the KB plus query;
as KM’s reasoning is deductive, anything true in this model will be true of all models of the KB
plus query. This form of inferencing is similar to tableaux inference methods, using deterministic
construction rules only [9].

1.4 KM’s Syntax

A KM knowledge base consists of a set of axioms in typed, (mainly) first-order logic. However
for comprehensibility KM does not use a standard FOL notation (eg. KIF), and instead uses its
own syntax described in this manual (and as illustrated in Figure 1). This is intended to make
the knowledge base more natural to author, and more comprehensible. In addition, the overall
organization of knowledge into a frame hierarchy provides important indexing properties, making
inference focused and efficient. Although the syntax here may appear unusual, it is extremely
similar to that used in the earlier AI frame language KRL [1], and also has some similarities
to other KL-ONE-style languages, suggesting a certain naturalness to this way of expressing
knowledge. In addition, it is important to remember that the language is “syntactic sugar” for,
rather than a replacement of, first-order logic. A KM knowledge-base could be automatically
translated into a more standard notation (eg. KIF).

A disadvantage of using a non-standard syntax is that particular care is needed to ensure
that the semantics of expressions are clear and well-understood. In fact, at several points during
KM’s history we carefully considered changing to a more standard syntax (eg. KIF), to remove
possible confusions as to what the KM notation meant. However, the penalty in cumbersomeness
was often severe, and so we have instead continued with the notation presented here. Figure 1
shows a KM frame and its equivalent in a more standard notation, to illustrate the difference in
comprehensibility for one example.

2 Getting Started

2.1 Loading and Compiling KM

To start the Lisp KM interpreter, start Lisp and then load the km.lisp file:
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—————————————-

“All buy events have

• a buyer and a seller (both of type agent)
• an object which is bought
• some money equal to the cost of the object
• two ‘give’ subevents, in which:

1. The buyer gives the money to the seller
2. The seller gives the object to the buyer.”

(a) English

(every Buy has

(buyer ((a Agent)))

(object ((a Thing)))

(seller ((a Agent)))

(money ((the cost of (the object of Self))))

(subevent1 ((a Give with

(agent ((the buyer of Self)))

(object ((the money of Self)))

(rcpt ((the seller of Self))))))

(subevent2 ((a Give with

(agent ((the seller of Self)))

(object ((the object of Self)))

(rcpt ((the buyer of Self)))))))

(b) Axiomatization (KM syntax)

(forall (?b) (exists (?a) (=> (isa ?b Buy) (and (buyer ?b ?a) (isa ?a Agent)))))

(forall (?b) (exists (?a) (=> (isa ?b Buy) (and (object ?b ?a) (isa ?a Thing)))))

(forall (?b) (exists (?a) (=> (isa ?b Buy) (and (seller ?b ?a) (isa ?a Agent)))))

(forall (?b ?o ?a) (=> (and (isa ?b Buy) (object ?b ?o) (cost ?o ?m)) (money ?b ?m))))

(forall (?b) (exists (?e) (=> (isa ?b Buy) (and (subevent1 ?b ?e) (isa ?e Give)))))

(forall (?b ?e ?a) (=> (and (isa ?b Buy) (subevent1 ?b ?e) (buyer ?b ?a)) (agent ?e ?a))))

(forall (?b ?e ?m) (=> (and (isa ?b Buy) (subevent1 ?b ?e) (money ?b ?m)) (object ?e ?m))))

(forall (?b ?e ?a) (=> (and (isa ?b Buy) (subevent1 ?b ?e) (seller ?b ?a)) (rcpt ?e ?a))))

(forall (?b) (exists (?e) (=> (isa ?b Buy) (and (subevent2 ?b ?e) (isa ?e Give)))))

(forall (?b ?e ?a) (=> (and (isa ?b Buy) (subevent2 ?b ?e) (seller ?b ?a)) (agent ?e ?a))))

(forall (?b ?e ?m) (=> (and (isa ?b Buy) (subevent2 ?b ?e) (object ?b ?m)) (object ?e ?m))))

(forall (?b ?e ?a) (=> (and (isa ?b Buy) (subevent2 ?b ?e) (buyer ?b ?a)) (rcpt ?e ?a))))

(c) Axiomatization (KIF syntax)
—————————————-

Figure 1: An example of KM syntax, and it’s equivalent in KIF syntax.
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% lisp ; or however you start Lisp
> (load "~/lisp/km") ; or wherever KM is located
>

Note that KM will run considerably faster if compiled. To compile the source, do as a one-time
action:

% lisp
> (load "km.lisp") ; <== you *MUST* do this before compiling!
> (compile-file "km.lisp")
> (load "km")

Before compiling you must first load km.lisp, so that the dispatch macro #$ (defined in
km.lisp) is recognized by Lisp during compilation.

Queries are issued to the knowledge-base from a query prompt. The query interpreter performs
a read-eval-print loop when processing queries. To get to the query prompt, type

> (km)
KM>

where “KM>” is the query prompt, and from here you can issue queries:

KM> (a Car) ; create an instance of a car
(_Car1)

To exit from the query prompt, type ‘q’:

KM> q
>

To exit from Lisp, type (quit):

CL-USER> (quit)
%

If for some reason an error occurs and a Lisp debugging prompt appears, you can return to the
top level Lisp by typing :A (in Harlequin Lisp) or CTRL-D (in Allegro Lisp):

CL-USER> (/ 1 0)
>>Error: Attempt to divide by zero: (/ 1 0).
:A 0: Abort to Lisp Top Level
-> :A
CL-USER>

Finally, note KM is case-sensitive, thus parent and Parent, say, are considered different when
entered at the KM prompt.

5



2.2 Authoring and Loading KBs

A knowledge-base can either be entered frame by frame at the KM> query prompt, or loaded from
a file. (Loading a file is equivalent to typing the contents manually at the KM> prompt). When
authoring in a file, you will need an editor (eg. emacs) open to enter the KB, and a shell running
the Lisp KM interpreter to perform inference over the KB. A convenient approach is to start
emacs, then split the screen so one buffer is running a Unix shell1, and the other is editing a text
file, which will contain the KB.

The command (load-kb "filename") loads a KB file, and adds the file’s contents to the
existing KB in memory (thus a KB can be split over multiple files). The command (reset-kb)
deletes the current KB in memory. The command (reload-kb "filename") does a (reset-kb)
followed by a (load-kb "filename"). Further documentation on incremental loading of KBs is
given later in Section 27.1.

Example KBs including those in this user manual are contained, in a concatenated form, in
the file test-suite.km, available with the KM source and these manuals. This file gives many
examples of KM in use.

load-kb has a ‘verbose’ option allowing you to view the processing of the commands in a file,
and can be used as is illustrated below:

KM> (load-kb "myfile.km" :verbose t)

Note that a KB file can thus contain a test set of queries, as well as KB assertions, or both
together. This is useful if you wish to maintain and regularly execute a suite of test queries for
testing a KB under construction.

2.3 Comments

Comments can be added to a KB file using the normal Lisp notation for comments:

#| Hash-bar delimeters denote multi-line comments,
as is illustrated here. |#

(Car has ; one or more semicolons denote
(superclasses (Vehicle))) ; a comment on a single line

3 Instances and Classes

3.1 Introduction

Just as in the object-oriented paradigm, there are two fundamental types of concepts in KM:
instances (individuals) and classes (types of individuals). A class has an associated collection (its
extension, namely individuals in that class), but is distinct from that collection (two concepts, eg.
“unicorns” and “dragons”, may have the same extension but be different concepts). Properties of
members of a class are described by expressions of the form:

(every <class> has
(<slot1> (<expr11> <expr12> ...))
(<slot2> (<expr21> <expr22> ...))
... )

1To start a shell, type ESC-x shell in emacs.
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where class is the name of the class of interest, and the sloti are binary relations which may hold
between instances of class and other instances. The exprij are KM expressions which evaluate to
zero or more instances. They can be viewed as functions, parameterized by the instance of class
being queried, mapping an instance of class to a set of values. The sloti relation is deemed to
hold between all instances of class and the value(s) that exprij returns, as shown by this axiom
schema for some class:

∀x isa(x, class)→ ∀y ∈ exprij(x) sloti(x, y)

where exprij(x) is a function which computes the value of <exprij> for some instance x of class.
Properties of instances are described in a similar way, but omitting the every keyword:

(<instance> has
(instance-of (<class1> ... <classn>))
(<slot1> (<expr11> <expr12> ...))
(<slot2> (<expr21> <expr22> ...))
... )

Here, the sloti relation is deemed to hold between instance and the value(s) that exprij returns:

∀y ∈ exprij(I) sloti(I, y)

where exprij(I) is a function which computes the value of <exprij> for I.
Properties of a class itself (rather than its members) use the same syntax as for instances, as

these properties treat the class itself as an instance (of the metaclass Class). These properties
do not apply to the classes’ members (operationally speaking, they can be thought of as ‘non-
inheriting’ properties). The most important such properties are subclasses and superclasses.
Other examples include cardinality, average-age, etc. The general form of such expressions is:

(<class> has
(superclasses (<superclass1> ... <superclassN>))

(<slot1> (<expr11> <expr12> ...))
(<slot2> (<expr21> <expr22> ...))
... )

where the <superclassi> are the direct superclasses of <class>. Thus a class (eg. Car) will typ-
ically use two frames to describe it, one describing its properties, and one describing its members’
properties, eg:

;;; “Cars are vehicles.”
;;; superclasses(Car, V ehicle) ∧ terms(Car,"car") ∧ terms(Car,"vehicle")
(Car has ; properties of the class
(superclasses (Vehicle))
(terms ("car" "automobile"))) ; ie. words of phrases used to denote cars

;;; “Every car has four wheels.”
;;; ∀c isa(c, Car)→ wheels(c, 4)
(every Car has ; properties of the class’s instances
(wheels (4)))

This contrasts with the predecessor of KM (Theo [4]) where all slots were placed on a single frame,
and then were flagged as “member” slots (properties of its instances) or “owns” slots (properties
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of the class itself). Although having two frames per class is syntactically a bit more cumbersome,
it is semantically much cleaner, simplifying the inference engine and some notational conventions.
In addition, meta-classes can now be used if desired (Section 29.12).

If no superclasses are specified for a class, then the most general class Thing is assumed. The
inverse subclasses links do not need to be explicitly declared in a KB, and are automatically in-
stalled for all superclasses links encountered. The KM function function (install-all-subclasses)
will recompute subclass links, removing redundancies and adding links from Thing as appropriate.

Whether a concept should be an instance or a class is a modeling decision, depending on which
objects are to be considered identical in the representation. For example, we might state a car’s
color is the instance Red (thus modeling it as having the same color as all other objects of color
Red), or alternatively state the car’s color is an instance of the class Red. In the former case, KM
will consider “two red cars” to have the same color (Red), in the latter KM will consider them
to have two different colors (eg. Red12 and Red13), eg. subtly different shades. KM’s notation
allows it to tell whether Red is being used as an instance or a class; of course, the user must be
consistent, and not use the same symbol Red to mean an instance in one place and a class in
another.

3.2 Example

In a new text file (which will be a new knowledge base), type the following frames below:

;;; “Cars are vehicles”
;;; superclasses(Car, V ehicle)
(Car has (superclasses (Vehicle)))

;;; “Cars have four wheels, an engine, and a chassis”
;;; ∀c isa(c, Car)→ wheel-count(c, 4)
;;; ∀c isa(c, Car)→ ∃e, ch isa(e,Engine) ∧ isa(ch, Chassis) ∧ parts(c, e) ∧ parts(c, ch)
(every Car has
(wheel-count (4))
(parts ((a Engine) (a Chassis))))

The expression (a Engine) denotes that there exists an instance of engine for each car.
Save the text file (eg. as file demo.km), then load it into the KM environment using the load-kb

command:

KM> (load-kb "demo.km")

We can now issue queries to this (tiny) KB. For example, we can “create” (assert the existence
of) a car using the expression (a Car), and ask for the value(s) of that car’s slot using a query of
the following form:

(the <slot> of <expr>)

For example:

;;; “There is a car.”
;;; ∃c isa(c, Car)
KM> (a Car)
(_Car0)
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;;; “What are the parts of that car?”
;;; ANS = { x | parts( Car0, x) }
KM> (the parts of _Car0)
(_Engine2 _Chassis3)

where ANS denotes the answer to the query (formally, ANS is a function mapping the query +
current state of the KB to an answer, typically a set of instances). As can be seen, queries are al-
ways asked and answered in terms of instances. The expression (a Car) asserts that ∃c isa(c, Car)
and, when evaluated, causes a Skolem constant denoting that that car instance to be created. KM
creates a frame for that instance, and places it as an instance of the class Car in the taxonomy.
The KM interpreter thus behaves as follows when answering the query (the parts of (a Car)):

1. an instance of car is created ( Car0, say)
2. The expressions on the parts slot on Car0 are found and evaluated. In this case, Car0

inherits the expressions (a Engine) (a Chassis), denoting instances of an engine and a
chassis. Evaluation of these expressions causes Skolem constants to be generated to denote
these instances (eg. Engine2, Chassis3).

More generally, <expr> can be any KM expression, for example we can ask:

;;; “What are the parts of a car?”
;;; ∃c isa(c, Car) ∧ ANS = { x | parts(c, x) }
KM> (the parts of (a Car))
(_Engine7 _Chassis8)

where again ANS denotes the answer to the query (ie. is a function from query + KB to an
answer). In this case, the expression contains both an assertional and query component to it. In
future in this manual, we will abbreviate ANS = {. . .} to be simply {. . .} when the query contains
no assertional parts, for ease of reading.

3.3 Inheritance

The previous example illustrates inheritance in KM, namely the process of an instance acquiring
information from the class(es) to which it belongs. In this example, the instance ( Car0) inherited
information fron a single class (Car). More generally, an instance will inherit information from
all the classes to which it belongs, namely the instance’s immediate classes, and (recursively)
all those classes’ superclasses. (KM supports multiple inheritance, i.e., an instance may be in
multiple classes, and a class may have multiple superclasses). When there are multiple, inherited
expressions, KM evaluates them and then combines the results together through a process called
unification. This is described in Section 10.

3.4 Naming Conventions

To clearly distinguish classes, instances, and slots, it is useful to follow some (optional) naming
conventions when writing a KB, such as:

classes begin with an upper-case letter, eg. Car
slots begin with a lower-case letter, eg. parts
instances begin with a * prefix, *Pete
anonymous instances begin with a prefix, eg. Car21
variables begin with a ? prefix, eg. ?x, ?car
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Anonymous instances (Skolem individuals) are generated by KM at run-time to denote existen-
tially quantified objects. They differ from named instances in that they are not subject to the
unique names assumption, ie. they can be unified together (Section 10). We follow these conven-
tions below, though they are (except for the last two) optional. If you’d prefer to use a different
convention for instances (eg. use a different prefix, producing $Pete, %Pete, say), or no convention
for visually identifying instances (ie. just Pete), then KM will still work fine (KM distinguishes in-
stances from classes by surrounding syntax, eg. (a Pete) vs. Pete), although it is recommended
to distinguish instances in some way to remind the KB author whether (say) Red was intended to
denote an instance or a class, and thus ensure the symbol is used consistently.

To use frame names with other special symbols in (namely most other non-alphanumeric
characters, such as a space, comma, parenthesis), the frame name needs to be surrounded with
vertical bars, e.g.

KM> (|My car| has ; frame name includes a space character
(color (*Blue)))

(|My car|)

3.5 KM’s Printing of Anonymous Instance Names

During reasoning, KM may create anonymous (Skolem) instances, denoting some anonymous
member of a class. Although the name of such an instance is arbitrary, KM tries to generate
a meaningful name using the class which that instance belongs to. For example, an anonymous
instance of the class Car may be called Car23. Thus, in general, the name of a Skolem instance
gives a clue as to the class it belongs to. Note, though, that there is no requirement that the name
reflect the class, and in some cases the Skolem name may be misleading as to its immediate class.
To reduce confusion, in cases where the instance’s name does not reflect its most specific class, or
where the instance has multiple most specific classes, KM will print out a comment next to the
instance’s name listing its class(es). To actually request the name of the instance’s classes, use
one of the synonymous KM commands:

(the classes of instance)
(the instance-of of instance)

For example:
KM> (_MyCar has

(instance-of (Jaguar)))
(_MyCar #|Jaguar|#) ; class of _MyCar listed in comment

KM> (the classes of _MyCar)
(Jaguar)

Note #|Jaguar|# is merely a comment in KM’s printed output, and not part of the answer itself.
The printing of these comments can be disabled by doing at the Lisp or KM prompt:

KM> (SETQ *ADD-COMMENTS-TO-NAMES* NIL)

3.6 Viewing Frames

To view a frame, the following commands are used:
(showme <instance>) ; display <instance>
(showme (thelast <class>)) ; display the most recent instance of <class>
(showme <class>) ; display <class>
(showme <expr>) ; display the instance(s) which <expr> refers to
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For example:

KM> (showme _Car0) ; refers to _Car0
(_Car0 has

(instance-of (Car))
(parts (_Engine1 _Chassis2)))

KM> (showme (thelast Car)) ; refers to the most recent instance of Car (= _Car0)
(_Car0 has

(instance-of (Car))
(parts (_Engine1 _Chassis2)))

KM> (showme Car) ; refers to the class Car
(Car has

(superclasses (Vehicle))
(instances (_Car0)))

(every Car has
(wheel-count (4))
(parts ((a Engine) (a Chassis))))

Note that Car0 does not have a known wheel-count. KM only computes the values of slots on
demand, and because we haven’t issued a query asking for the wheel-count of Car0, it is thus
not recorded on the Car0 frame. Asking for this slot value would cause the expression ‘4’ to be
inherited from the Car frame, evaluated (‘4’ evaluates to itself), and the result added to the Car0
frame.

While (showme expr) shows just local information on a frame, the command (showme-all expr)
shows (but does not evaluate) local and inherited information for that frame:

KM> (a Car)
(_Car4)

KM> (showme _Car4)
(_Car4 has
(instance-of (Car)))

KM> (showme-all _Car4)
(_Car4 has
(instance-of (Car))
(parts ((a Engine) (a Chassis)))
(wheel-count (4)))

4 Slots

4.1 Overview

Slots denote binary2 relations between instances, and are themselves treated as instances of the
built-in class Slot. They do not have to be explicitly declared, unless they require some non-
default property (eg. a non-default cardinality), or the user wishes more rigorous knowledge-base
checking (Section 6.7 and 6.8).

Slots are declared using the usual frame structure for instances, for example:
2KM also supports use of N-ary slots, described later in Section 29.1

11



(parts has
(instance-of (Slot))
(domain (Physobj))
(range (Physobj))
(cardinality (1-to-N)) ; ie. an object can have many parts, but any part is
(inverse (part-of)) ; part of at most one object
(subslots (mechanical-parts body-parts)))

(mechanical-parts has
(instance-of (Slot))
(superslots (parts))) ; mechanical-parts is a subslot of parts

(body-parts has
(instance-of (Slot))
(superslots (parts))) ; body-parts is a subslot of parts

(wheel-count has
(instance-of (Slot))
(domain (Vehicle))
(range (Integer))
(cardinality (N-to-1)))

There are six3 built-in slots for slots described here:

domain The most general class(es) allowed for the slot’s first argument (i.e., the
instance using the slot). If multiple classes are specified then they are treated
disjunctively, i.e., the instance must be in (at least) one of those classes.

range The most general class(es) allowed for the slot’s second argument (i.e., each
filler of the slot).

cardinality Given one argument, will there be at most 1 or n values for the other?
Must be one of 1-to-1, 1-to-N, N-to-1, N-to-N. Examples of slots with
these cardinalities are spouse, is-father-of, has-father and has-parent
respectively. The default cardinality is N-to-N.

inverse The name of the slot if the argument order is reversed. If unspecified, the
default inverse name for slot is slot-of.

subslots ‘more specific’ slots, eg. has-sons is a subslot of has-children
superslots ‘more general’ slots (the inverse of subslots)

The cardinalities 1-to-1 and N-to-1 state there is at most one value for that slot. To state there is
exactly one, the user should also specify a value on the frame using that slot, or use the constraint
mechanism (Section 12). For example, suppose we wish to state that a person has exactly one
age. We would define the slot age as having cardinality N-to-1 (ie. at most one age), and then
also declare that every person has an age:

KM> (every Person has
(age ((a Number))))

An inverse slot will necessarily have the reverse cardinality, and switched domain and ranges,
of the original slot. Inverse slots do not need to be explicitly declared, as KM will compute their
details from the original slots.

3Plus a few special case slots for slots, described later
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Subslots are used for ‘slot inheritance’: when computing the value(s) of a slot, KM will also
look and combine all the values of its subslot(s). This is described later in Section 4.4. Normally
only subslots or superslots need be declared, and KM will install the inverse automatically at load
time.

For some special purposes, it may be desirable that a slot’s values (fillers) are classes rather
than instances. The range of these slots will thus be the metaclass Class. Section 29.11 discusses
this in more detail, and describes how to specify rules for combining these class values together.

4.2 Inverses

KM automatically keeps track of inverse relations, so for example as Car0 has parts Engine1,
then Engine1 must necessarily be part-of Car0. In the absence of other information, KM creates
a name for the inverse relation by adding (or removing) the postfix -of to the relation name, eg.
the inverse of parts is parts-of:

KM> (*Fred has
(loves (*Sue)))

KM> (showme *Sue)
(*Sue has
(loves-of (*Fred))) ; note inverse

The naming of inverse slots can also be explicitly declared in a slot declaration as just described.
In addition, several of KM’s built-in slots do not follow this default "-of" convention, including:

Slot Inverse slot Purpose
instance-of
classes

}
instances

instance-class relationship
(instance-of and classes are synonym slots)

superclasses subclasses class-class relationship
superslots subslots slot-slot relationship
inverse inverse slot-slot relationship

Slot inverses are automatically coerced to be in the class Slot, in the absence of any other
declaration. Also, declaring the domain/range on a slot will result in the opposite range/domain
being automatically asserted on that slot’s inverse.

4.3 Transitive Closure Slots

Some additional slots are provided to compute the transitive closure of several built-in slots. The
results are not cached on the frame, but recomputed each time the slot is queried. These slots
are:

Slot Computes Transitive Closure Of
all-instances instances
all-classes classes, instance-of (synonyms)
all-subclasses subclasses
all-superclasses superclasses
all-subslots subslots
all-superslots superslots
all-prototypes prototypes (Section 22)
all-supersituations supersituations (Situations Manual [8])
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4.4 Slot Hierarchies

KM allows the user to specify a slot hierarchy using the subslots relation. Subslots have the
semantics (quantifying over relations subs and s below):

∀x, y, s, subs subs(x, y) ∧ subslot(s, subs)→ s(x, y)

Operationally, this means that when computing the value(s) of a slot, KM will also look and
combine all the values of its subslot(s) together. For example consider the KB:

(Vehicle has (superclasses (Physobj)))

(every Vehicle has
(body-parts ((a Frame) (a Fender)))
(parts ((a Steering-wheel))))

(Car has (superclasses (Vehicle)))

(every Car has
(mechanical-parts ((a Engine)))
(body-parts ((a Frame))))

;;; SLOT HIERARCHY:
;;; parts
;;; / \
;;; body-parts mechanical-parts
(parts has
(instance-of (Slot))
(subslots (mechanical-parts body-parts)))

Thus:

KM> (the parts of (a Car))
(_Steering-wheel13 _Engine14 _Frame15 _Fender17)

5 Access Paths

5.1 Overview

The earlier query of the form (the slot of instance) in Section 3.2 is referred to as a path, as,
thinking of the KB as a semantic net, it corresponds to a chain of arcs (here of length 1) from
instance to the answer instances. A query (the slot2 of (the slot1 of instance)) is a path of
length 2. Formally, we define a path as a chain of binary predicates Pi linking some individual
X0 to other individuals xn, such that the second argument of Pi is the same as the first argument
of Pi+1:

P1(X0, x1), P2(x1, x2), ..., Pn(xn−1, xn)

where the xi’s are free variables. A path denotes the set S of values for xi (the last variable in
the path) for which there exists at least one value for all the other variables in the path, ie.

{ xn | ∃x1, . . . , xn−1 P1(X0, x1) ∧ . . . ∧ Pn(xn−1, xn) }

(where {x|expr(x)} denotes the set S such that ∀x expr(x) ↔ x ∈ S). For example, the access
path parent(John, x), sister(x, y) denotes “John’s parents’ sisters”. In KM notation this would
be written:
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(the sister of (the parent of *John))

In KM, we add the additional feature that the variables xn can be typed (class1, class2, etc.).
The initial starting-point for a path is specified by a KM expression <expr>, which evaluates to
one (or more) instances. The full KM notation for paths is as follows:

(the classn slotn of (the classn−1 slotn−1 of (... of (the class1 slot1 of expr ))))

(and hence to arbitrary length paths). classi is the type restriction on variable xi. To denote no
restriction, classi is omitted, i.e.,:

(the slotn of (the slotn−1 of (... of (the slot1 of expr ))))

For example, the KM interpreter will evaluate the path

(the class2 slot2 of (the class1 slot1 of expr))

as follows:
1. first evaluate expr to find instances I
2. find the value(s) of slot1 on the I(s).
3. select only those which are members of class1

4. find the value(s) of slot2 of those selected instances
5. select only those which are members of class2

5.2 Examples

Enter the following KB using the text editor:

;;; “Cars are vehicles”
;;; superclasses(Car, V ehicle)
(Car has (superclasses (Vehicle)))

;;; “Cars have four wheels, use gas, and have an engine and chassis.”
;;; ∀c isa(c, Car)→ wheel-count(c, 4)
;;; ∀c isa(c, Car)→ uses-fuel-type(c, ∗Gas)
;;; ∀c isa(c, Car)→ ∃e, ch isa(e,Engine) ∧ isa(ch, Chassis) ∧ parts(c, e) ∧ parts(c, ch)
(every Car has
(wheel-count (4))
(uses-fuel-type (*Gas))
(parts ((a Engine) (a Chassis))))

;;; “Gas is a fuel-type, costing $1.34 per unit.”
;;; isa(∗Gas, Fuel-Type) ∧ unit-cost(∗Gas, 1.34)4

(*Gas has ; (Note: no ‘every’, as *Gas is an instance)
(instance-of (Fuel-Type))
(unit-cost (1.34)))

;;; “Engines are physical objects”
;;; superclasses(Engine, Physobj)
(Engine has (superclasses (Physobj)))

4(Throughout this manual we use isa as a synonym for instance-of)
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;;; “Every engine is made of metal.”
;;; ∀e isa(e,Engine)→ material(e, ∗Metal)
(every Engine has
(material (*Metal)))

;;; “Chassis’ are physical objects”
;;; superclasses(Chassis, Physobj)
(Chassis has (superclasses (Physobj)))

;;; “Every chassis is made of metal, plastic, and wood.”
;;; ∀c isa(c, Chassis)→ material(c, ∗Metal) ∧material(c, ∗Plastic) ∧material(c, ∗Wood)
(every Chassis has
(material (*Metal *Plastic *Wood)))

;;; “Plastic is a synthetic material.”
;;; isa(∗Plastic, Synthetic-Material)5

(*Plastic has
(instance-of (Synthetic-Material)))

Now reload the KB into the KM environment:

KM> (load-kb "demo.km")

(load-kb can be issued from both the Lisp and KM> prompts). and try these examples:

KM> (a Car)
(_Car9)

;;; “The unit cost of that car’s fuel-type?”
;;; { c | ∃f uses-fuel-type( Car9, f) ∧ unit-cost(f, c) }
KM> (the unit-cost of (the uses-fuel-type of _Car9))
(1.34)

;;; “What are the car’s parts made of?”
;;; { m | ∃p parts( Car9, p) ∧material(p,m) }
KM> (the material of (the parts of _Car9))
(*Metal *Plastic *Wood)

;;; “What is the engine of that car made of?”
;;; { m | ∃p parts( Car9, p) ∧ isa(p,Engine) ∧material(p,m) }
KM> (the material of (the Engine parts of _Car9))
(*Metal)

;;; “What is the chassis made of?”
;;; { m | ∃p parts( Car9, p) ∧ isa(p, Chassis) ∧material(p,m) }
KM> (the material of (the Chassis parts of _Car9)))
(*Metal *Plastic *Wood)

;;; “What are the synthetic materials in that car’s chassis?”
;;; { m | ∃p parts( Car9, p)∧ isa(p, Chassis)∧material(p,m)∧ isa(m,Synthetic-Material) }
KM> (the Synthetic-Material material of (the Chassis parts of _Car9))
(*Plastic)

5(Throughout this manual we use isa as a synonym for instance-of)
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Note that, in the above, evaluating (‘following’) a path may involve visiting multiple frames in
the KB.

5.3 Embedded Units and Self

The expression (a class) has a more general form (a class[with slotsvals]), allowing additional
facts to be asserted about the described instance, as illustrated below:

;;; “Create a red car.”
;;; ∃c isa(c, Car) ∧ color(c, ∗Red)
KM> (a Car with (color (*Red))) ; a red car
(_Car20)

;;; “What color is it?”
;;; { c | color( Car20, c) }
KM> (the color of (thelast Car)) ; what color is it?
(*Red)

We can also place such expressions as the value(s) of slots in the KB itself. When placed in a
slot-value in the KB, we refer to the expressions as embedded units, as they are essentially frame
“units” embedded within a larger frame unit in the KB.

Add the following two frames to the demo KB:

;;; “Every person has a favorite color.”
;;; ∀p isa(p, Person)→ ∃c isa(c, Color) ∧ favorite-color(p, c)
(every Person has
(favorite-color ((a Color))))

;;; ”Professors have (at least) one car which is old, is their favorite color, and made in USA.”
;;; ∀p isa(p, Professor)→ ∃c isa(c, Car)
;;; ∧ age(c, ∗Old)
;;; ∧ (∀r favorite-color(p, r)→ color(c, r))
;;; ∧ ∃m isa(m,Manufacturer) ∧made-by(c,m) ∧ location(m, ∗USA)
(Professor has (superclasses (Person)))

(every Professor has
(owned-vehicle ((a Car with

(age (*Old))
(color ((the favorite-color of Self)))
(made-by ((a Manufacturer with

(location (*USA)))))))))

Note the embedded unit Car in the Professor frame, which itself has an embedded unit Manufacturer.
Embedded units can be nested arbitrarily deep. A query for the owned-vehicle slot of a professor
causes this ‘embedded unit’ expression to be evaluated, and a Skolem instance to be created to
denote it. That instance will have the stated properties attached to it.

Note also the use of ‘Self’ in the above example. Self is a keyword, referring to the instance of
the outermost frame in which the expression is being evaluated. When the expression is inherited
by an instance, KM replaces the Self keyword by the name of that instance.

;;; “There’s a professor whose favorite color is blue.”
;;; ∃p isa(p, Professor) ∧ favorite-color(p, ∗Blue)
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KM> (a Professor with (favorite-color (*Blue)))
(_Professor25)

;;; “Which vehicle(s) does that professor own?”
;;; { c | owned-vehicle( Professor25, c) }
KM> (the owned-vehicle of (thelast Professor))
(_Car26)

KM> (showme _Car26)
(_Car26 has

(instance-of (Car))
(owned-vehicle-of (_Professor25))
(age (*Old))
(color ((the favorite-color of _Professor25)))
(made-by ((a Manufacturer with (location (*USA))))))

Note in this instance Car26, created from the embedded unit:

• A copy of the slot-value expressions from the embedded unit have been attached to the in-
stance. Note also that they are not evaluated until a query explicitly requests their contents.
• During the copy, the keyword Self in the embedded unit has been replaced by the instance of

the professor which inherited the information ( Professor25). Thus the path in the embed-
ded unit (the favorite-color of Self) has become (the favorite-color of Professor25).
Querying for this color causes this expression to be evaluated.

;;; { r | ∃c owned-vehicle( Professor25, c) ∧ color(c, r) }
KM> (the color of (the owned-vehicle of (thelast Professor)))
(*Blue)

;;; “Where is the manufacturer of professors’ vehicles’ located?”
;;; ∃p isa(p, Professor) ∧ANS = { l | ∃c,m owned-vehicle(p, c)∧made-by(c,m)∧location(m, l) }
KM> (the location of (the made-by of (the owned-vehicle of (a Professor))))
(*USA)

Slots in paths may themselves be expressions (which should evaluate to a single slot).

5.4 Selecting a Subset of Values

Sometimes the user may want to select just a subset of the values which a path points to. The class
parameter in paths allows a limited form of selection, namely selection of just those values in class
as described earlier. For finer control, the user can use an (allof path where test) expression,
described later in Section 8, or select particular values by tagging them with identifiers (the ‘called’
tags), also described later in Section 20.

6 Tracing and Debugging

6.1 Comments

During inference, KM may print comments out to the console, describing what it is doing. These
are prefixed by the string COMMENT:. Printing of these comments can be disabled/re-enabled by
the commands (nocomments) and (comments) respectively.
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6.2 Viewing the KB

The content of frames can be viewed with the (showme ...) command, as described earlier in Sec-
tion 3.6. In addition, the entire knowledge-base (including run-time-generated instances) can be
displayed using the command (write-kb), or written to a file using the command (save-kb filename).

In unusual circumstances, showme may show a slot as having duplicate elements in its value
set. This is an implementation artifact, due to the fact that KM syntactically removes duplicates
“lazily”, just when that slot is queried, and does not mean the slot is filled by a bag (rather than
set) of values. A query for (the slot of frame) will cause the duplicates to be removed and the
answer returned not contain duplicates, and thus any such syntactic duplicates are invisible to
the inference engine.

The command (print expr) is equivalent to expr, but will print out the evaluated result as a
side-effect. Wrapping expressions in print statements may be useful for debugging a knowledge-
base, if the normal tracing operations below are not sufficient.

During inference, KM may unify instances together. To see the the list of which instances are
unified (bound) to which other instances, type the command (show-bindings).

6.3 The Tracer (Debugger)

To watch KM evaluating a path (or any other expression), the tracer can be turned on by:

KM> (trace)

and turned off again by:

KM> (untrace)

Note that these must be issued at the KM> prompt, not the Lisp prompt, or it will be interpreted
as turn Lisp tracing on/off. To switch the tracer on/off at the Lisp prompt, use the commands
(tracekm)/(untracekm) instead.

The tracer provides a Prolog-like execution trace, and is invaluable for understanding and
debugging inference with a KB. By hitting carriage return <CR>, you can step through the trace.
For example, tracing evaluation of the earlier path in Section 5.2 looks:

KM> (trace)

KM> (the Synthetic-Material material of (the Chassis parts of (a Car)))
1 -> (the Synthetic-Material material of (the Chassis parts of (a Car)))
2 -> (the material of (the Chassis parts of (a Car)))
3 -> (the Chassis parts of (a Car))
4 -> (the parts of (a Car))
5 -> (a Car)
5 <- (_Car4208) "(a Car)"
5 -> (the parts of _Car4208)
5 (1) From inheritance: (:set (a Engine) (a Chassis))
6 -> (:set (a Engine) (a Chassis))
7 -> (a Engine)
7 <- (_Engine4209) "(a Engine)"
7 -> (a Chassis)
7 <- (_Chassis4210) "(a Chassis)"
6 <- (_Engine4209 _Chassis4210) "(:set (a Engine) (a Chassis))"
5 <- (_Engine4209 _Chassis4210) "(the parts of _Car4208)"
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4 <- (_Engine4209 _Chassis4210) "(the parts of (a Car))"
3 <- (_Chassis4210) "(the Chassis parts of (a Car))"
3 -> (the material of _Chassis4210)
3 (1) From inheritance: (:set *Metal *Plastic *Wood)
4 -> (:set *Metal *Plastic *Wood)
4 <- (*Metal *Plastic *Wood) "(:set *Metal *Plastic *Wood)"
3 <- (*Metal *Plastic *Wood) "(the material of _Chassis4210)"
2 <- (*Metal *Plastic *Wood) "(the material of (the Chassis..."
1 <- (*Plastic) "(the Synthetic-Material mater..."
(*Plastic)
(11 inferences and 118 kb-accesses in 0.0 sec [1100 lips, 11800 kaps])

KM> (untrace)

Note above you can see the sub-queries, and the answers to those sub-queries, computed during
evaluation of the initial query.

To see the tracing options, type ? during the trace. These options and their meaning are
shown in Table 1. In particular, note that you can skip (s) directly to the result of a query, retry
(r) a query that produces an unexpected result, and ask for more detail during specific operations
such as unification (+U) and constraint checking (+C).

KM also reports the work done in answering a query, in terms of “logical inferences” (recursive
calls to the query interpreter) and “knowledge-base accesses” (low-level accesses of the basic frame
data structure), both in absolute terms and speed. lips stands for “logical inferences per second”,
and kaps “knowledge-base accesses per second.”. During reasoning, KM frequently accesses frames
to search for constraints, check slot cardinalities, check for subslots, etc., which is why the raw
kaps figure is often high.

Internally, once KM has computed an instance’s slot’s values while answering a query, those
values are asserted locally on that instance’s frame. For efficiency, KM also flags that instance’s
slot to note its values have now been computed, and so further calls for those slot-values will simply
retrieve them, and not cause their recomputation during processing of the rest of the query. Thus
in the trace of execution, the first call for a frame’s slot-value will show the computation of those
value(s) (eg. through inheritance), whereas subsequent calls will simply show the cached value(s)
being retrieved. After the top-level query from the user is finally answered, all ‘already computed’
flags are removed (but the values themselves remain). Thus if the user then repeats the top-level
query, the computation will also be repeated.

6.4 Spy Points

KM allows the user to set spy points (similar to Prolog), which, when reached, switch on the
tracer. A spy point is either a specific KM expression, or an expression pattern. An expression
pattern is a KM expression with wild-cards (variable-like symbols) in. Spy points are matched
against the current expression being evaluated, and if matched, the tracer is turned on.

For expression patterns, a symbol beginning with a ‘?’, e.g., ?x matches a single element in a
list, while the keyword ‘&rest’ matches the remainder of a list. Note that these pseudo-variables
are not bound, they are simply place-holders.

;;; Place a spypoint on (a Car). This will cause KM to automatically
;;; switch on the tracer when the expression (a Car) is evaluated.
KM> (spy (a Car))
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Option Meaning Explanation
<cr>,c creep - single step forward

s skip - jump to completion of current subgoal
S big skip - jump to completion of parent subgoal
r retry - redo the current subgoal
n nonstop - switch off trace for remainder of this query
a abort - return directly to top-level prompt
o trace off - permenantly switch off trace
A abort and off - Equivalent to a and o together
f fail - return NIL for current goal (use with caution!)
z zip - complete query with noninterative trace
g goal stack - print goal stack
w where - show which frame the current expression originated from

d <f> display <f> - display (showme) frame <f>
h,? help - this message

Also to show additional detail (normally not shown) for the current query only:
+S show additional detail in other situation(s)
+U show additional detail during unification
+C show additional detail during constraint checking
+X show additional detail during classification
+A show absolutely everything (all additional detail)

-S,-U,-C,-X,-A to unshow

Table 1: Tracing options and their meanings in KM.

;;; Switch on debugger when getting any slot of Car3
KM> (spy (the ?x of _Car3))

;;; Switch on debugger when getting the parts of any object
KM> (spy (the parts of ?x))

;;; Switch on debugger when evaluating any forall expression
KM> (spy (forall &rest))

;;; Also...
KM> (spy) ; list all spypoints

KM> (unspy) ; remove all spypoints

6.5 Viewing the Taxonomy

The (taxonomy) directive prints the taxonomy out, by default descending the subclasses and
instances relationships. Anonymous instances (prefixed with a ) are not included. If the same
subtree occurs more than once in the taxonomy (because its has multiple parents), then the first
time the entire subtree is displayed, and subsequent times just the characters ‘...’ are printed.
Instances are preceded with an I character to distinguish them from classes. If KM cannot work

21



out if an object is an instance or a class, then it is preceded with a ? character. Instances are
listed first, then subclasses, both in alphabetical order. Only built-in classes which have some
information attached to them are included in the taxonomy.

KM> (taxonomy)
Thing

Physobj
Chassis
Engine

Synthetic-Material
I *Plastic

Vehicle
Car

In fact, the current KM supports a generalized version of this command:
KM> (taxonomy <concept-to-start-at> <relation-to-descend>)

where <concept-to-start-at> defaults to Thing, and
<relation-to-descend> defaults to subclasses

(also showing instances) as described above

For example:
KM> (taxonomy) ; show subclass tree from Thing down
KM> (taxonomy Physobj) ; show subclass tree from Physobj down
KM> (taxonomy _Car1 direct-parts) ; show partonomy of _Car1

6.6 Behavior on Failure

By default, if a top-level query returns no values, KM simply prints out NIL:
KM> (the foo of bar)
NIL

However, this behavior can be changed so KM prints out an error instead by the command
(fail-noisily) (and conversely with (fail-quietly)):

KM> (fail-noisily)
KM> (the foo of bar)
ERROR! No values found for (the foo of bar)!
Switching on debugger...
1 <- FAIL! [(the foo of bar)]

This is particularly useful when creating a test file for a KB. The test file contains KM queries,
all of which are expected to succeed. To ensure the user is informed if any fail, add the command
(fail-noisily) at the start of the file. Then, to test all queries succeed, simply load the test file
(using (load-kb "file")) and ensure it loads without error.

For additional control of KM’s behavior on failure and on error, see Section 26.2.
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6.7 Load-Time Knowledge-Base Checking

When loading a KM KB, only limited syntax checking is performed. In particular, KM does not
currently have its own parser, and instead performs only limited checking of the entered expression
before storing it. Additional checking is performed at run-time (Section 6.8).

For additional load-time KB checking, the command (scan-kb) will list all symbols in the
KB which do not have a frame defined for them (eg. are mentioned on a slot’s value, but are not
defined). Note that these are warnings, not necessarily errors, as it is not necessary to explicitly
declare all the frames used (for example, slots do not need to be explicitly declared unless some
non-default cardinality, inverse name, or other features is required). However, this function can
be useful for debugging a knowledge base and catching typing errors.

6.8 Query-Time Knowledge-Base Checking

During inference, KM can be made to perform certain checks on the instances/classes/slots it
uses. There are two kinds of checks which can be made:

• Checking that all given classes and slots have frames explicitly declaring them in the KB
((checkkbon)/(checkkboff)).

Although KM does not require that all mentioned symbols have a frame, it is sometimes
desirable to strive for this to make sure that important information is not accidentally
omitted from the KB.

• Checking that the domain and range constraints of a slot are not violated by any any
computation ((enable-slot-checking)/(disable-slot-checking)).

Note that this does not check that all slot-values are instances of a slot’s range, merely that
they are not inconsistent with a slot’s range. For example, if the domain of the slot spouse
is Person, the value Thing1, an instance of the class Thing, would not be considered an
error (as Thing1 may later turn out to be a person).

To switch the former on, do:

> (checkkbon)

And to turn it off, do:

> (checkkboff)

This command can be issued from the Lisp or KM prompt, or included in a knowledge-base file.
Domain and range checking can be switched on/off in a similar way.

It should be noted that declaring and checking slots in these ways is not essential for inference
(though may help reduce errors during KB development), and thus by default the checkers are
turned off. Also note that these only do run-time checking, ie. during inference, and do not
perform any extra load-time verification of the KB itself. These facilities augment the normal
tracing/debugging facility described in Section 6.

In the examples in this manual, the (tiny) knowledge bases contain enough for inferencing,
but do not include all the slot declarations and inheritance information that would normally be
associated with the KB. If you wish to create the full KB, then turn KB checking on during
inference to receive pointers to where declarations are missing.
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In addition, KM’s keywords (a, the, forall, etc.) cannot be used as frame names. KM
will report an error if such an attempt is made – these error messages are particularly helpful in
debugging misplaced parentheses in KM expressions. A full list of these keywords is given in the
BNF for KM in the Reference Manual [10].

7 Conditionals

7.1 Conditional Expressions

An access path can be viewed as a simple form of “rule” when placed on a slot, describing how
to compute that slot’s value (ie. the relation’s second argument, given its first). In fact, there is
a wide variety of rule expressions that a user may need to write and which KM supports, which
we now describe in this and subsequent sections.

KM supports conditional if...then... expressions, where the value returned depends on
some test(s). The forms of these are as follows:

(if expr then expr [ else expr])
(expr and expr [and expr]*)
(expr or expr [or expr]*)
(not expr)
(expr = expr)
(expr /= expr)
(expr > expr)
(expr < expr)
(expr >= expr)
(expr <= expr)
(expr includes expr)
(expr is-superset-of expr)
(expr isa class)
(has-value expr)
(numberp expr)

In if...then... expressions, the condition is deemed to be “true” if it returns a non-nil answer,
in which case the consequent expr is evaluated and the result returned. For comparison operations,
eg. =, KM returns the special symbol t to denote success.

For and expressions, KM evaluates each expr in turn until either one returns no values, or all
are evaluated (in which case the result of the last evaluation is returned). For or expressions, KM
evaluates each expr in turn until one expression returns some values.

KM treats not as negation-by-failure, ie. the failure to find any values for expr means that
(not expr) is true. X /= Y is interpreted as (not (X = Y)). >, >=, <, and <= are arithmetic
tests, whose expressions must evaluate to (a singleton set containing) a number (KM will coerce
those singleton sets to their contained number before making the test). isa checks whether an
instance is a member of a class, and again its arguments must both evaluate to (sets containing
a) single instance/class (otherwise an error is reported).

= is used for testing both equality of instances and sets, and will coerce an instance to be a
set if necessary for type compatibility:
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KM> ((:set 1 2) = (:set 2 1))
(t)

KM> ((1 + 1) = 2)
(t)

(Note we use :set to declare the expression is a set of KM expressions, not a single KM expres-
sion). The operator includes tests set membership, and requires its second argument to be an
instance or a singleton set (which will be coerced to be an instance). is-superset-of performs
set comparison:

KM> ((:set 1 2 3) includes 1)
(t)

KM> ((:set 1 2 3) is-superset-of (:set 1 2))
(t)

The below illustrates a conditional as a slot’s value:

;;; ”If a car is domestic then spare parts will be cheap, otherwise they’ll be expensive.”
;;; ∀c isa(c, Car)→
;;; ( ( ∃l, l′,m, o made-by(c,m) ∧ location(m, l) ∧ owner(c, o) ∧ lives-in(o, l′) ∧ l = l′ )6

;;; → cost-of -parts(c, ∗Low) ; cost-of -parts(c, ∗High) )7

(every Car has
(cost-of-parts (

(if ((the location of (the made-by of Self)) =
(the lives-in of (the owner of Self)))

then *Low
else *High))))

(Sentra has (superclasses (Car))) ; Sentras are a type of Car...

(every Sentra has (made-by (*Nissan))) ; made by Nissan.

(Geo-Metro has (superclasses (Car))) ; Geo-Metros are a type of Car...

(every Geo-metro has (made-by (*Chrysler))) ; made by Chrysler.

(*Nissan has ; Nissan is a Japanese manufacturer
(instance-of (Manufacturer))
(location (*Japan)))

(*Chrysler has ; Chrysler is an American manufacturer
(instance-of (Manufacturer))
(location (*USA)))

Note that the value of the car’s cost-of-parts slot is a conditional expression, which tests
whether the car’s manufacturer’s country equals the country that the owner lives in. If so, then
the value *Low is returned (ie. domestic cars have low-cost parts), otherwise the value *High is
returned. Thus for a Japanese car owned by an American, the cost of spare parts will be high:

6This semantics assumes manufacturers and people have only one location. More literally, the KM expression
represents “domestic” as “the set of manufacturer locations = the set of owner locations”, ie. { l | ∃m made-
by(c,m) ∧ location(m, l) } = { l′ | ∃o owner(c, o) ∧ lives-in(o, l′) }

7(X → Y ; Z) is a shorthand notation for (X → Y ) ∧ not(X)→ Z, where not() is negation by failure.
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;;; “Create a Sentra (Japanese car) owned by a person living in USA.”
;;; ∃c, p isa(c, Sentra) ∧ isa(p, Person) ∧ owner(c, p) ∧ lives-in(p, ∗USA)
KM> (a Sentra with

(owner ((a Person with (lives-in (*USA))))))
(_Sentra75)

;;; “How much are its spare parts?”
;;; { c | cost-of -parts( Sentra75, c) }
KM> (the cost-of-parts of _Sentra75)
(*High)

7.2 Conditionals and the Closed-World Assumption

When applying tests, KM makes a closed-world assumption, i.e., if an expression evaluates
to nil, KM assumes that the expression denotes zero objects (rather than accommodating the
possibility that some of the values might be unknown, due to missing information in the KB).
Similarly, if an expr evaluates to nil, KM assumes (not expr) is true (negation as failure). This
should be born in mind by the knowledge engineer.

If information may be unknown, then the knowledge engineer should explicitly test for this
using the has-value or numberp tests to avoid mistaken conclusions by the closed-world assump-
tion. (has-value expr) tests whether an expression has a known value, and implementationally
is equivalent to expr. (numberp expr) test whether an expression evaluates to a specific numeric
value (as opposed to, say, Number23). An example of their use is:

;;; “Foreign-made cars have expensive parts.”
;;; “If the car is more than 4 years old, then it’s old.”
KM> (every Car has

(cost-of-parts (
(if ( (has-value (the location of (the made-by of Self)))

and ((the location of (the made-by of Self)) =
(the lives-in of (the owner of Self))))

then *Low else *High)))
(is-old ((if (numberp (the age of Self))

then (if ((the age of Self) < 5)
then *No else *Yes)))))

The use of numberp and has-value prevents these rules firing, and hence making assumptions
about, cars of unknown age or manufacturer location.

8 Universal Quantification

In addition to class-level (every ... has ...) declarations, KM allows universal quantification
to be used in slot-value expressions. These allow the user to select from, manipulate, and test
members of sets. KM has five operators for this purpose, as follows:

(allof [var in] expr1 where expr0)
(forall [var in] expr1 [where expr0] expr2)
(oneof [var in] expr1 where expr0)
(theoneof [var in] expr1 where expr0)
(allof [var in] expr1 [where expr0] must expr2)
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It is important to note that these keywords perform tests, rather than make assertions. allof
sieves out members of a set expr1 which pass a test expr0, while forall sieves out these members
then returns some computation expr2 applied to each member of that set. There is thus both a
procedural as well as declarative aspect to such expressions.

In addition, the operator oneof behaves like allof, except it returns just the first item passing
a test. theoneof performs an additional test that there is, in fact, exactly one such item, and will
report an error if otherwise.

Finally, allof...must... tests that all members of expr1 where expr0 holds, also pass the
test expr2. If the test is passed, the expression returns the special instance t, denoting true.

To refer to the “current member being tested” within expr0 and expr2, the user has two choices:
1. If the optional “var in” construct is used, the user provides a variable name (a symbol

beginning with a ‘?’ character), which expr0 and expr2 can refer to.
2. If the optional “var in” construct is not used, the special keyword It refers to the item

being tested.
Here are some examples to illustrate their use:

;;; “Joe owns an old brown car, a new red car, and an old red car.”
KM> (*Joe has

(instance-of (Person))
(owns ((a Car with (color (*Brown)) (age (*Old)))

(a Car with (color (*Red)) (age (*New)))
(a Van with (color (*Red)) (age (*Old))))))

;;; “Which red things does Joe own?”
;;; { x | owns(∗Joe, x) ∧ color(x, ∗Red) }8
KM> (allof (the owns of *Joe)

where ((the color of It) = *Red))
(_Car21 _Van22)

;;; Or equivalently...
KM> (allof ?x in (the owns of *Joe)

where ((the color of ?x) = *Red))
(_Car21 _Van22)

;;; “Show me one of Joe’s red things.”
;;; oneof({ x | owns(∗Joe, x) ∧ color(x, ∗Red) })9

KM> (oneof (the owns of *Joe)
where ((the color of It) = *Red))

(_Car21)

;;; Or equivalently...
KM> (oneof ?car in (the owns of *Joe)

where ((the color of ?car) = *Red))
(_Car21)

;;; “What are the age(s) of Joe’s red things?”
;;; { a | ∃x owns(∗Joe, x) ∧ color(x, ∗Red) ∧ age(x, a) }
KM> (forall (the owns of *Joe)

where ((the color of It) = *Red)

8This semantics assumes an object has exactly one color. The more general semantics for ((the color of x) =

*Red) is { c | color(x, c) } = {∗Red} (“x’s colors are only red”), which reduces to the former under this assumption.
9where oneof() is a deterministic but unspecified function mapping a set onto one of its members.
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(the age of It))
(*New *Old)

;;; Or equivalently...
KM> (forall ?x in (the owns of *Joe)

where ((the color of ?x) = *Red)
(the age of ?x))

(*New *Old)

;;; “Which are Joe’s vans?”
;;; { v | owns(∗Joe, v) ∧ isa(v, V an) }
KM> (allof (the owns of *Joe)

where (It isa Van))
(_Van22)

;;; “Which are Joe’s vans?” (alternative form of same query, same semantics)
KM> (the Van owns of *Joe)
(_Van22)

;;; “Which are Joe’s new cars?”
;;; { c | owns(∗Joe, c) ∧ isa(c, Car) ∧ age(c, ∗New) }
KM> (allof (the owns of *Joe)

where ((It isa Car) and ((the age of It) = *New)))
(_Car21)

;;; “What are the color(s) of Joe’s new car(s)?”
;;; { r | ∃c owns(∗Joe, c) ∧ isa(c, Car) ∧ age(c, ∗New) ∧ color(c, r) }
KM> (the color of (allof (the owns of *Joe)

where ((It isa Car) and ((the age of It) = *New))))
(*Red)

;;; “Red is a pretty color.”
KM> (*Red has (instance-of (Pretty-color)))
(*Red)

;;; “What are all Joe’s pretty-colored things?”
;;; { x | owns(∗Joe, x) ∧ color(x, c) ∧ isa(c, Pretty-color) }10

KM> (allof (the owns of *Joe)
where ((the color of It) isa Pretty-color))

(_Car21 _Van22)

;;; “Are all Joe’s vans red?”
;;; ( (∀v v ∈ { x | owns(∗Joe, x) ∧ isa(x, V an) } → color(v, ∗Red) )→ ANS = {t}
KM> (allof (the owns of *Joe)

where (It isa Van)
must ((the color of It) = *Red))

(t)

Note, of course, that these expressions can be placed on slots in a frame, as well as issued at
the top-level prompt. For example:

;;; [1] below: “A Car’s engine turns the front wheels.”
10KM’s isa test assumes both its arguments have exactly one value (and will generate an error otherwise), see

Section 7.
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;;; ∀c isa(c, Car)→ ∃e isa(e,Engine) ∧ has-engine(c, e)∧
;;; ( ∀w parts(c, w) ∧ isa(w,Wheel) ∧ position(w, ∗Front)→ powers-wheels(e, w) )
(every Car has
(parts ((a Wheel with (position (*Front)) (side (*Left)))

(a Wheel with (position (*Front)) (side (*Right)))
(a Wheel with (position (*Back)) (side (*Left)))
(a Wheel with (position (*Back)) (side (*Right)))
(a Chassis)
(Self has-engine)))

(has-engine ((a Engine with ; [1]
(powers-wheels ((allof (the Wheel parts of Self)

where ((the position of It) = *Front))))))))

The expression (allof (the Wheel parts of Self) where ((the position of It) = *Front))
refers to the front wheels of the car. When evaluating it, the KM interpreter first finds all the wheel
parts of the car (evaluates (the Wheel parts of Self)), and then iterates through each of those
(four) wheels, selecting just those which satisfy the test ((the position of It) = *Front) (ie.
just the front wheels), where It refers to the instance being tested. Thus:

KM> (*MyCar has (instance-of (Car)))

;;; “What wheels are on my car?”
;;; { w | parts(∗MyCar,w) ∧ isa(w,Wheel) }
KM> (the Wheel parts of *MyCar)
(_Wheel121 _Wheel122 _Wheel123 _Wheel124)

;;; “Which wheels do the engines power?”
;;; { w | ∃e parts(∗MyCar, e) ∧ isa(e,Engine) ∧ powers-wheels(e, w) }
KM> (the powers-wheels of (the Engine parts of *MyCar))
(_Wheel121 _Wheel122)

;;; Check these two wheels are the front wheels!
KM> (the position of _Wheel121)
(*Front)

KM> (the position of _Wheel122)
(*Front)

forall (etc.) statements can be nested (in which case explicit variable names for the iterator
should be used, to avoid ambiguity). For example:

;;; “Joe owns a new, green car.”
;;; ∃c isa(c, Car) ∧ owns(∗Joe, c) ∧ color(c, ∗Green) ∧ age(c, ∗New)
KM> (*Joe has

(instance-of (Person))
(owns ((a Car with (color (*Green)) (age (*New))))))

;;; “Show me all the colors of all the things owned by all the people.”
;;; { c | ∃p, o isa(p, Person) ∧ owns(p, o) ∧ color(o, c) }
KM> (forall ?person in (the all-instances of Person)

(forall ?owned in (the owns of ?person)
(the color of ?owned)))

(*Green *Brown *Red)
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;;; (The above query can also equivalently written as below)
KM> (the color of (the owns of (the instances of Person)))
(*Green *Brown *Red)

Historical Note: The additional operators forall2, allof2, oneof2, and their corresponding
keyword It2, used in prior releases in KM, are supported but considered obsolete now in KM.

9 Local Variables

The previous Section illustrated an optional use of variables in forall, allof, and oneof expres-
sions. KM also allows variables to be used in one other way, namely within conjunctive (‘and’)
expressions. The general form is:

((var == expr) [ and expr]+)

where var is a symbol beginning with a ‘?’, and the scope of the variable is within the rest of the
conjunctive expression (only). For example, the expression:

KM> (every Person has
(nationality ((if ((the lives-in of Self) = *America) then *American))))

could be expressed equivalently:

KM> (every Person has
(nationality (( (?x == (the lives-in of Self))

and (if (?x = *America) then *American)))))

This local variable mechanism is purely a syntactic convenience, useful in large expressions which
use the same path multiple times.

As a separate tip, note that instances can be used somewhat like global constants, where an
“assignment” is performed using KM’s unification operator == or its synonym & (see next Section
for details on unification):

KM> (X1 == (a Car with (color (*Red)))) ; == is a synonym for &

KM> (the color of X1)
(*Red)

KM> (showme X1)
(X1 has
(color (*Red))
(instance-of (Car)))

This thus provides a syntactically convenient way of assigning a name to a frame (equivalent to
writing (X1 has (instance-of (Car)) (color (*Red)))). Note that X1 is in fact an instance
frame (not a variable), and == is doing unification (not assignment).

10 Unification, Equality, and Multiple Inheritance

10.1 Introduction

An instance may inherit information from multiple generalizations, either ‘vertically’ in the inher-
itance (superclass) hierarchy (eg. Car1 inherits from Car, Vehicle, and Physobj), ‘horizontally’
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(eg. Pet-Fish01 inherits from Pet and Fish), or both. The semantics of KM dictate that the
instance will acquire all the properties of all its generalizations (ie. all the axioms applying to
its generalizations also apply to the instance). This requires that, when computing the value of
an instance’s slot, KM will search and merge information from all that instance’s generalizations.
This merging process is called unification. Syntactically, unification is the process of combining
the data structures representing different instances. Semantically, unification is the assertion of
equality between those instances. The syntactic operation implements the semantic operation,
because the syntactically merged data structure represents an object which has all the properties
of all the unified instances.

Unification is one of the important differentiators between logic-based frame languages like
KM, and object-oriented programming languages. In an object-oriented language, methods from
different classes are not automatically ‘merged’ together, but instead one will take precedence over
another. For example, in Smalltalk (a single-inheritance language), a method on an instance’s
most specific class overrides (rather than is merged with) definitions for the same method on
other, more general classes. Similarly, in C++ (a multiple-inheritance language), a reference to
a method defined in multiple parents must be disambiguated so that it is clear which one is to
be used (rather than the compiler somehow ‘merging’ and using the multiple methods together).
(See [11] Chapter 12 for further discussion).

Using unification to combine multiple pieces of inherited information is fundamental for build-
ing KBs in a modular, reusable fashion. Ideally, a concept’s representation will be ‘layered’,
meaning that the more general (and reusable) axioms are separated from the more idiosyncratic,
concept-specific axioms. Thus rather than placing all relevant information about a concept on
that concept’s frame, it will be distributed among that concept’s generalizations, with the more
general (and reusable) axioms placed on concepts high up in the taxonomy. This separation of
knowledge provides the basis for reuse, as the more general axioms can now be inherited and
applied to other concepts as well as the original one.

10.2 Value Unification, Single-Valued Slots, and the Unification Operator &

10.2.1 Introduction

A slot is ‘single-valued’ if it has a unique second argument, given the first. Relations (slots)
can be declared as single-valued on the frame describing that relation using its cardinality slot
(Section 4), giving it a value N-to-1 or 1-to-1 as appropriate. If a slot is single-valued then KM
can be sure that the multiply-inherited values for that slot are coreferential, ie. refer to the same
individual. For example, consider the following KB:

(has-engine has
(instance-of (Slot))
(domain (Vehicle))
(range (Engine))
(cardinality (1-to-1))) ; ie. a Vehicle has exactly one engine

; (single-valued slot)

(every Vehicle has
(has-engine ((a Engine with

(strength (*Powerful))))))

(Car has (superclasses (Vehicle)))
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(every Car has
(has-engine ((a Engine with

(size (*Average))))))

Slots can be declared as single-valued on the slot’s frame, as shown above. If we now ask about
the engine of a car, then we get two answers via multiple inheritance:

• a powerful engine (from Vehicle), and
• an average-sized engine (from Car)

As the slot has-engine has been declared as single-valued, KM concludes that these two descrip-
tions are coreferential, and will thus combine them together. The syntactic process of combining
the information is called unification. It involves merging the slot-values into a single frame, and
redirecting future references to those (previously distinct) engines to point to that new frame:

KM> (showme (the has-engine of (a Car)))
(_Engine63 has ; Info has been unifed:

(has-engine-of (_Car62)) ; _Engine63 is...
(strength (*Powerful)) ; both powerful...
(instance-of (Engine))
(size (*Average))) ; *and* average size.

10.2.2 Lazy Unification

In general, full unification is expensive to compute: If the two frames being unified both have
values for the same slot, then those values themselves must be recursively unified. In addition, a
slot value may be a complex expression (eg. a path), not just an instance name. These expressions
need to be evaluated in order to identify the instances being unified, which in turn may involve
further multiple inheritance and unification. Finally, for complete unification, inherited as well as
local information needs to be taken into account: In the above case, information from the Engine
frame (also Device, Physobj, Propulsion-device, etc.) is also relevant to a car’s engine, and
should be included to obtain a complete description of the car’s engine.

One approach, used in Description Logics, is to restrict the representation language’s expres-
sivity so (logically) complete concept descriptions can be computed. KM, however, uses a novel,
alternative approach called lazy unification, in which slot-values are not immediately unified, but
instead noted as ‘to be unified’ should the value of the slot be needed. For example, if the two
instances being merged have expressions expr1 and expr2 for the same single-valued slot, then
their unification is noted as (expr1 & expr2), where & is the unification operator in KM. This
delays actual unification of expr1 and expr2 until the value of that single-valued slot is actu-
ally needed (if ever). For example consider the following KB, where there are two values for the
(single-valued) slot fuel:

(has-engine has
(instance-of (Slot))
(domain (Vehicle))
(range (Engine))
(cardinality (1-to-1)))

(fuel has
(instance-of (Slot))
(domain (Vehicle))
(range (Gas-type)) ; eg. Philips’66 unleaded octane 87
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(cardinality (1-to-1)))

(every Vehicle has
(has-engine ((a Engine with

(strength (*Powerful))
(fuel ((a Gas-type with (combustibility (*Hi)))))))))

(Car has (superclasses (Vehicle)))
(every Car has
(has-engine ((a Engine with

(size (*Average))
(fuel ((a Gas-type with (type (*Unleaded)))))))))

Now asking for the engine of a car causes these two engine descriptions to be lazily unified.
The following shows the lazily unified result:

KM> (showme (the has-engine of (a Car)))
(_Engine66 has

(has-engine-of (_Car65))
(strength (*Powerful))
(instance-of (Engine))
(size (*Average))
(fuel (( (a Gas-type with (type (*Unleaded))) ; note unification is

& (a Gas-type with (combustibility (*Hi))))))) ; deferred here

Note the value of the fuel slot is stored as the (still to be done) unification of the two expressions
from the Car and Vehicle frames. They will only be unified when the value of fuel is actually
requested, as we can now illustrate:

KM> (showme (the fuel of _Engine66)) ; now request the fuel slot’s value
(_Gas-type68 has

(fuel-of (_Engine66))
(combustibility (*Hi))
(instance-of (Gas-type))
(type (*Unleaded)))

KM> (showme _Engine66)
(_Engine66 has

(has-engine-of (_Car65))
(strength (*Powerful))
(instance-of (Engine))
(size (*Average))
(fuel (_Gas-type68))) ; <--- the now-unified gasoline type

This idea of lazy unification is fundamental to enabling information to be integrated together
in a computationally tractable way in an expressive representation language.

10.2.3 The Unification Operator &

As the unification operator is part of the KM language, it can be issued directly from the KM
query prompt as well, as illustrated below. KM also includes the operator == as a synonym for &.

;;; “Unify a green pet and a small fish.”
;;; ∃p, f isa(p, Pet) ∧ color(p, ∗Green) ∧ isa(f, F ish) ∧ size(f, ∗Small) ∧ p = f
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KM> ((a Pet with (color (*Green))) & (a Fish with (size (*Small)))) ; a Pet Fish
(_Pet70)

KM> (showme _Pet70)
(_Pet70 has

(size (*Small))
(instance-of (Pet Fish))
(color (*Green)))

;;; “Fred is a person who is 40 years old.” (== is a synonym for &)
KM> (*Fred == (a Person with (age (40))))

KM> (the age of *Fred)
(40)

Named instances are assumed mutually exclusive (unique names assumption), and thus are non-
unifiable. Anonymous instances, however, are not subject to this assumption and thus may be
unified with other anonymous instances, or with named instances:

KM> (*Red & *Green)
ERROR! Failed to calc (*Red & *Green)!
NIL

;;; “Create a color.”
;;; ∃c isa(c, Color) ∧ANS = c
KM> (a Color)
(_Color75)

;;; “That color is red.”
;;; Color75 = ∗Red
KM> (_Color75 & *Red)
(*Red)

KM> _Color75
(*Red) ; _Color75 now points to *Red

Note that = and & are different in KM: = tests equality, while & (and its synonym ==) enforces
equality. & is a directive (“Unify these.”), rather than a question (“Do these unify?”). To test if
unification (equality) is possible the query &? should be used instead:

;;; “Things can only have one color.”
;;; ∀x, c, c′ color(x, c) ∧ color(x, c′)→ c = c′

KM> (color has (instance-of (Slot)) (cardinality (N-to-1)))

;;; “Can a red car and a green car be coreferential?”
KM> ((a Car with (color (*Red))) &? (a Car with (color (*Green))))
NIL ; ie. No!

Again note that &? tests where equality would be logically consistent, while = tests whether
equality holds.

10.2.4 Additional Value Unification Operators

KM uses some additional value unification operators, primarily for use internally to KM rather
than by the user.
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The first is &+, used internally within KM to heuristically decide whether two instances are
coreferential or not when unifying sets (&&, see Section 10.3). Formally, &+ is the same as &
except with an additional requirement for successful unification, namely that either instance1’s
immediate classes subsume instance2’s immediate classes, or vice versa. Thus

KM> ((a Cat) &+ (a Animal))
(_Cat1)

will succeed (given Animal is a superclass of Cat), but

KM> ((a Cat) &+ (a Pet))
NIL

will fail. If successful, the unification is returned, otherwise NIL.
&+ is only used internally by && (Section 10.3) to heuristically decide whether to treat members

of two different sets, being unified together, as coreferential or not. It is not for user use, however
the user may see it in the trace messages when debugging in detail (the +A or +U options).

The second is &!, meaning “eager unification”. As the name suggests, unifying two instances
with &! will recursively unify the instances’ slot values immediately, rather than lazily delaying
evaluation as described earlier.

Finally, for unifying all values in a set together, the special slot unification can be used:
KM> (the unification of (:set _Cat1 _Cat2 _Cat3))
(COMMENT: (_Cat1 & _Cat2) unified to be _Cat1)
(COMMENT: (_Cat1 & _Cat3) unified to be _Cat1)
(_Cat1)

10.3 Set Unification, Multi-valued Slots, and the Unification Operator &&

10.3.1 Unifying Sets

For multiply inherited values for multivalued slots, unification is more complex, as KM can no
longer deductively conclude which values are coreferential. For example consider:

;;; “Every person owns a car.”
;;; ∀p isa(p, Person)→ ∃c isa(c, Car) ∧ owns(p, c)
(every Person has
(owns ((a Car))))

(Professor has (superclasses (Person)))

;;; “Every professor owns a car.”
;;; ∀p isa(p, Professor)→ ∃c isa(c, Car) ∧ owns(p, c)
(every Professor has
(owns ((a Car))))

Now do professors own one or two cars? One approach would be to assume all values are distinct;
however, this defeats the central goal of integrating information from multiple generalizations
together. Instead KM adopts a heuristic policy for unifying sets of instances together (each set
coming from the same slot on a different frame):

• KM will try to unify instances from one set with instances from another set. A value from
one set can unify with at most one value in the other set. Values within a set are not unified
together.
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• As unification is lazy, this check for valid unification is only partial. Unification will fail
under the following conditions:

– If the two instances being unified have different, named values for the same single-valued
slot.

– If the generalizations (classes) of one instance do not subsume or equal the generaliza-
tions of the other instance. This subsumption requirement is only used for unifying
sets.

– If the unification would violate some declared constraint (Section 12).

Otherwise, unification will succeed and be carried out.

The set unification operator which implements this heuristic has the symbol &&. Its arguments
must be a set of instances (or expressions which evaluate to instances), not single instances. The
operator === is a synonym for &&.

;;; ∃c, d, d′, e isa(c, Cat)∧isa(d,Dog)∧isa(d′, Dog)∧isa(e,Elephant)∧ANS = {c d}∪{d′ e}11

KM> (((a Cat) (a Dog)) && ((a Dog) (a Elephant)))
(_Cat98 _Dog100 _Elephant101) ; just Dog unifies

KM> (((a Cat)) && ((a Cat)))
(_Cat105)

;;; “Things can only have one color.” (for illustration purposes)
KM> (color has

(instance-of (Slot))
(cardinality (N-to-1)))

KM> (((a Cat with (color (*Red)))) && ((a Cat with (color (*Blue)))))
(_Cat106 _Cat107) ; won’t unify as incompatible colors

KM> (the color of _Cat106)
(*Red)

KM> (the color of _Cat107)
(*Blue)

&& also plays a key role in handling multiple inheritance. Just as KM uses & to lazily unify
values of single-valued slots with multiple inheritance, it uses && to lazily unify values of multi-
valued slots. For example:

(every Animal has
(parts ((a Head)

(a Body with (covering (*Skin))))))

(Mammal has (superclasses (Animal)))

(every Mammal has
(parts ((a Leg) (a Leg) (a Leg) (a Leg))))

(Dog has (superclasses (Mammal)))

11Note KM’s implementation of union includes identifying coreferences, as described.
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(every Dog has
(parts ((a Tail) (a Body with (covering (*Skin *Fur))))))

thus:
KM> (the parts of (a Dog))
(_Tail126 _Body133 _Leg128 _Leg129 _Leg130 _Leg131 _Head132)

KM> (showme _Body133)
(_Body127 has ; merged info from Animal and Dog

(parts-of (_Dog125))
(instance-of (Body))
(covering (((*Skin *Fur) && (*Skin))))) ; note unification of this

; substructure is deferred

Note that the Body part of the animal and the Body part of the dog have been unified together when
the multiple values were collected. Note also that unification of the two sets of values for the body’s
covering, namely (*Fur) and (*Skin *Fur), has been delayed by the lazy unification mechanism,
and is instead stored as ((*Skin *Fur) && (*Skin)). A further query for the covering will
cause this expression to be evaluated and those values unified:

KM> (the covering of (thelast Body))
(*Skin *Fur)

KM’s heuristic ‘guess’ at which values are meant to be coreferential is the only non-deductive
part of its inference. If it makes a bad guess, for example where delayed unification is later
computed and fails, then KM has no means of recovering (there is no backtracking mechanism
where the heuristic unification can be undone). However, the intension is that the knowledge
engineer author the KB such that ambiguity does not arise (for example, unification can be
prevented by tagging the not-to-be-unified items with a single-valued slot containing different
identifiers). KM’s heuristic set unification algorithm can thus be viewed as simply a short-hand
to save the knowledge engineer the cumbersome job of explicitly noting coreference in the KB.

Finally, just as &? tests whether instance unification is possible, so &&? tests whether set
unification is possible. This may seem a redundant test, as two sets can apparently always be
unioned. However, as we describe later in Section 12.2, we can also specify constraints on sets in
KM (eg. how many instances of a class it can contain), thus introducing conditions under which
set unification may fail.

10.3.2 Controlling Set Unification

KM’s set unification operator provides some heuristic “intelligence” in reasoning, but, as it is an
unsound operator, can make mistakes on occasion. In particular, if values are iteratively added
to a slot, and those values are of the same type as an existing value on that slot, KM will unify
them:

KM> (_Person1 has (agent-of (_Move1)))
KM> (_Person2 has (agent-of (_Move2)))
KM> (_Person1 & _Person2)
KM> (showme _Person1)
(_Person1 has
(agent-of (((_Move1) && (_Move2))))) ; unification of the two Moves will be attempted

KM> (the agent-of of _Person1)
(COMMENT: (_Move1 && _Move2) unified to be _Move1)
(_Move1)
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In the above case, KM has assumed coreferentiality of the two moves, and unified them.
One way of blocking this behavior is to define this slot as a combine-values-by-appending

slot. This declares that new instances for a slot should be appended, rather than heuristically
unified, with the existing values:

KM> (reset-kb)
KM> (agent-of has

(instance-of (Slot))
(combine-values-by-appending (t)))

KM> (_Person1 has (agent-of (_Move1)))
KM> (_Person2 has (agent-of (_Move2)))
KM> (_Person1 & _Person2)
KM> (showme _Person1)
(_Person1 has
(agent-of (_Move1 _Move2))) ; the two moves are not heuristically combined

KM> (the agent-of of _Person1)
(_Move1 _Move2)

Note that in this latter case, the two moves are not heuristically unified. This modified behavior
only applies to combining atomic slot-values together – KM will still heuristically unify expressions
(e.g., (a Move)) with values on this slot, to prevent infinite “growth” of values on a slot.

There are additional mechanisms also which can be used to controlling unification, in particular
by tagging instances with identifiers to distinguish them, described later in Section 20, and making
inequality assertions, described next.

10.3.3 Additional Set Unification Operators

Analogously to the additional value unification operators, the operator &&! unifies sets together
eagerly (rather than lazily), and the special slot set-unification allows an arbitrary set of
individual values to be heuristically unified using &&:

KM> (a Cat)
(_Cat5)
KM> (a Dog)
(_Dog6)
KM> (the set-unification of (:set (a Cat) _Dog6 _Cat5 (a Cat) (a Mouse)))
(COMMENT: (_Cat7 && _Cat5) unified to be _Cat7)
(COMMENT: (_Cat7 && _Cat8) unified to be _Cat7)
(_Cat7 _Dog6 _Mouse9)

10.4 Inequality

To assert that two instances are not equal, use the operator /==, e.g.:

;;; “ Color3 is definitely not green”
KM> (_Color3 /== *Green)

;;; “Is Color3 unifiable with *Green?”
KM> (_Color3 &? *Green)
NIL

Internally, the inequality is recorded on the special slot /== on Color3’s frame:
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KM> (showme _Color3)
(_Color3 has
(instance-of (Color))
(/== (*Green)))

This slot is checked when unification is attempted.
Remember that two named (non-Skolem) instances are automatically assumed (and enforced)

to be not equal, as KM makes the unique names assumption for named instances (Section 10.2.3).
It would thus be redundant to assert, for example, (*Red /== *Blue).

11 Partitions and Mutually Exclusive Classes

In many cases, a set of sibling classes are exhaustive and mutually exclusive (eg. the set of two
classes {Physical-Object, Nonphysical-Object}). Such sets are called partitions. KM will not
unify instances of different classes in a partition, as (by definition) an instance cannot belong to
more than one of these classes at the same time.

A partition is declared in a KB as an instance of the class Partition, whose members are the
classes in the partition. For example:

;;; “An instance cannot be both a cat and a dog.”
;;; ∀c, d isa(c, Cat) ∧ isa(d,Dog)→ c 6= d
KM> (a Partition with (members (Cat Dog)))
(_Partition120)

;;; “Try unifying a cat and a dog...”
KM> ((a Cat) & (a Dog))
ERROR! Unification (_Cat121 & _Dog122) failed!
NIL

Note that without declaring the partition, KM would have instead undesirably allowed the two
instances to unify (just as it desirably unified ((a Pet) & (a Fish)) earlier):

;;; Reset the KB (remove the above partition)
KM> (reset-kb)

;;; “Unify a cat and a dog.”
KM> ((a Cat) & (a Dog))
(_Cat123) ; Unification undesirably succeeded,

; as the partition was not declared.
KM> (showme _Cat123)
(_Cat123 has
(instance-of (Cat Dog))) ; Answer: a Cat-Dog (!)

Named instances are automatically assumed mutually exclusive in KM, due to KM’s unique
names assumption, so there is no need to define a “partition of instances”. It is not possible
to specify directly in KM that anonymous instances are mutually exclusive (ie. non-unifiable),
although this can be done indirectly by either placing them in mutually exclusive classes, or giving
them different, named values for some single-valued slot.

39



12 Constraints

As well as placing values on slots, the user can declare constraints on the values which a slot can
have. Some care is needed to understand how KM reasons with constraints: KM does not include
a constraint reasoning engine for solving multiple constraints. Rather, in general, KM only checks
constraints to make sure they hold, and reports an error if not (although a few constraints do
have assertional import also, namely must-be-a, excluded-values, and <>, described shortly).
There are two kinds of constraints:

Value Constraints: Apply to every individual value on the slot.
Set Constraints: Apply to the set of values on the slot.

Constraint expressions are placed on a frame’s slot just like other expressions. However, they will
be removed from any answer returned to the user.

Constraints play three roles in KM. First, they are a debugging tool to help the knowledge
engineer. Second, KM will use knowledge of constraints to help determine whether two values
can be unified or not, and constraints can be used to prevent unifications that would otherwise
happen. Finally, for three special cases of a constraint, KM will do more than just check the
constraint, but also make an assertion based on that constraint. These three special cases and
their assertional import, explained in more detail shortly, are:

(must-be-a class) will coerce all instances to be in class
(exactly 1 class) if multiple instances of class, they will be unified
(at-most 1 class) if multiple instances of class, they will be unified

Note that constraints are checked during inference, not at load-time. As a result, KM may not
spot constraint violations at the moment they are introduced (as the below examples illustrate).
Also, use of constraints will slow down unification in KM, as KM will check that constraints are
not violated by unification. Finally, note that KM will not spot mutually inconsistent constraints
during unification, only constraints which are violated by values or value sets.

12.1 Value Constraints

The following expressions declare constraints on individual slot-values. Every slot value must
satisfy them:
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Expression Meaning
(must-be-a class [with slotsvals]) Every value must be in class and have slotsvals. If this

condition does not hold but could consistently hold, KM
will enforce this condition by coercing each value to be
in this class and have these properties.

(mustnt-be-a class [with slotsvals]) Every value must not be in class and have slotsvals.
(possible-values val1 . . . valN) Each value must either be one of val1 . . . valN , or

be coercible to one of val1 . . . valN through specializa-
tion/unification. Note that Thing21 would be consid-
ered consistent with (possible-values *Red *Blue),
as Thing21 could be unified with either *Red or *Blue
later in reasoning. As always vali can also be an ex-
pression, which will be evaluated before the test. If the
expression evaluates to multiple values, each is consid-
ered a possible value for the slot filler.

(excluded-values val1 . . . valN) Each value must not be one of val1 . . . valN .
(<> expr) The value must not equal (the evaluation of) expr. This

is a special case of excluded-values.
(constraint expr) General form. expr must be true for every value, where

the keyword TheValue in expr denotes the value being
tested.

For example:

;;; “A person’s (possibly zero) friends are people.”
;;; ∀p isa(p, Person)→ ( ∀p′ friends(p, p′)→ isa(p′, P erson) )
KM> (every Person has

(friends ((must-be-a Person))))

;;; “You cannot marry yourself.”
;;; ∀p isa(p, Person)→ ( ∀p′ spouse(p, p′)→ p 6= p′ )
KM> (every Person has

(spouse ((<> Self)))

;;; “Fred’s spouse is himself.” (a constraint violation)
;;; spouse(∗Fred, ∗Fred)
KM> (*Fred has (spouse (*Fred)))
(*Fred)

;;; “Who is Fred’s spouse?”
KM> (the spouse of *Fred)
ERROR! Constraint violation! Discarding value *Fred (conflicts with (<> *Fred))
NIL

Note that constraint violations are detected at inference time, not at load time, as this last example
illustrates.
An example of the possible-values and excluded-values is:

;;; “Fred’s possible favorite color(s) are red, blue, and green, and not pink.” ;;; ∀c favorite-
colors(∗Fred, c)→ c ∈ {∗Red, ∗Blue, ∗Green} ∧ c /∈ {∗Pink}
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KM> (*Fred has
(favorite-colors ((possible-values *Red *Blue *Green)

(excluded-values *Pink))))

Implementationally, these constraints are passed to all instances which appear on the slot favorite-colors,
and stored on the two special slots == and /== (Section 10.4) on those instances.

In fact, these value constraint expressions are special cases of the more general value constraint
expression (constraint expr), meaning that expr must hold for every value in the slot. The
keyword TheValue is used to refer to the value being tested, similar to the use of It in forall
expressions. Thus, for example:

(must-be-a Person) is shorthand for (constraint (TheValue &? (a Person)))
(i.e., the value is unifiable with a person)

(<> *Sue) is shorthand for (constraint (TheValue /== *Sue))

An example of the general form is shown below:

;;; “A person’s children must all be at least 12 years younger than him/herself.”
;;; ∀p isa(p, Person)→ ( ∀c children(p, c)→ isa(c, Person) ∧
;;; (∀a, a′ age(c, a)∧ age(p, a′)→ (a < a′− 12)))
KM> (every Person has

(age ((a Number) (exactly 1 Number))) ; ‘exactly’ explained shortly
(children ((must-be-a Person with

(age ((constraint ((if ( (numberp TheValue)
and (numberp (the age of Self)))

then (TheValue < ((the age of Self) - 12))
else t)))))))))

Note that the constraint has been written to automatically succeed if the two ages being compared
are not known quantities (e.g., Number23).

KM> (*Sue has (instance-of (Person)) (age (20)))
KM> (*Fred has (instance-of (Person)) (age (10)))

;;; “Fred is Sue’s child.” (is a constraint violation)
KM> (*Sue has

(children (*Fred)))

;;; “How old are Sue’s children?” (→ constraint violation encountered and reported)
KM> (the age of (the children of *Sue))
ERROR! Constraint violation! Discarding value *Fred (conflicts with (must-be-a ...
NIL

12.2 Set Constraints

The following expressions declare constraints on the set of values for a given slot:

Expression Meaning
(at-least n class) At least n instances in the set must be in class
(at-most n class) At most n instances in the set must be in class
(exactly n class) Exactly n instances in the set must be in class
(set-constraint expr) General form. expr must be true for the set, where the key-

word TheValues in expr denotes the set.
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These constraints, like others, should be placed on slot values. KM only checks that the upper
bound on the number of allowed values has not been exceeded, on the grounds that new values
may be added later by the user or through inferencing. Thus if there are less values than required,
then no error is reported. Hence, KM performs no test at all for at-least (it is a dummy
constraint), as this is a lower bound constraint. For the special case where the upper bound is 1
(i.e., (at-least/exactly 1 class)) KM will forcibly unify values together if there are more than
one. If the upper bound is more than 1, and that bound has been exceeded, KM will report an
error rather than try to correct the problem by unifying values together.

Be default, for the lower bound constraints, KM will not “pad” slots with new, additional
instances if there are not enough present. For example, (exactly 1 class) will test for but not
cause creation of an instance of class. As a result, the user should not rely on constraints as a
substitute for making regular assertions12 . An example follows

;;; “Airplanes have a fuselage, exactly two wings, and at least one engine.”
;;; ∀a isa(a,Airplane)→ ∃f, w1, w2, e
;;; isa(f, Fuselage) ∧ isa(w1,Wing) ∧ isa(w2,Wing) ∧ isa(e,Engine)
;;; ∧ |{n|parts(a, n) ∧ isa(n,Engine)}| ≥ 1 ∧ |{w|parts(a,w) ∧ isa(w,Wing)}| = 213

KM> (every Airplane has
(parts ((a Fuselage)

(a Wing with (side (*Left)))
(a Wing with (side (*Right)))
(a Engine)
(at-least 1 Engine)
(exactly 2 Wing))))

Note that we define both the presence of an engine (a Engine) and the constraint that there
must be at least one (at-least 1 Engine).

The general form set-constraint is used to define general constraints on the value set, where
the keyword TheValues denotes the set. The following equivalences hold:

(at-most n class) = (set-constraint (the number of
(allof TheValues where (It isa class))) <= n))

(exactly n class) = (set-constraint (the number of
(allof TheValues where (It isa class))) <= n))

(at-least n class) = (ignored)

As already mentioned, note the built-in constraints check for provable violations rather than
partial satisfactions of the constraints, and thus only the upper bounds on number constraints are
checked. (This is why tests for at-most and exactly are the same, and the constraint at-least
is ignored). The user can also declare his/her own set constraints using a (set-constraint ...)
expression, for example the below illustrates a set-constraint which enforces “exactly one” in
a stricter way, ensuring that the instance is not just allowed, but has actually been identified.

;;; “There must be exactly one left wing.”
;;; ∀a isa(a,Airplane)→ |{ w | parts(a,w) ∧ isa(w,Wing) ∧ side(w, ∗Left) }| = 1

12As a somewhat experimental mechanism, this default (lack of) behavior can be changed by setting the
global variable *max-padding-instances* (default 0) to a positive integer, causing KM to creating “missing”
instances on a slot up to a maximum (namely the smaller of the lower bound or *max-padding-instances*).
The role of *max-padding-instances* is to avoid excessive instance generation with constraints like
(at-least 10000 Nucleotide).

13As mentioned, KM in fact performs a weaker test than this as the sets may only be partially known, only testing
the upper bounds on the two number constraints.
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KM> (every Airplane has
(parts ((set-constraint

((the number of (allof TheValues
where ( (It isa Wing)

and ((the side of It) = *Left)))) = 1)))))

12.3 Switching Off Constraint Checking

Some constraints may be primarily to help the knowledge engineer debug the knowledge base at
KB authoring time, by implementing various consistency checks. However, once the author is
confident the KB is correct, it may be desirable to switch those constraints off, so that run-time
inferencing is faster (though at the risk that these “sanity checks” are not performed). To flag
these constraints, a (sanity-check ...) wrapper can be used to rewrite expressions of the form:

(constraint expr)
(set-constraint expr)

as

(constraint (sanity-check expr))
(set-constraint (sanity-check expr))

For example:

(every Person has
(age ((constraint (TheValue < 150)))))

would become

(every Person has
(age ((constraint (sanity-check (TheValue < 150))))))

By default, sanity checking is “off”, and so KM ignores these constraints. However, checking of
these constraints can be turned on by:

KM> (sanity-checks)

and off again with

KM> (no-sanity-checks)

Note that the (sanity-check ...) wrapper cannot be placed around the special constraints such
as (must-be-a ...).

13 Sets, Sequences, and Bags

KM includes features for manipulating sets (unordered, no duplicates), sequences (ordered, du-
plicates allowed), and bags (unordered, duplicates allowed). Sequences are particularly important
for text generation (Section 16), where the ordering of text fragments needs to be preserved. Bags
are particularly important for arithmetic (Section 14), where duplicates in a group of numbers to
operate on should not be removed. In general, KM tries to retain the ordering of elements of sets
also, but the preservation of order is not guaranteed.

44



A set, sequence, or bag is expressed using a list starting with the keyword :set, :seq, or
:bag. Sequences and bags are treated as single items in KM, while a set is treated as a collection
of multiple items. Note that KM always flattens sets14, and will drop the :set keyword if it is
redundant (in particular, when returning the results of a KM query, which is already assumed to
be a set).

In addition, the special symbol :pair is used to denote a sequence of length two.

13.1 Sets

Despite that KM does not guarantee that the ordering of values in a set will be preserved, the
following functions allow the user to select a particular element by location in a set. Use of these
functions is not recommended due this lack of guarantee.

(the first of expr) get first element
(the second of expr) get second element
(the third of expr) get third element
(the fourth of expr) get fourth element
(the fifth of expr) get fifth element
(theNth n of expr) get nth element
(the last of expr) get last element

For example:
KM> (the first of (:set "a" "b" "c"))
("a")

KM> (theNth 3 of (:set "a" "b" "c"))
("c")

The function (the number of expr) returns the cardinality of a set:

KM> (the number of (:set "a" "b" "c"))
(3)

In addition, KM has the operators includes and is-superset-of, testing set membership
and set-subset relationships respectively. See Section 7 earlier for examples of these.

13.2 Sequences and Bags

1. To access individual elements of a sequence or bag, use:

(the1 of seq) get first element
(the2 of seq) get second element
(the3 of seq) get third element
(theN n of seq) get nth element

Note that these are not recommended for bags, as the ordering of elements in a bag is not
guaranteed.

KM> (the1 of (:seq 1 2 1 2 3))
(1)

KM> (theN 5 of (:seq 1 2 1 2 3))
(3)

14This built-in behavior derives from the fact that each KM expression return a set of values, and hence to
properly collect values from a set of expressions (e.g., as on a slot), the (set of sets) results must be flattened.
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2. To convert a set into a bag or seq, use:

(the seq of expr)
(the bag of expr)

For example:

KM> (the bag of (the students of *Bruce))
((:bag *Fred *Joe))

KM> (the bag of (:set 1 2 3))
((:bag 1 2 3))

3. To convert a bag or seq back into a set, use:

(the elements of bagseq)

For example:

KM> (the elements of (:bag 1 2 3))
(1 2 3)

KM> (the elements of (:bag 1 1 2 3))
(1 2 3)

4. To operate on all elements of a bag or seq, use:

(the slot of bag)
(the slot of seq)

When the slot of a bag/seq is requested, slot is queried for all elements of the bag/seq, and
a new bag/seq is returned. i.e., (the slot of bagseq) is mapped over all elements of the
bag/seq.

KM> (the age of (:bag *Chris *Kevin)) ; (twins)
((:bag 13 13))

KM> (the age of (the bag of (the children of *Pete)))
((:bag 13 13 8)) ; Chris, Kevin, Rachel

5. For conditional removal of elements, use:

(forall-bag [var in] bag [where test] expr)
(forall-seq [var in] seq [where test] expr)

These functions are the bag/seq equivalent of the forall forms (Section 8), where bag,
seq is an expression evaluating to a single bag/seq. These functions evaluate expr for each
element of the bag/seq passing test, returning a new bag/seq containing the results of that
evaluation. As with forall, either a variable var or the keyword It can be used to refer to
each item being tested.
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KM> (forall-bag (:bag 1 2 1 2)
where (It < 2)

It)
((:bag 1 1))

;;; Equivalent to the above
KM> (forall-bag ?x in (:bag 1 2 1 2)

where (?x < 2)
?x)

((:bag 1 1))

KM> (forall-seq (:seq 1 2 3 3) (It + 1))
((:seq 2 3 4 4))

KM> (forall-seq (:seq 1 2 3 3) where (It >= 2) (It + 1))
((:seq 3 4 4))

6. For “lengths” (i.e. number of elements) of seq/bags, use:

(the seq-length of seq)
(the bag-length of bag)

Note that (the length of seq) is not the correct function: A bag/seq is considered a single
(structured) item in KM, and so (the length of seq) will return the answer 1. In contrast,
seq-length and bag-length “open up” the bag/seq to count the elements within it.

KM> (the bag-length of (:bag 1 2 1))
(3)

7. To combine two seqs or bags, use the infix operator:

(seq append seq)
(bag append bag)

or for multiple seqs/bags, use append as a slot to append a sequence of sequences (or a bag
of bags):

(the append of (:seq seq1 seq2 ... seqn))
(the append of (:bag bag1 bag2 ... bagn))

This is analogous to the infix/prefix operators used for arithmetic (e.g., + and (the sum of ...)).

KM> ((:seq 1 2) append (:seq 2 3))
((:seq 1 2 2 3))

KM> (the append of (:seq (:seq 1 2) (:seq 2 3)))
((:seq 1 2 2 3))

8. The elements in a sequence can be reversed using:

(reverse seq)

For example:
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KM> (reverse (:seq 1 2 3))
((:seq 3 2 1))

13.3 Equality of Sets, Sequences, and Bags

KM respects the definitions of sets, sequences, and bags when testing equality, as illustrated below:
KM> ((:set 1 2 1) = (:set 2 1))
(t)

KM> ((:bag 1 2 1) = (:bag 2 1 1))
(t)

KM> ((:bag 1 2 1 2) = (:bag 2 1 1))
NIL

13.4 Unification of Sets, Sequences, and Bags

Sets are unified using the set unification operator &&, as described earlier in Section 10.
Unlike sets, a sequence or bag is treated as a single entity, rather than multiple entities. As a

result, sequences and bags are unified with the value unification operator &. When sequences are
unified, KM matches and unifies elements pairwise:

KM> ((:seq 1 2 3) & (:seq _X 2))
(COMMENT: (1 & _X) unified to be 1)
((:seq 1 2 3))

Bags are currently unified as if they were sequences, a limitation of the current implementation.
Thus KM will not realize that two bags containing the same elements in a different order can be
unified. Note that this limitation only affects unification (==, &), not equality testing (=).

14 Arithmetic

14.1 Arithmetic Operators

KM has five infix arithmetic operators for number manipulation: +, -, /, *, and ^ (exponentiation).
As always, these expressions can be issued at the KM prompt, or used in the value of a frame’s
slot, for example:

KM> (1 + 2)
(3)

KM> (1 + (2 ^ 4))
(17)

^ has highest precedence, followed by * and /, followed by + and -.
KM also has several built-in aggregation slots, for combining multiple values into a single value.

These aggregation slots are applied to a bag or set of values, and return a single, combined value.
They are useful when the number of values to be combined is not known in advance. (KM also
allows the user to define additional aggregation slots, see Section 29.15). The built-in arithmetic
aggregation slots are:
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(the sum of bagexpr) addition
(the difference of bagexpr) subtraction (10 - 5 - 1 = 4)
(the product of bagexpr) multiplication
(the quotient of bagexpr) division (8 / 2 / 2 = 2)
(the average of bagexpr) average

(the max of bagexpr) maximum
(the min of bagexpr) minimum
(the number of expr) cardinality

Apart from number, these should all be applied to a KM bag of numbers (:bag), although max
and min can also be applied to a set (KM will temporarily coerce the set to a bag). number should
be applied to a set, and it returns the number of elements in a set. (If it is applied to a bag
or sequence, it will return the answer 1, i.e., there is 1 bag/sequence. To count the number of
elements in a bag/sequence use bag-length and seq-length instead, Section 13.2).

In addition, the following slots are mapping functions, i.e., they are applied to a set/sequence/bag
of numbers, and return a similar sized set/sequence/bag of new numbers:

(the abs of expr) remove negative sign (eg. -1 becomes 1)
(the floor of expr) remove decimals (eg. 1.02 becomes 1)
(the log of expr) log (base e)
(the exp of expr) exponent
(the sqrt of expr) square root

14.2 Examples

14.2.1 Basic Usage
;;; “Joe’s exam scores were 10, 32, and 31.”
;;; exam-score(∗Joe, 10) ∧ exam-score(∗Joe, 32) ∧ exam-score(∗Joe, 31)
KM> (*Joe has

(instance-of (Person))
(exam-scores ((:bag 10 32 31))))

;;; “What was Joe’s best score?”
;;; max({ s | exam-scores(∗Joe, s) })
KM> (the max of (the exam-scores of *Joe))
(32)

;;; “What was Joe’s worst score?”
;;; min({ s | exam-scores(∗Joe, s) })
KM> (the min of (the exam-scores of *Joe))
(10)

KM> (the sum of (the exam-scores of *Joe))
(73)

;;; sum({1 2})
KM> (the sum of (:bag 1 2))
(3)
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14.2.2 Finding Item(s) with a Top Score

Here is an example of arithmetic being used to find the hottest city in the USA.
;;; “USA is a country, with Seattle and Austin as cities.”
;;; isa(∗USA,Country) ∧ cities(∗USA, ∗Seattle) ∧ cities(∗USA, ∗Austin)
KM> (*USA has

(instance-of (Country))
(cities (*Seattle *Austin))) ; just use two cities for now!

KM> (*Seattle has
(instance-of (City))
(mean-temp (50)))

KM> (*Austin has
(instance-of (City))
(mean-temp (90)))

;;; “How hot is the hottest city in the USA?”
;;; max({ t | ∃c cities(∗USA, c) ∧mean-temp(c, t) })
KM> (the max of (the mean-temp of (the cities of *USA))) ; hottest temp
(90)

;;; “Which is(are) the hottest city(s)?”
;;; { c |cities(∗USA, c)∧mean-temp(c, t)∧t = max({t′| ∃c′ cities(∗USA, c′)∧mean-temp(c′, t′)}) }15

KM> (allof (the cities of *USA) ; the hottest city(s)
where ((the mean-temp of It) =

(the max of (the mean-temp of (the cities of *USA)))))
(*Austin)

14.2.3 Cardinality

Consider the KB:

;;; “Cars are vehicles”
;;; superclasses(Car, V ehicle)
(Car has (superclasses (Vehicle)))

;;; “Cars have four wheels, an engine, and a chassis.”
;;; ∃w1, w2, w3, w4, e, c isa(w1,Wheel) ∧ isa(w2,Wheel) ∧ isa(w3,Wheel) ∧ isa(w4,Wheel)
;;; ∧ isa(e,Engine) ∧ isa(c, Chassis)
(every Car has
(parts ((a Wheel) (a Wheel) (a Wheel) (a Wheel) (a Engine) (a Chassis))))

we can ask:

;;; ”How many wheels does a car have?”
KM> (the number of (the Wheel parts of (a Car)))
(4)

Even better, this expression can be placed in the frame itself:

(Car has (superclasses (Vehicle)))

15Again, this semantics assumes mean temperature is single-valued.
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;;; (Last line) “A car’s wheel-count is the number of wheels on that car.”
;;; ∀c isa(c, Car)→ wheel-count(c, number({ w | parts(c, w) ∧ isa(w,Wheel) }))
(every Car has
(parts ((a Wheel) (a Wheel) (a Wheel) (a Wheel) (a Engine) (a Chassis)))
(wheel-count ((the number of (the Wheel parts of Self)))))

14.2.4 Proper use of bags and arithmetic

As the basic arithmetic operators act on bags, not sets, care is needed to convert sets into bags
appropriately. Remember, KM removes duplicates from sets. Consider the example of a teacher
and his class

KM> (*Alan has (class (*Class1))) ; the teacher
KM> (*Sue has (student-of (*Class1)) (age (18)))
KM> (*Joe has (student-of (*Class1)) (age (18)))
KM> (*Mike has (student-of (*Class1)) (age (21)))
...etc...

Suppose now we want to find the average age of students in Alan’s class. Remember, we need a
bag of the ages, so that duplicates are preserved. However, note the following two alternatives:

;;; Wrong! (the age of ...) returns a set (duplicates removed), which is then
;;; turned into a bag (i.e., too late!).
KM> (the bag of (the age of (the students of (the class of *Alan))))
((:bag 18 19 21 22))

;;; This is correct: Get a bag of the students, then find their ages.
KM> (the age of (the bag of (the students of (the class of *Alan))))
((:bag 18 18 21 18 21 18 18 21 ...))

;;; Correct way of finding the average age
KM> (the average of (the age of

(the bag of (the students of (the class of *Alan))))
(19.4241)

14.3 Comparing Numbers: Precision and Tolerance

To tolerate the tiny errors which can arise when using floating point arithmetic, KM uses a param-
eter called *tolerance* (default value 0.0001) to determine when two numbers are “sufficiently
close” to consider them equal when testing equality. The semantics of *tolerance* are as follows:

• For large numbers, it is treated as an absolute value of tolerance, i.e., if two large numbers
are within +/- 0.0001 of each other, they are considered equal.

• For small numbers, it is treated as a relative value of tolerance, i.e., if two numbers are
within +/- 0.01% of each other, they are considered equal.

The choice of which method to use depends on the numbers themselves, with the overall algorithm
behaving as follows:

x = y IF x equals y +/- (0.0001 or 0.01% of max(x,y), whichever is smaller)

This algorithm is designed to support the following desired behavior:
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0.00001 6= 0.00002
4.99999 = 5.00000
499999 6= 500000

The value of *tolerance* can be changed by a Lisp setq statement, if desired.
In addition, the user can explicitly state the tolerance to apply for specific equality tests using

the following forms:

(expr = expr +/- expr) (absolute tolerance)
(expr = expr +/- expr % ) (relative tolerance)

For example:

KM> (99 = 100 +/- 2)
(t)

KM> (99 = 100 +/- 1 %)
(t)

15 Reference by Description

15.1 The Object Stack

During reasoning, KM maintains a list (stack) of the instances created or encountered. We refer
to this stack of instances as the object stack. The command (show-obj-stack) lists the stack,
and (clear-obj-stack) clears it (but, note, doesn’t remove the instances themselves from the
KB):

KM> (show-obj-stack)
_Chassis24
_Engine23
_Wheel22
_Wheel21
_Wheel20
_Wheel19
_Car18
_Chassis17
...

The role of the stack is to provide a notion of “context” or “current scenario” for reasoning;
while there may be many instances in the KB, reasoning can be restricted to just those instances
in the stack. To refer to these instances in the current context by description, the commands
(the ...) and (every ...) are used, as described below. This ability to reference objects by
description (“content-addressable memory”) is particularly useful for natural language process-
ing applications, as reference resolution based on description is an important part of language
understanding.

In addition, the expression (thelast class) refers to the most recent instance of class created.
It is a useful convenience, in a top-level query, for referring back to an earlier instance without
explicitly naming it (as illustrated earlier in this manual). This command should never be included
in a KB, though, as its result is highly situation-specific.
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15.2 Finding Instances

The forms (the class [with slotsvals]) and (every class [with slotsvals]) are used to find instances
by description. These commands do not search the entire KB, but instead restrict their search to

1. Instances on the object stack

2. Instances “accessible from” other instances embedded in the query. For example, a query
for (every Person with (loves (*Sue))) mentions the instance *Sue in the query, and
hence KM has a “handle” to start searching from (i.e. start at *Sue, and find who she is the
loves-of). As with all reasoning in KM, any instances encountered during the search are
added to the object stack (whether or not the search is successful). If there are no explicitly
named instances in the query, however, eg. the query (every Person), KM will simply
search the object stack.

Note also that if the user never issues a (clear-obj-stack) command, then the stack will contain
all reified instances in the KB, and thus the search will, in this case, effectively search the whole
KB.

15.2.1 Finding an Instance

To illustrate the form (the class [with slotsvals]), consider the small KB:
;;; “Joe is a person who owns three vehicles (two cars and a van).”
KM> (*Joe has

(instance-of (Person))
(vehicle ((a Car with (color (*Brown)) (age (*Old)))

(a Car with (color (*Red)) (age (*New)))
(a Van with (color (*Red)) (age (*Old))))))

KM> (Car has (superclasses (Passenger-Vehicle)))
KM> (Van has (superclasses (Passenger-Vehicle)))
KM> (*Red has (instance-of (Bright-Color)))
KM> (*Brown has (instance-of (Dark-Color)))

How can we refer to “Joe’s brown car”, or “Joe’s old, red car”? Note that the path

(the *Brown color of (the Car vehicle of *Joe))

refers to the brown color of a car, not to the car itself. Instead, a (the ... with...) can
be used. Just as the expression “(a class with slotsvals)” creates an instance of class with the
given description, so “(the class with slotsvals)” finds the instance of class which matches (is
subsumed by) the description, subject to the search constraints described above in Section 15.2.
For example:

;;; “Which is the brown car owned by Joe?”
;;; ι(c)( isa(c, Car) ∧ vehicle-of(c, ∗Joe) ∧ color(c, ∗Brown) )16

KM> (the Car with
(vehicle-of (*Joe))
(color (*Brown)))

(_Car0)

16Here using iota notation, where ι(c)α(c) denotes the unique instance for which formula α(c) (containing free
variable c) is true. { ι(c)α(c) } = { c | α(c) } when α(c) is true of just a single instance, and is an ill-formed sentence
otherwise. See [12, p47-48].
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;;; Check: “What color is it?” (should be brown)
KM> (the color of _Car0)
(*Brown) ; Yes! (it’s the Brown one)

;;; “Find the person owning (at least one) red van.”
;;; ι(p)( ∃v isa(p, Person) ∧ vehicle(p, v) ∧ isa(v, V an) ∧ color(v, ∗Red) )
KM> (the Person with

(vehicle ((a Van with
(color (*Red))))))

(*Joe)

Note that the assumes there will be exactly one answer, and will generate an error if none are
found. Thus, this form should be used if the knowledge engineer expects a unique answer, as a
consistency check.

15.2.2 Finding a Set of Instances

To collect multiple (possibly zero) answers, the form (every ... with ...) should be used
instead. In fact, (the ... with ...) is implemented as (every ... with ...) plus an extra
check that exactly one instance was found. The below illustrates the every form:

;;; “Find all the people owning (at least one) red van.”
;;; { p | ∃v isa(v, V an) ∧ color(v, ∗Red) ∧ vehicle(p, v) }17

KM> (every Person with
(vehicle ((a Van with

(color (*Red))))))
(*Joe)

;;; “Find all the passenger-vehicles owned by Joe.”
;;; { v | isa(v, Passenger-V ehicle) ∧ vehicle-of(v, ∗Joe) ∧ color(v, ∗Red) }
KM> (every Passenger-Vehicle with

(vehicle-of (*Joe))
(color (*Red)))

(_Car1 _Van2)

Thus, just as (every ... has ...) is an intensional description of a classs, so (every ... with ...)
computes the partial extension of a class (partial because only instances created thus far are re-
turned).

15.3 Find-or-Create

The KM command the+ behaves like the, except rather than generate an error if a matching
instance cannot be found, it will create one. the+ thus combines the functionality of (the ...)
and (a ...). This function is called find-or-create, also used in other KR languages such as
Algernon [13]. In fact, a and the+ have similar semantics (assert the existence of an instance and
return it), except that a does not assume any coreference between that instance and others in the
KB, while the+ will, if such coreference is possible. If such coreference is ambiguous, e.g. two
instances match a the+ description, then KM will signal an error. The use of the+ is illustrated
below:

17KM may only return a subset of this set, due to the search constraints described in Section 15.2
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;;; “Find-or-create Joe’s red car.”
;;; ∃c isa(c, Car) ∧ vehicle-of(c, ∗Joe) ∧ color(c, ∗Red) ∧ANS = c18

KM> (the+ Car with
(vehicle-of (*Joe))
(color (*Red))))

(_Car1) ; found the old one (defined earlier)

;;; “Find-or-create Joe’s blue car.”
;;; ∃c isa(c, Car) ∧ vehicle-of(c, ∗Joe) ∧ color(c, ∗Blue) ∧ANS = c
KM> (the+ Car with

(vehicle-of (*Joe))
(color (*Blue))))

(_Car3) ; a new one is created, [1]

KM> (showme *Joe)
(*Joe has
(instance-of (Person))
(vehicle (_Car3 _Van2 _Car1 _Car0))) ; note new _Car3, from [1] above

Finally, the symbol a+ is a synonym for the+ in KM.
In the terminology of computational linguistics, the “find” and “create” operations correspond

to “binding” and “accommodation” operations in reference resolution.

16 Text Generation

16.1 Introduction

Slot-values can include text strings, and this provides the basis for automatic text generation
from the KB, using simple “fill in the blank” text templates. Sophisticated text generation
capabilities were achieved in a previous project (project Halo, http://www.projecthalo.com/)
using this mechanism.

A template is a sequence of strings and KM expressions, and is placed as the value of a frame’s
slot. (Note that a sequence rather than set is needed, to preserve order and allow repeated
elements). Filling in the template involves evaluating the paths in the template, replacing the
found instances with their print names, and then concatenating the resulting string fragments
together. The first of these tasks, evaluating the paths, happens automatically if the user (or
another part of the KB) queries for that slot’s value (KM always evaluates slot values before
returning them). The other two tasks, namely replacing the found instances with their print
names and concatenating the results, is performed by the function (make-sentence ...) or
(make-phrase ...)

16.2 Making Phrases and Sentences

To convert a sequence of fragments into a sentence, the expression (make-sentence expr) is
used. make-sentence first evaluates all paths in expr, returning a sequence of elements (typically
strings and instances). It then converts any instances to their text names (see next subsection)
and concatenates all the elements, capitalizing the first word and adding a period. make-phrase
does the same thing, except does not capitalize or add a period. For example:

18where, as usual, ANS is the returned answer (a function of the query + KB), see Section 3.2.
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KM> (make-sentence (:seq *Pete "is happy"))
("Pete is happy.")

KM> (make-phrase (:seq *Pete "is happy"))
("pete is happy")

If the text template (sequence) itself contains a sequence, or an expression which evaluates to a
sequence, then KM operates recursively, building a text string from each embedded sequence and
then combining those together. For example:

KM> (make-sentence (:seq "I think" (:seq "the" "man") "is happy"))
("I think the man is happy.")

This mechanism allows the user to embed expressions in a template which themselves return text
templates.

By default, KM places a space character between each text string element. To suppress this,
use the special string "nospace":

KM> (make-phrase (:seq "a" "b"))
("a b")

KM> (make-phrase (:seq "a" "nospace" "b"))
("ab")

KM> (make-phrase (:seq "I like" Cat "nospace" "s"))
("I like cats")

16.3 Generating Names of Instances

As described above, a text generation sequence will evaluate to a sequence of strings and instances.
To convert an instance to text, the built-in slot name is used, which returns either a string or a
sequence of strings. By default, (the name of instance) behaves as follows:

• Named instances called *name are converted to the lower-case string "name"
• Anonymous instances (i.e., with names starting with ‘ ’) are converted to the sequence
(:seq "the" class), where class is the first of that instance’s immediate generalizations.

• An instance of a class (e.g., Cat) is converted to a lower-case string (e.g., "cat")

KM> (the name of *MyCar)
("mycar")

KM> (the name of (a Car))
((:seq "the" Car))

KM> (the name of Car)
("car")

This default behavior can be changed by declaring an explicit value on the name slot of an instance
or one of its generalizations.

16.4 Converting Sets to Text

The function (andify expr) converts a set to a text sequence, inserting the word "and" and
commas as appropriate:
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KM> (andify (:set 1))
((:seq 1))

KM> (andify (:set 1 2))
((:seq 1 " and " 2))

KM> (andify (:set 1 2 3))
((:seq 1 ", " 2 ", and " 3))

As before, the function make-sentence can then be used to convert the sequence into a text
string.

16.5 Example

Thus for complete text generation, we define a “text template” on a frame’s slot, query it to find
its components, and recursively apply make-sentence to the result to produce a single string. For
example, consider a text template for describing “removing” activities:

(Remove has (superclasses (Activity)))

(every Remove has
(text ((:seq "Remove" (the object of Self) "from" (the location of Self)))))

Thus a query for this slot on an instance of Remove will produce the instantiated template:
KM> (the text of (a Remove with

(object ((a Sample)))
(location ((a Box)))))

((:seq "Remove" _sample346 "from" _box347))

And a call to make-sentence will convert this to a single text string:

KM> (make-sentence (the text of (a Remove with
(object ((a Sample)))
(location ((a Box))))))

("Remove the sample from the box.")

The frame Remove thus includes information about how to describe itself. (We could add other
information too, for example the preconditions and effects of a remove). Now we can use the
Remove concept elsewhere, and have KM resolve the references to its object and location at
run-time, and hence generate customized text.

16.6 Situation-Specific Text Generation

Consider a small KB about electrophoresis (a process for separating a chemical into its con-
stituents):

(Remove has (superclasses (Activity)))

(every Remove has
(text ((:seq "Remove" (the object of Self) "from" (the location of Self)))))

(every Electrophoresis has
(sample ((a Chemical)))

57



(equipment ((a Separation-unit) (a Syringe)))
(first-task (
(a Remove with

(object ((the sample of Self)))
(location ((the delivery-medium of (the sample of Self))))))))

(Albumin has (superclasses (Chemical)))

(every Albumin has
(delivery-medium ((a Bottle))))

Note that the first-task of electrophoresis is described as a particular instance of a remove, in
which the object is the sample being separated, and the location it’s being removed from is that
sample’s delivery medium. We can now ask for a description of this remove:

KM> (the text of (the first-task of (a Electrophoresis with
(sample ((a Albumin))))))

((:seq "Remove" _Albumin353 "from" _Bottle354))

KM> (make-sentence (the text of (the first-task of (a Electrophoresis
with (sample ((a Albumin)))))))

("Remove the albumin from the bottle.")

16.7 A More Detailed Example

A more sophisticated KB illustrating this is shown in Tables 2 and 3. Note that one of the tasks
is conditional (on the density of the sample being ≥ 3), and that the duration of the Wait step is
a function of the sample’s density.

Here is an example of querying this KB. Note how the objects in the text are customized
based on which sample is being separated (and, if this was a more general KB, other experimental
details):

KM> (forall (the subevents of (a Electrophoresis with (sample ((a Albumin)))))
(make-sentence (the text of It)))

("Remove the albumin from the bottle."
"Insert the albumin into the separation-unit using the syringe."
"Wait 36 seconds."
"Remove the albumin from the separation-unit."
"Store the albumin in the fridge.")

KM> (forall (the subevents of (a Electrophoresis with (sample ((a Endoprotein)))))
(make-sentence (the text of It)))

("Remove the endoprotein from the box."
"Insert the endoprotein into the separation-unit using the syringe."
"Add the dilutant to the separation-unit."
"Wait 125 seconds."
"Remove the endoprotein from the separation-unit."
"Store the endoprotein in the vacuum-flask.")

16.8 Printing Floating Point Numbers

End-users are often unhappy to see floating point numbers printed out to multiple decimal
places. To provide some control of how numbers are printed, KM has a global variable called
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;;; ======================= START OF DEMO KB ==============================

(every Electrophoresis has
(sample ((a Chemical)))
(equipment ((a Separation-unit) (a Syringe)))
(subevents (

(a Remove with
(object ((the sample of Self)))
(location ((the delivery-medium of (the sample of Self)))))

(a Insert with
(object ((the sample of Self)))
(destination ((the Separation-unit equipment of Self)))
(equipment ((the Syringe equipment of Self))))

(if ((the density of (the sample of Self)) >= 3)
then ((a Add with

(object ((a Dilutant)))
(destination ((the Separation-unit equipment of Self))))))

(a Wait with
(duration ((the floor of ((the density of (the sample of Self)) * 30))))
(units (*Seconds)))

(a Remove with
(object ((the sample of Self)))
(location ((the Separation-unit equipment of Self))))

(a Store with
(object ((the sample of Self)))
(destination ((the storage-medium of (the sample of Self))))))))

;;; ----------

(Remove has (superclasses (Activity)))
(every Remove has
(text ((:seq "Remove" (the object of Self) "from" (the location of Self)))))

(Insert has (superclasses (Activity)))
(every Insert has
(text ((:seq "Insert" (the object of Self) "into" (the destination of Self)

"using" (Self equipment)))))

(Add has (superclasses (Activity)))
(every Add has
(text ((:seq "Add" (the object of Self) "to" (the destination of Self)))))

(Wait has (superclasses (Activity)))
(every Wait has
(text ((:seq "Wait" (the duration of Self) (the units of Self)))))

(Store has (superclasses (Activity)))
(every Store has
(text ((:seq "Store" (the object of Self) "in" (the destination of Self)))))

;;; ---------- CONTINUED OVER... ----------

Table 2: A simple KB, containing text templates for text generation (part 1).
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;;; ---------- DEMO KB (CONT) ----------

(Albumin has (superclasses (Chemical)))
(every Albumin has
(density (1.2))
(delivery-medium ((a Bottle)))
(storage-medium ((a Fridge))))

(Endoprotein has (superclasses (Chemical)))
(every Endoprotein has
(density (4.2))
(delivery-medium ((a Box)))
(storage-medium ((a Vacuum-flask))))

;;; ======================= END OF DEMO KB==============================

Table 3: A simple KB, containing text templates for text generation (part 2).

*output-precision*, determining how many decimal places make-sentence should print out.
Note this does not affect KM’s internal storage and reasoning with numbers, only the way num-
bers are displayed with make-sentence and make-phrase.

By default, *output-precision* has the value 2, meaning that make-sentence will print out
numbers to two decimal places either in normal notation (if the number > 0) or scientific notation
(if the number is < 0). The complete behavior is illustrated below:

Number Printed (by make-phrase or make-sentence) as:19

*output-precision*=2 *output-precision*=3
123456.789 ”123456.79” ”123456.790”
12345.6789 ”12345.68” ”12345.679”
1234.56789 ”1234.57” ”1234.568”
123.456789 ”123.46” ”123.457”
12.3456789 ”12.35” ”12.346”
1.23456789 ”1.23” ”1.235”
0.123456789 ”0.123” ”0.1235”
0.0123456789 ”0.0123” ”0.01235”
0.00123456789 ”1.23e-3” ”0.001235”
0.000123456789 ”1.23e-4” ”1.235e-4”
0.0000123456789 ”1.23e-5” ”1.235e-5”

To turn off this rounding function, do:
KM> (SETQ *OUTPUT-PRECISION* NIL)

17 Automatic Classification

17.1 Introduction

KM includes machinery for handling defined concepts, ie. concepts with a set of sufficient con-
ditions for class membership/instance equivalence. For class membership, if an instance satisfies
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the class’s defining properties then KM asserts that it is an instance of that class. For instance
equivalence, if an instance satisfies another instance’s defining properties then KM asserts that
both instances are coreferential (by unifying them, described in more detail in Section 10). KM
uses these definitions to automatically classify instances during run-time query processing. How-
ever, note that KM does not check that definitions of different classes are consistent with each
other, nor check that defined classes are correctly placed in the isa hierarchy.

Classification can be thought of as ‘recognition’ that a particular instance is a member of/coreferential
with another concept in the KB, and hence allow additional information about that instance to be
inferred. Like multiple inheritance, the ability to classify is central to building modular knowledge-
bases: As separate pieces of information come together, the compound result may be recognizable
as an instance of an already-known concept, and allow further information to be concluded. This
in turn may allow further classification to occur etc. This cycle of classification and elaboration
can be powerful, and is described in more detail in [14].

Definitional properties of a concept are placed on a separate frame for that concept, specified
just like a normal frame except using a ‘has-definition’ rather than ‘has’ keyword. For indexing
purposes, the definitional properties must include an instance-of slot, stating the most general
class(es) which instances can have. A concept cannot have more than one definition.

(every <class> has-definition
(instance-of (<most-general-class>))
(<slot1> (<expr11> <expr12> ...)) ; conditions for membership
... )

(<instance> has-definition
(instance-of (<most-general-class>))
(<slot1> (<expr11> <expr12> ...)) ; conditions for equivalence
... )

A class’s definitional properties inherit down to its instances, just as normal assertional (every...has...)
properties do. Note it is redundant to state a property both as a definition and as an assertion,
as the definition necessarily implies the assertion.

Logically, a definition (has-definition) is a bi-directional implication, while a normal asser-
tion (has) is a unidirectional implication. Consider the two propositions:

∀x isa(x,Mexican)→ isa(x, Person) ∧ lives-in(x,Mexico)
∀x isa(x,Mexican)↔ isa(x, Person) ∧ lives-in(x,Mexico)

The first is an assertion (“Mexicans live in Mexico”), but the second is a definition (“Mexicans
live in Mexico, and all people who live in Mexico are Mexicans.”). The second allows KM to
recognize instances which satisfy the definition as members of a class. These alternatives would
be stated in KM as follows:

;;; “Mexicans are people who live in Mexico.”
;;; ∀x isa(x,Mexican)→ isa(x, Person) ∧ lives-in(x,Mexico)
KM> (Mexican has (superclasses (Person)))
KM> (every Mexican has (lives-in (*Mexico)))

;;; “Mexicans are people who live in Mexico, and vice versa.”
∀x isa(x,Mexican)↔ isa(x, Person) ∧ lives-in(x,Mexico)
KM> (every Mexican has-definition

(instance-of (Person))
(lives-in (*Mexico)))
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17.2 Defined Classes (Testing for Membership)

17.2.1 Example

The below gives an example of the definition of a square:

KM> (Square has
(superclasses (Rectangle))) ; immediate superclass

;;; “Any shape whose length = its width is a square.”
;;; ∀s isa(s, Square)↔ isa(s, Shape) ∧ width(s, w) ∧ length(s, l) ∧ w = l20

KM> (every Square has-definition ; ‘Definitional’ properties
(instance-of (Shape)) ; most general superclass
(width ((the length of Self)))
(length ((the width of Self))))

;;; “Squares are pretty.”
;;; ∀s isa(s, Square)→ appearance(s, ∗Pretty)
KM> (every Square has ; ‘Incidental’ properties

(appearance (*Pretty)))

Note that being pretty is not part of the definition of a square (no all pretty things are squares);
rather it is an implied property (“if an object is a square then it is pretty”). Note also the
distinction between the square’s ‘most general’ class (Shape), specified in the definition, and the
immediate class(es) (Rectangle), specified in the superclasses slot. We say Square is a defined
subclass of Shape, meaning, in terms of inference, that any created/modified instance of Shape
will be (re-)tested for Square membership. Finally to complete the representation we also need:

;;; “All rectangles are shapes.”
KM> (Rectangle has (superclasses (Shape)))

Now KM will classify shapes satisfying this definition as squares:

;;; “What is the appearance of a rectangle, with width and length 10?”
;;; ∃r isa(r,Rectangle) ∧ width(r, 10) ∧ length(r, 10) ∧ANS = { a | appearance(r, a) }
KM> (the appearance of (a Rectangle with (width (10)) (length (10))))
(Changing _Rectangle319’s classes from (Rectangle) to (Square))
(*Pretty)

Any time an instance is created or modified, KM automatically attempts to reclassify it by
climbing up the isa hierarchy, looking for defined subclasses of the classes which are encountered,
and then seeing if that instance satisfies any of those subclasses’ definitions. For example, if a
Man is defined as a Person whose gender is Male, then Man is a defined subclass of Person, and
that definition will be tested any time an instance of person is created or modified. Thus, defined
subclasses of very general classes (eg. Red-thing is a Thing which is Red) will be tested very
frequently (here, every time an instance of Thing is created or modified). For efficiency it is
probably wise to use such very general classes sparingly in definitions.

20Strictly, the semantics of the KM expression is that “all the widths = all the lengths”. The above logical
expression simplifies this on the assumption that all shapes have exactly one length and one width.
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17.2.2 Usage

A primary role of defined concepts is to enable “automatic recognition” of instances of a particular
class: As more information becomes known about an instance, it may trigger re-classification of
that instance if it satisfies a definition, thus providing new information about that instance. This
relaxes the requirement that instances always be manually placed in the most specific, appropriate
position in the ontology, as KM will automatically perform this task if an instance satisfies a
defined class.

A second useful role is for referring to all values of a slot (This can also be done in an
alternative way using constraints, Section 12.1, but for now we describe a classification approach).
For example, suppose we want to say that all wheels of a Nissan cost $30. Rather than annotating
wheels on the Nissan frame, which would affect only specific instances of wheel, the knowledge
engineer can reify the concept of a Nissan wheel:

(Nissan-Wheel has
(superclasses (Wheel)))

;;; “Nissan wheels are wheels on a Nissan (car).”
;;; ∀w isa(w,Nissan-Wheel)↔ isa(w,Wheel) ∧ ∃n isa(n,Nissan) ∧ parts-of(w, n)
(every Nissan-Wheel has-definition
(instance-of (Wheel))
(parts-of ((a Nissan)))) ; definitional property

;;; “Nissan wheels cost $30.”
;;; ∀w isa(w,Nissan-Wheel)→ cost(w, 30)
(every Nissan-Wheel has
(cost (30))) ; incidental (implied) property

;;; “Every Nissan has four wheels.”
(every Nissan has
(parts ((a Wheel) (a Wheel) (a Wheel) (a Wheel))))

(Nissan has (superclasses (Car)))

Now if we ask for the wheels of a Nissan, they will automatically be classified as Nissan-Wheel,
thus acquire the property that each costs $30:

KM> (the parts of (a Nissan))
(_Wheel242 satisfies definition of Nissan-Wheel:
Changing _Wheel242’s classes from (Wheel) to (Nissan-Wheel))

(... etc. for the other wheels also)
(_Wheel242 _Wheel243 _Wheel244 _Wheel245)

KM> (showme _Wheel242)
(_Wheel242 has

(cost (30))
(parts-of (_Nissan241))
(instance-of (Nissan-Wheel))) ; Note KM has classified Wheel242

;;; “How much do the wheels of a Nissan cost?”
;;; ∃n isa(n,Nissan) ∧ANS = sum({ c | ∃w parts(n,w) ∧ isa(w,Wheel) ∧ cost(w, c) })
KM> (the sum of (the cost of (the Wheel parts of (a Nissan))))
(120)
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17.2.3 Conditionals or Classification?

In many cases, information about ‘special cases’ of a class can be represented either using an
if...then... rule in a slot’s value, or alternatively by reifying those ‘special cases’ into subclasses
in their own right, and then letting the classification mechanism automatically determine when
an instance of the class is also in one of those subclasses. The knowledge engineer needs to make
a design decision as to which is best; often the classification alternative results in a more modular
(and hence maintainable) knowledge base.

To illustrate this, consider representing that a person’s life expectancy is (say) 75 years, unless
he/she smokes in which case it is (say) 70 years. We could represent these alternative cases as a
rule on Person:

;;; “the life expectancy of a smoker is 70, otherwise it is 75.”
;;; ∀p isa(p, Person)→ ( smokes(p, ∗Y es)→ life-expectancy(p, 70) ; life-expectancy(p, 75) )21

(every Person has
(life-expectancy ((if ((the smokes of Self) = *Yes)

then 70
else 75))))

or alternatively we can reify these cases by define two subclasses, Smoker and Non-smoker:

;;; “People who smoke are smokers.”
;;; ∀s isa(s, Smoker)↔ isa(s, Person) ∧ smokes(s, ∗Y es)
(every Smoker has-definition

(instance-of (Person))
(smokes (*Yes)))

;;; “A smoker’s life-expectancy is 70 years.”
;;; ∀s isa(s, Smoker)→ life-expectancy(s, 70)
(every Smoker has

(life-expectancy (70)))

;;; “People who don’t smoke are non-smokers.”
;;; ∀n isa(n,Non-Smoker)↔ isa(n, Person) ∧ smokes(n, ∗No)
(every Non-Smoker has-definition

(instance-of (Person))
(smokes (*No)))

;;; “A non-smoker’s life-expectancy is 75 years.”
;;; ∀n isa(n,Non-Smoker)→ life-expectancy(n, 75)
(every Non-Smoker has

(life-expectancy (75)))

Both alternatives produce the same answer to the query:

KM> (the life-expectancy of (a Person with
(smokes (*Yes))))

(70)

KM> (the life-expectancy of (a Person with
(smokes (*No))))

(75)

21Assuming smokes() and life-expectancy() are single-valued. (X → Y ; Z) is shorthand for (X → Y )∧not(X)→
Z, where not() is negation as failure.
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However the classification approach, although more verbose here, is more modular – for example
we can easily add additional properties about smokers/non-smokers by simply adding information
to the Smoker or Non-Smoker frames. The alternative with if...then... rules would be to add
more conditional expressions on the Person frame, essentially “mixing up” information about
people, smokers and non-smokers in a single frame. This will rapidly produce a large and messy
frame structure if a lot of information is to be included. The knowledge engineer thus needs to
carefully decide whether if...then... rules should be used, or whether the objects satisfying the
rules should be reified into new subclasses with definitional properties.

17.2.4 Definitions based on Constraints rather than Slot-Values

Some definitions are based on constraints, rather than the presence of particular slot-values. For
example, how can we express the definition that “an adult is a person over 21 (say) years old”?
To do this, the constraint “age ≥ 21” needs to be re-expressed as a slot-value test, by introducing
the property over-21 (say), and then testing that this property holds:

;;; “A person is ‘over 21’ if their age is greater than or equal to 21.”
;;; ∀p isa(p, Person)→ ( (∃a age(p, a) ∧ a ≥ 21)→ over-21(p, ∗Y es) )
KM> (every Person has

(over-21 ((if ((the age of Self) >= 21) then *Yes))))

;;; “Adults are people over 21, and vice versa.”
;;; ∀a isa(a,Adult)↔ isa(a, Person) ∧ over-21(a, ∗Y es)
KM> (every Adult has-definition

(instance-of (Person))
(over-21 (*Yes)))

;;; Create a 30 year old person...
KM> (a Person with (age (30)))
(_Person0 satisfies definition of Adult: ; KM correctly concludes
Changing _Person0’s classes from (Person) to (Adult)) ; he/she is an adult

(_Person0)

;;; “Is this person an adult?”
KM> (_Person0 isa Adult)
(t) ; Yes!

17.2.5 Classification and the Closed-World Assumption

What happens if a definition refers to a slot, whose value is unknown? For example:
;;; “If a car is the favorite color of it’s owner, then it’s a nice car.”
KM> (every Nice-Car has-definition

(instance-of (Car))
(color ((the favorite-color of (the owner of Self)))))

If we now create an instance of a Car (whose owner is unspecified), KM would classify this as a
Nice-Car:

KM> (a Car)
CLASSIFY: _Car23 is a Nice-Car!

This would happen as, when testing if Car23 satisfies the definition of Nice-Car, KM compares
Car23’s color (NIL), with the favorite color of the owner of the car (also NIL), and as they are
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the same, considers the definition satisfied. This is undesirable, as the author clearly intended the
definition to only apply when the owner’s favorite color was known, i.e., the author did not intend
the closed-world assumption (CWA) to apply.

In fact, KM has a tweak in to prevent this kind of inference: Every definitional expression
is expected to return at least one value, and if there are more definitional expressions than slot
values on the instance being tested, the classification fails. In other words, KM assumes that
each definitional expression was put there for a reason. Note that this does not include constraint
expressions in definitions, and so care needs to be taken still with definitions based on constraints.

If KM makes a classification using the closed-world assumption, and new information comes in
invalidating that classification, KM will not be able to recognize this and undo that classification.

17.3 Defined Instances (Testing for Equivalence)

As well as defining properties for class membership, the user can also define properties for equiv-
alence – that is, if an anonymous instance I satisfies the defining properties of instance DI, then
KM will conclude that I is, in fact, DI (ie. is coreferential with DI). For example, KM may
recognize that a country being described is the UK, or that a car being described is in fact Joe’s
car. This classification machinery is similar to that for recognizing class membership, except the
final step involves unifying (rather than defining instance-ship between) the instance being tested
and the defined object. This unification is performed using the & unification operator, as described
in Section 10. For example:

;;; “London is that city which is the capital of the UK”
;;; ∀isa(l, ∗City) ∧ capital-of(l, ∗UK)↔ l = ∗London
KM> (*London has-definition

(instance-of (City)) ; most general class
(capital-of (*UK)))

;;; “London is a big city, with a population of ten million.”
;;; isa(∗London,Big-City) ∧ population(∗London, 10000000)
KM> (*London has

(instance-of (Big-City)) ; immediate class
(population (10000000)))

KM> (Big-City has (superclasses (City)))

;;; “How big is a (the) city which is capital of the UK?”
;;; ∃c isa(c, City) ∧ capital-of(c, ∗UK) ∧ANS = { p | population(c, p) }
KM> (the population of (a City with (capital-of (*UK))))
(_City24 satisfies definition of *London: Unifying _City24 with *London)
(10000000)

Note that KM considers named instances (those whose names do not begin with a ‘ ’) as distinct,
and does not allow them to unify (Section 10). Thus if an anonymous instance satisfies more than
one (named) instance’s definition, KM considers this a KB error and will report it to the user.
Historical Note: By default, if any of an instance’s slot values change, KM will re-attempt
classification of that instance. This includes testing definitions which do not directly reference that
slot, as the change may indirectly affect the slots which are referenced by the definition (“indirect
classification”). In addition, computations during classification may themselves trigger additional
classifications (“recursive classification”). In older versions of KM, these default behaviors could
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(and still can) be turned off by setting the global variables *indirect-classification* and
*automatic-classification* to nil. This improves reasoning efficiency but at the cost of adding
incompleteness to KM’s reasoning, and is not recommended.

There is still a remaining source of incompleteness in KM’s classification, namely when changes
elsewhere in the KB imply an instance’s classification should change, i.e., non-local effects do not
trigger classification of an instance. This is described later in Section 30.1.2.

18 Intensional Representations and Subsumption

18.1 Introduction

Closely related to automatic classification are the topics of intensional representations and sub-
sumption. While automatic classification involves writing class definitions and testing whether
instances satisfy them, intensional representations concern manipulating definitions as objects in
their own right, and subsumption involves ascertaining whether one definition is “more general”
than another (i.e., a class-class test, in contrast to automatic classification’s class-instance tests).

As background, it is important to distinguish between a concept’s intension and extension.
The extension of a concept (class) is the set of its members (under some interpretation), while
the concept’s intension is the concept itself. For example, the intension of the concept of dogs
might be represented by the symbol Dog (a class), while the extension of the concept of dogs
would be the set of all instances of the class Dog. Note that intensions and extensions are related
but distinct: two concepts (eg. “the morning star” and “the evening star”, or “unicorns” and
“dragons”) may have the same extension but still be distinct (have different intensions). In KM,
intensions are denoted by classes, and extensions are denoted by those classes’ instances. Formally,
a concept’s extension is a mapping from individuals to truth values (under some interpretation),
while a concept’s intension is a mapping from possible worlds onto extensions.

Intensional representations are important, because in many cases it is useful to manipulate
concepts directly rather than manipulate just their instances. In particular, natural language uses
intensional descriptions extensively, e.g., “John wants to play soccer” refers to a type (class) of
activity (namely, playing soccer), rather than a specific instance of that activity (e.g., Play203).
Intensional representations provide a means for representing these types in a structured form, and
exploiting that structure in reasoning (compared with, say, just using an unstructured class name
like PlaySoccerEvent).

18.2 Class Descriptions

In the simplest case, we denote a concept (class) using a symbol, e.g., Dog denotes the concept of
dogs. As a generalization of this, we can also denote classes using a structure, of the form:

(the-class class [with slotsvals])

For example, the expression:

KM> (the-class Cat with
(color (*Black)))

denotes the class “black cats”. Unlike other expressions, KM does not evaluate the-class struc-
tures. Rather, they behave like “quoted expressions”, to be manipulated by KM just like atomic
class names. Note the following important equivalence holds:
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Cat = (the-class Cat) = a denotation of the concept “cat”

The properties specified in the the-class expression are the defining properties of this con-
cept, and thus the-class expressions and automatic classification (Section 17) are closely related
(including sharing some subroutines in the software implementation). The main difference is that
a defined class is a named (reified) class which is a permanent part of the KB taxonomy, while a
the-class expression is a transient, non-reified concept. The ability to denote classes by struc-
tures as well as symbols is important: it means we do not have to reify (give an explicit name to)
every concept of interest, which can otherwise clutter a KB, and instead create class descriptions
compositionally on demand when they are needed for specific tasks. For example, in the domain
of chemistry, if we want to test whether a chemical instance is a yellow precipitate, we could use
a class description rather than multiple attribute tests:

KM> (_Chemical1 isa (the-class Precipitate with
(color (*Yellow))))

Similarly, we might choose to represent the primary purpose of an artifact by an event class, e.g.,
“the purpose of a car is to transport people”, which could be encoded:

KM> (every Car has
(purpose ((the-class Transport with

(transporter (Self))
(transportee ((a Person)))))))

Note that the purpose is not a single, specific transportation event; rather, the purpose is char-
acterized by an event type (class) which it was designed to perform. This can be captured par-
simoniously using a the-class expression, as shown above, rather than reifying a class named
Transportation-Of-People-By-Car or something similar.

18.3 Subsumption

It is often useful to know when one concept description is “more general” than another, ie.
“subsumes” another. For example (the-class Car) subsumes (the-class Car with (color
(*Red))), as all members of the latter are necessarily also members of the former. Formally,
concept (class) C1 subsumes concept C2 if “being a C2” logically implies “being a C1”, that is, if
∀x isa(x,C2) → isa(x,C1). We can equivalently define subsumption using denotational seman-
tics: If CI1 , CI2 are the extensions of the sets {x|isa(x,C1)}, {x|isa(x,C2)} respectively under some
interpretation I, then C1 subsumes C2 if CI1 ⊇ CI2 for all interpretations I. This is the standard
definition of subsumption used in Description Logics.

KM’s comparison operator subsumes will compute subsumption. This involves testing that
the subsumer’s class is a superclass of the subsumee’s, and testing that the subsumee necessarily
has all the properties of the subsumer. These tests may involve inferencing, but note that the
subsumption test is not logically complete (which in general is intractable), as KM underlying
inference method (backward-chaining, negation-as-failure) is incomplete (see Section 30).

For example, given the below query:

;;; "Are all elephants animals with trunks?"
KM> ((the-class Animal with (parts ((a Trunk)))) subsumes (the-class Elephant))

KM will check that
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(i) Elephant is a subclass of Animal
(ii) All Elephants have (at least) a trunk part. (This may involve inferencing).

As (the-class Elephant) is equivalent to Elephant, we could have asked equivalently:

;;; "Are all elephants animals with trunks?"
KM> ((the-class Animal with (parts ((a Trunk)))) subsumes Elephant)

The inverse operator is-subsumed-by is also defined in KM.

18.4 isa

The operator isa, described earlier, checks whether an instance is in a class (rather than subsumes,
which compares a class with a class). With isa, class can be an intensional class description, not
just a class name, e.g.:

KM> (a Dog with (color (*Black)) (age (20)))
(_Dog1)

KM> (_Dog1 isa (the-class Dog with (color (*Black))))
(t)

subsumes and isa can be thought of as the intensional equivalents of is-superset-of and
includes operators (Section 13), which manipulate sets.
Historical Note: The operators covers and is-covered-by in earlier versions of KM have been
replaced by this generalized version of isa, and are no longer supported.

19 Explanations

19.1 Facts and Rules in KM

KM includes a method for explaining (justifying) the facts that it concludes through inference. A
fact is an instance, slot, and value for that slot – in logic, this is simply a ground, binary assertion
slot(instance, value). To refer to facts (i.e., treat them as objects in their own right), KM uses a
“triple” notation of the form:

;;; slot(instance, value)
(:triple instance slot value)

This ability to manipulate ground propositions as objects in their own right is used extensively in
KM’s situation mechanism [8]. It is also used here for explanation.

Each expression on a frame’s slot can be thought of as a “rule” (for computing that slot’s
values). An explanation for a fact in KM constitutes an (English rendition of) the rule(s) which
concluded that fact, plus, recursively, explanations for facts supporting those rules. For example,
given the KB:

;;; Every car has an engine.
KM> (every Car has

(parts ((a Engine) (a Chassis))))

and the queries:
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KM> (a Car)
(_Car0)

KM> (the parts of _Car0)
(_Engine1 _Chassis2)

Then the concluded fact

(:triple Car0 parts Engine1)

is supported by the “rule”

(every Car has (parts ((a Engine))))

19.2 The (why) Command

During reasoning, for every ground fact concluded, KM records the rule(s) (KM expressions)
which were used to derive it. This produces a database of “proof tree fragments” (the explanation
database), from which a full explanation can be generated. To see entries in this database, showing
which rule(s) support which facts, use the command (why [triple]). For example:

KM> (why (:triple _Car1 parts _Engine2))
(:triple _Car1 parts _Engine2 [in *Global]) because:

RULE: (every Car has (parts ((a Engine))))

If the [triple] argument is omitted, (why) will default to showing rules answering the previous
query. In addition, if entry and exit paraphrases for this rule are provided (using a comment
assertion, described in the next subsection), these will also be shown in the output.

19.3 Using English Paraphrases of Rules

19.3.1 Comment Tags

To generate explanations in English, the user can attach English paraphrases, or “comments” to
individual rules. Comments are expressed using a structure:

(comment tag [exit-text entry-text supporting-facts])

In fact, the comment structure includes two paraphases of the rule, one to print when the rule is
applied (the entry-text), and one to print when the rule’s computation is complete (the exit-text).
We illustrate these shortly. tag is a symbol enclosed in square brackets []. To associate this
comment with a KM expression, the same tag is placed (anywhere) within that KM expression.
(These tags are filtered out before expression itself is evaluated). For example:

KM> (every Car has
(parts ((a Engine [Car1]))))

;;; The explanation text attached to this rule
KM> (comment [Car1] "Thus, this car has an engine." "All cars have engines.")
KM> (a Car)
(_Car2)

KM> (the parts of _Car2)
(_Engine3)
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To see an explanation expressed using these English paraphrases, use the command (justify [triple]).
For example:

KM> (justify (:triple _Car2 parts _Engine3))
All cars have engines.
Thus, this car has an engine.

19.3.2 Text Generation

The full power of KM’s text generation can be used in the entry and exit text parts of comment
tags. Thus these text paraphrases can be strings, :seq text sequences, or arbitrary KM expressions
which evaluate to a string or text sequence. Details on text generation in KM is given in Section 16.

19.4 Recursive Explanations

The comment tag optionally includes a last argument, supporting-facts, in which the user can
explicitly list the “key” facts which that rule depends on. These facts are expressed either as
one or a set of :triple structures, and KM’s explanation mechanism will recursively explain
these facts, when explaining the main rules. The idea here is that the user explicitly lists those
facts which caused the rule to succeed, and which are worth further explanation. This is for two
purposes: First, KM currently cannot work out the supporting facts automatically, requiring the
user to specify them. Second, KM does not know which supporting facts are “interesting” to
explain and which are obvious/uninteresting; the ones the user lists are treated as “interesting”,
allowing the user substantial control over the depth and direction of the final explanation.

The following illustrates this. Note the supporting fact attached to the comment [Tax1]. A
wildcard * can be used in the third argument of a triple (as shown below), so that all values for
this argument place are explained.

KM> (every Car has
(cost (((the pretax-cost of Self) * (1 + (the tax-rate of Self)) [Tax1])))
(pretax-cost (((the base-cost of Self) + (the options-cost of Self) [PreTax1]))))

KM> (comment [Tax1]
(:seq "So the total cost of the car is" (the pretax-cost of Self)

"* (1 + " (the tax-rate of Self) ") = " (the cost of Self) ".")
"A car’s total cost is its pretax cost plus tax."
(:triple Self pretax-cost *))

KM> (comment [PreTax1]
(:seq "So, the car costs (pretax) " (the base-cost of Self) "+"

(the options-cost of Self) "=" (the pretax-cost of Self) ".")
"A car’s pretax cost is its base cost + options cost.")

KM> (*MyCar has
(instance-of (Car))
(base-cost (10000))
(options-cost (2000))
(tax-rate (0.08)))

KM> (the cost of *MyCar)
(12960.001)
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KM> (justify)
I’ll assume you’re asking me to justify:

(the cost of *MyCar) = (12960.001)...

A car’s total cost is its pretax cost plus tax.
A car’s pretax cost is its base cost + options cost.
So, the car costs (pretax) 10000 + 2000 = 12000.00.

So the total cost of the car is 12000 * (1 + 0.0800) = 12960.00.

Note the supporting facts listed for comment [Tax1] only includes the pretax-cost, and not the
tax-rate. If we had wanted to include both, the comment would have looked instead:

KM> (comment [Tax1]
(:seq "So the total cost of the car is" (the pretax-cost of Self)

"* (1 + " (the tax-rate of Self) ") = " (the cost of Self) ".")
"A car’s total cost is its pretax cost plus tax."
(:set (:triple Self pretax-cost *)

(:triple Self tax-rate *)))

and we would have had to attach a comment tag to facts/rules which computed the tax rate.
Using this mechanism, sophisticated explanations can be constructed automatically by KM.

Some examples from the Halo project can be seen at http://www.projecthalo.com/ (see the Results
Browser, best viewed with Internet Explorer).

20 Tagging Instances

20.1 Removing Ambiguity in Paths

A KM path allows the user to reference a particular instance by its location in the KB. However,
in some cases, in particular when a slot has multiple instances of the same type, the reference can
be ambiguous. The tagging mechanism is designed to address this, by allowing the user to “tag”
particular instances with labels, and then use those labels to help identify instances.

For example, consider the following script (simplified by omiting information on who the actors
are):

KM> (every Get-Coffee-ToGo has
(subevents (
(a Enter) ; enter the store
(a Walk) ; walk to counter
(a Purchase) ; purchase coffee
(a Walk) ; walk back to the door
(a Exit)))) ; leave

Note there are two Walk subevents. Suppose we wished to refer to just the first of these. The
expression (the Walk subevents of Self) refers to both Walk subevents, and so is inadequate.
While we could write a more complex expression which would uniquely identify the first walk
subevent, a simpler solution is simply to “tag” the two subevents with different labels using the
form:

(a expr called tag [with slotsvals])

as illustrated below:
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KM> (every Get-Coffee-ToGo has
(subevents (
(a Enter) ; enter store
(a Walk called "walk to counter") ; walk to counter
(a Purchase) ; purchase coffee
(a Walk called "walk back out") ; walk back to the door
(a Exit)))) ; leave

Having done this, we can then select instances with specific tags using the form:

(expr called tag)

To evaluate this, first expr is evaluated and then only the instance(s) in the result which are tagged
with tag are returned. Thus, this expression acts as a filter. In the example, we would thus set
up next-event links like this:

KM> (every Get-Coffee-ToGo has
(subevents (
(a Enter with
(next-event (((the Walk subevents of Self) called "walk to counter"))))

(a Walk called "walk to counter" with
(next-event ((the Purchase subevents of Self))))

(a Purchase with
(next-event (((the Walk subevents of Self) called "walk back out"))))

(a Walk called "walk back out" with
(next-event ((the Exit subevents of Self))))

(a Exit))))

Tags can be any atom (strings, numbers, or symbols). They can also be negated, e.g., (<>
tag) (see next Section). Tags are implemented simply by placing the tags on a built-in slot named
‘called’.

20.2 Controlling Unification

Tags have a second purpose also, namely to allow the user to help guide unification. When two
sets of values are unified, there may be ambiguity about which elements should unify with which.
Normally, KM tries to follow a pairwise left-to-right strategy. However, if an element from each
set happens to have the same tag, then KM will unify those two elements first, in preference to
the default ordering constraints.

Similarly, tags can be used to block unification in two ways. First, recall that with called
tags, an instance may have more than one tag assigned to it. Now, KM provides a similar operator
named uniquely-called, which behaves just like called except that an instance may have at
most one uniquely-called tag. Thus, if two instances have different uniquely-called tags, then
they cannot be unified (as this would violate the at-most-one-value constraint). Thus by placing
uniquely-called tags on instances, the user can explicitly declare that two instances are necessarily
distinct:

KM> (a Dog uniquely-called "fido")
(_Dog6 #|"fido"|#)

KM> (a Dog uniquely-called "rover")
(_Dog7 #|"rover"|#)
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(1 inferences and 28 KB accesses in 0.0 sec)

KM> (_Dog6 & _Dog7)
NIL

Like called tags, uniquely-called tags are implemented by placing them on a built-in slot named
uniquely-called. Unlike called, uniquely-called is a single-valued slot (i.e., cardinality N-
to-1).

Note also that as a user interface feature, tags are printed out in comments #|...|# after the
instance names to help the user.

Objects can be both called and uniquely-called things at the same time. If an object is
uniquely-called something, then it is also called that something.

Second, as mentioned earlier, tags can also be negated, expressing that an instance is not
called a particular tag. Again, this can block unification, for example:

;;; A dog not called Fido
KM> (a Dog called (<> "fido"))
(_Dog8)

;;; Can that dog be unified with a dog called Fido?
KM> (_Dog8 &? (a Dog called "fido"))
NIL ; No

21 Defaults

KM treats rules in the KB as “always true”, and will report an error if a rule is contradicted by
data. In contrast, people often express common-sense knowledge using rules which are somewhat
weaker than this, where there may be valid exceptions (e.g., “Birds can fly.”, “Cars have four
wheels.”). KM provides two simple mechanisms for expressing such rules, which we now describe.
Note that these mechanisms do not provide support for non-monotonic reasoning (the ability to
retract old conclusions as new facts are added), they merely allow knowledge to be expressed in a
layered form (rules + exceptions). That is, KM is assuming full knowledge at the time conclusions
are being drawn, and that they will not need to be retracted later.

21.1 Overriding Inheritance

Normally, an instance inherits from all of its classes; that is, when a slot is queried, KM ascends
the taxonomy from that instance, collecting all expressions it encounters along the way, then
evaluates and combines them (Section 10). However, KM also provides an “inherit with overrides”
mechanism, which allows this inheritance behavior to be changed for certain slots. With this
mechanism, rather than inheriting rules from all classes, an instance will only inherit rules from
the first class KM encounters which has rules on the target slot, when ascending the taxonomy.
With multiple inheritance, all upward branches are explored, each exploration stopping when
some rules are encountered on the slot of interest (ie. KM gathers all rules from all the most
specific classes with rules for that slot on them). This behavior is slot-specific: To switch on
this behavior for a slot, the slot is declared as an “inherit with overrides” slot by setting its
inherit-with-overrides property to t, e.g.

KM> (text-description has
(instance-of (Slot))
(inherit-with-overrides (t)))
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As a result, in this example, only the lowest rules on the parent classes will be used to compute
the text-description of an instance.

21.2 :defaults

A second, related mechanism in KM is to declare particular expressions as “default” by wrap-
ping them in a (:default expr) form. Such defaults can be overriden by constraints without
generating an error. For example:

;;; All cars have an engine and (by default) a seat
KM> (every Car has

(parts ((a Engine) (:default (a Seat)))))

;;; My car doesn’t have a seat
KM> (*MyCar has

(instance-of (Car))
(parts ((mustnt-be-a Seat))))

;;; What are the parts of my car?
KM> (the parts of *MyCar)
(_Engine2) ; note, no Seat

This default mechanism is fairly simple-minded at present:

• Defaults can be only overriden by constraints.
• If two default values conflict (and the slot is single-valued), KM will report an error.
• There is no support for “default constraints” in KM, i.e., values cannot override constraints.
• There is no non-monotonicity implemented: If a default is applied, and later information

contradicts it, Km will not drop the default, but instead report an error. This is an imple-
mentation limitation.

22 Prototypes

22.1 Introduction

Prototypes are a new and significantly different style of knowledge representation in KM. A
prototype is an example of a class member, and prototype facts are transferred to other class
members by (for each member) cloning the prototype and unifying that clone with the member.
Prototypes offers some important advantages:

1. By representing facts about a class using a concrete example, prototypes allow easy visu-
alization and editing of those facts. This has been fundamental in a system called Shaken,
a KM-based knowledge acquisition system which uses graphical techniques to display and
enter knowledge [15].

2. KM provides a special interface (KM’s prototype mode, described below) for encoding pro-
totypes which has some commonalities with a natural language (NL) interface. In particular,
it allows coreference to be expressed using descriptions (e.g., (the Car)), rather than long
paths (e.g., (the car of (the spouse of Self))). This provides a potential bridge for
connecting with NLP technologies.
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3. Finally, it is not necessary that a prototype contain all the information about a class; rather,
a class can have multiple prototypes, each expressing different subsets of information about
a class. This potentially allows class knowledge to be factored into separate pieces.

There are also some disadvantages with prototypes: They can be computationally slower due to
their extensive use of unification, KM’s NLP-like interface for easy encoding of prototypes has
limited expressivity (although prototypes can be encoded directly in KM with full expressivity),
and KM’s explanation capabilities do not currently extend to knowledge encoded in prototypes.

The word “prototype” in the AI literature has an additional connotation, namely that the
facts about it are only “typical”, and thus can be overridden or ignored if they clash with what
is known about a particular example. This connotation does not apply to KM prototypes; all
prototype facts in KM are treated as universally true22, and an error will be reported if they clash
with what is known about an instance. In other words, KM prototypes are a clone-and-unify
mechanism for deductive reasoning, not a mechanism for handling typicality.

22.2 KM’s Prototype Mode

22.2.1 Introduction

There are two ways of entering prototypes: using KM’s friendly prototype mode, or directly in
“raw” KM. We first describe the prototype mode. By using the prototype mode, the user does
not need to know all the implementation details of prototypes; however, the mode is also limited
in the kind of axioms which can be entered for prototypes. Conversely, by entering prototypes
in “raw” KM, the user has full expressivity but needs to understand more about KM’s internal
mechanism for dealing with prototypes.

Prototypes entered in prototype mode are converted into “raw” KM, and the user can see the
result of this conversion simply by printing out the KB (using save-kb or write-kb).

22.2.2 Details

A prototype is an explicit example of a class member, and is denoted by a special kind of instance
called a proto-instance. One can view a proto-instance as not being a “real” instance as it does
not denote any specific individual in the world, although this distinction is mainly in the eye of
the user. For KM-generated proto-instances, KM gives them names starting with “ Proto” rather
than just “ ” (the prefix is purely cosmetic, and has no functional significance). The prototype
description itself may involve other proto-instances also, e.g., a prototype car might have an engine
part, represented as a proto-instance of car having a proto-instance of engine on its “parts” slot.
In this example, we call the proto-instance of car the prototype root, and the proto-instances of
car and engine (and any other involved instances) are the prototype participants.

The idea with KM’s prototype mode is to allow the user to gradually build up this “network” of
proto-instances, describing the prototype, by repeatedly creating and relating instances together.
To define a new prototype, the command (a-prototype class) is used. This command creates
a proto-instance of class, and also causes KM to enter prototype mode, denoted by the prompt
[prototype-mode] KM>. This mode has three important characteristics:

1. Inheritance is turned off, and the entire KB is invisible except for the taxonomy (instance-of
and superclass relationships), and anything created within that prototype mode.

22bar explicit use of :default statements on prototypes
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2. All KM expressions are fully and immediately evaluated, i.e., paths are not preserved, but
rather their referents are immediately located. This allows the user to refer to earlier created
instances using paths and definite descriptions (see Section 15).

3. When the user enters prototype mode, the list of instances created (the “object stack”,
Section 15) is cleared. Then, as the user creates instances within the prototype mode, they
are added to the stack, allowing the user to refer back to those instances using definite
descriptions. For example, (the Car) will find the instance of car created earlier within
the prototype environment. When the user exits prototype mode, using the command
(end-prototype), all the instances on the stack are noted as part of (participants in) the
prototype being defined.

For example, to define a simple prototype car, we could write:

KM> (a-prototype Car) ; [1]
(_ProtoCar1)

[prototype-mode] KM> ((the Car) has ; [2]
(parts ((a Engine)

(a Fuel-Tank))))
(_ProtoCar1)

[prototype-mode] KM> ((the Fuel-Tank) has ; [3]
(connected-to ((the Engine))))

(_ProtoFuel-Tank3)

[prototype-mode] KM> (show-obj-stack) ; [4]
_ProtoFuel-Tank3
_ProtoEngine2
_ProtoCar1

[prototype-mode] KM> (end-prototype) ; [5]

KM>

Statement [1] causes entry into the prototype environment, and creates a proto-instance of Car.
This instance is special, as it is the ‘root’ of the prototype, and corresponds to the class of objects
which the prototype is universally quantified over. Statement [2] refers back to this car, and
attaches two parts to it. Note that we can refer back to (the Car), as the car is a concrete
(proto-)instance, and attach new properties to it. In statement [3] we again refer back to the
tank and engine, created earlier in statement [2]. Statement [4] displays the prototype instances
created (the prototype participants). The prototype is now defined, represented by these three
frames in the KB.

22.2.3 Inference with Prototypes

KM uses prototypes for inference as follows: If ever KM is trying to find the slot-value of an
instance I, and I is in the same class as the root of a prototype (eg. Car, above), and that
prototype includes information about that slot, then the prototype graph is cloned, and the clone
unified with instance I. As a result, I will acquire the properties the prototype described. For
example:
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KM> (a Car)
(_Car4)

KM> (the parts of _Car4)
(COMMENT: Cloned _ProtoCar1 -> _Car5 to find (the parts of _Car4))
(COMMENT: (_Car4 & _Car5) unified to be _Car4)
(_Engine6 _Fuel-Tank7)

KM> (the connected-to of _Fuel-Tank7)
(_Engine6)

In this example, a copy (clone) of ProtoCar1 and all its attached proto-instances was created
( Car5), which was then unified with the original car ( Car4), thus supplying information about
the parts of the car. As a result, the query could be answered.

The user can also explicitly clone a prototype using the command (clone protoinstance):

KM> (clone _ProtoCar1)
(_Car8)

This command can be issued from within a prototype environment, if the user wants to import a
(clone of) one prototype into the description of another.

22.2.4 Prototypes with Definitional Properties

(a-prototype class) has a more general form, namely (a-prototype class with slotsvals). The
values in this expression are treated as the definitional properties of this prototype. We can thus,
for example, define a prototype of ‘a car with a radio”:

KM> (a-prototype Car with
(parts ((a Radio))))

All these properties constitute the ‘definitional properties’ of the prototype, also called the “pro-
totype scope” (next Section). For the prototype to apply to a specific instance, the instance must
have all these defining properties, i.e., be within the prototype’s scope.

22.3 Defining Prototypes Directly in KM

As the user types in commands in prototype mode, KM synthesizes an internal representation of
the prototype. Thus, an alternative to using the prototype mode is to simply enter the internal
representation directly, e.g., in a .km file. This requires a bit more understanding of this internal
representation, but also allows the prototype to include paths, rules, constraints, or any other
form as desired.

The internal form is best described by example. If we were to save the KB to a file after the
earlier example (Section 22.2.2), the parts defining the prototype would look:

(_ProtoCar1 has
(instance-of (Car))
(prototype-of (Car))
(prototype-scope (Car))
(prototype-participants (_ProtoCar1 _ProtoEngine2 _ProtoFuel-Tank3))
(parts (_ProtoEngine2 _ProtoFuel-Tank3)))
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(_ProtoEngine2 has
(instance-of (Engine))
(part-of (_ProtoCar1))
(connected-to (_ProtoFuel-Tank3)))

(_ProtoFuel-Tank3 has
(instance-of (Fuel-Tank))
(part-of (_ProtoCar1))
(connected-to (_ProtoEngine2)))

There are three key, built-in slots on the prototype root ( ProtoCar1) which define this little
“graph of instances” as a prototype:
prototype-of This slot gives ProtoCar1 the special status of being a prototype, rather than

just a normal instance, i.e., available for cloning. (One can thus stop it being a prototype
simply by deleting this slot).23

prototype-scope This slot defines the scope of the prototype, i.e., this prototype applies to any
instance of its scope (Car, in this case).

prototype-participants This slot defines what the actual elements of the prototype are, i.e.,
the extent of the prototype. Cloning the prototype means cloning all the frames listed here,
including all the slot-value relationships on those frames.

The difference between prototype-of and prototype-scope is implementational. Any in-
stance which is in the prototype-of class will be considered by the inference engine as a potential
target to apply the prototype to during reasoning. Then, only if that instance is within the
prototype-scope will the prototype actually be applied (i.e., cloned and unified). In this case,
the two class values are the same, but for prototypes with additional defining properties, the
prototype-of and prototype-scope will differ, as illustrated below:

;;; Define a prototype of a car with a radio
KM> (a-prototype Car with (parts ((a Radio)))) ; NB defines the prototype-scope
(_ProtoCar12)

;;; It has a battery, connected to that radio
[prototype-mode] KM> ((the Car) has

(parts ((a Battery with
(connected-to ((the Radio)))))))

[prototype-mode] KM> (end-prototype)

KM> (showme _ProtoCar12)
(_ProtoCar12 has
(instance-of (Car))
(prototype-of (Car))
(prototype-scope ((the-class Car with (parts ((a Radio))))))
(prototype-participants (_ProtoCar12 _ProtoRadio13 _ProtoBattery14))
(parts (_ProtoRadio13 _ProtoBattery14)))

Note in this example the prototype-scope is more specific than the prototype-of. Thus, this proto-
type will only be applied to instances of the prototype-scope (the-class Car with (parts ((a Radio)))),
as desired.

23The inverse slot of prototype-of is prototypes. Also, the query (the all-prototypes of class), which uses
the special transitive closure slot all-prototypes, returns all prototypes of class and all its subclasses (Section 4.3)
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23 Theories

KM provides a (relatively untested) mechanism allowing the KB to be divided up into different
partitions, or theories. A KM theory is similar to the notion of a context [16] or microtheory [17],
and allows the knowledge engineer to turn “on” or “off” different sets of axioms. Implementa-
tionally, it uses some of KM’s machinery for reasoning with situations, described in a separate
manual [8].

A theory itself is denoted by an instance of the built-in class Theory. A theory can be “entered”
by the command (in-theory theory), and when entered, the KM prompt is modified to include
the theory name as a prefix. Once the user is “in” the theory, all frames which are entered will
be stored in that theory. To “exit” the theory, the directive (end-theory) is used.

By default, from the normal KM prompt, the contents of all theories are invisible to the
reasoner. To make a theory’s contents visible, the directive (see-theory theory) is used, and
conversely (hide-theory theory) will make the contents invisible again. (visible-theories)
provides a list of the currently visible theories. The following illustrates the use of theories:

;;; Create an instance to denote a new theory
KM> (*MyTheory has (instance-of (Theory)))

KM> (in-theory *MyTheory)
(COMMENT: Changing to Theory *MyTheory)

{*MyTheory} KM> (*Fred has (age (21)))

{*MyTheory} KM> (end-theory)

;;; Computation (contents of *MyTheory not visible)
KM> (the age of *Fred)
NIL

;;; Make *MyTheory visible
KM> (see-theory *MyTheory)

;;; Computation (contents of *MyTheory visible)
KM> (the age of *Fred)
(21)

;;; List currently visible theories
KM> (visible-theories)
(*MyTheory)

Implementationally, when a query is issued from the KM prompt, KM looks for relevant frames
in the main (global) KB, and all the visible theories. Note that (as always) KM may cache the
results of a query and a query’s subgoals in the KB, and those cached results will remain even if
the user subsequently hides the theories used – in other words, the act of issuing a query may cause
information to be transferred from visible theories to the main (global) KB, and that information
will remain even if the theory subsequently is hidden. Generally, the contents of the contributing
theories themselves will remain unchanged.

Similarly, if a query is issued from within a theory (i.e., at a {theory} KM> prompt, after the
user has “entered” a theory), KM will combine frame information from that theory, the main
(global) KB, and any other theories which are currently visible. Again, results of evaluating that
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query and its subgoals may be cached within that theory, i.e., there may be a transfer of information
from the main (global) KB and other theories into the theory being queried. Generally, only the
contents of the queried theory will be affected, i.e., a query from within a theory will not change
the contents of the main (global) KB nor any other visible theory. If the user wants to see the
result of reasoning with the main (global) KB plus various other theories, without affecting any
of them, then he/she could create a new (essentially temporary) theory to reason in, specifically
for that purpose.

Although, in general, changes are localized to the theory where a query is issued, there is one
important exception to this, namely unification. Unification is a global operation, and unification
within a theory will cause unification throughout the entire KB (there is no notion of “local
unification”). In some cases this can itself trigger inference (and the cacheing of its results) in
other theories, in particular if KM needs to check slot-value constraints on a unified object to
make sure the unification is valid in all theories.

Finally, information on any of KM’s built-in slots is always stored in the main (global)
KB, even if that information is entered while being “in” a theory. In other words, this in-
formation is necessarily global. In particular, note that the inheritance hierarchy is necessar-
ily global. These built-in slots are (ignoring other internal book-keeping slots): instance-of,
instances, subclasses, superclasses, subslots, superslots, domain, range, element-type,
name, called, uniquely-called, members, member-of, elements, combine-values-by-appending,
inverse, inverse2, inverse3, cardinality, and fluent-status.

24 Morphisms

When building a knowledge-base, the knowledge engineer may find him/herself encoding the same
“pattern” of axioms several times. For example, axioms about hydraulic circuits and electrical
circuits may both constitute different instantiations of a generic “pattern” about producers and
consumers. This pattern itself may constitute an instantiation of a more general pattern about
directed graphs. When build a knowledge-base, it is advantageous to make such underlying
patterns explicit, and encode them only once so that they can be reused in different contexts.
Morphisms provide a mechanism to do this. Creating reusable patterns directly, rather than
trying to shoe-horn inheritance to do something similar indirectly, has significant potential for
improving reuse in a knowledge-base.

KM’s morphism mechanism is implementationally trivial, and simply allows the user to specify
symbol renamings when importing a set of axioms (i.e. loading a file). Symbol renaming is a
syntactic operation (implemented using Lisp’s sublis function) , and performed during file-load
and before the loaded expressions are processed by KM. A symbol renaming table is specified with
the keyword :with-morphism in a load-kb command.

For example, the following file defines the producer-consumer “pattern”:

;;; ========================================
;;; File: production-network.km
;;; Encodes the ‘‘pattern’’ for production
;;; ========================================

(CONNECTS has
(instance-of (Slot))
(inverse (CONNECTS)))

(PRODUCER has (superclasses (NODE)))
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(CONSUMER has (superclasses (NODE)))
(INTERMEDIARY has (superclasses (NODE)))

;;; “N reachable from N’ if there’s an unblocked path from N’ to N.”
(every NODE has
(DIRECTLY-REACHABLE-FROM ((allof (the CONNECTS of Self)

where (not (the BLOCKED? of It)))))
(REACHABLE-FROM ((the DIRECTLY-REACHABLE-FROM of Self)

(the REACHABLE-FROM of
(the DIRECTLY-REACHABLE-FROM of Self)))))

;;; “A consumer is supplied if its reachable from a producer.”
(every CONSUMER has
(SUPPLIED? ((if (oneof (the REACHABLE-FROM of Self)

where (It isa PRODUCER))
then t))))

In this file, upper-case class names have been used to denote symbols intended to be “morphed”
when this file is imported. (This upper-casing is purely for comprehensibility, and has no special
operational significance). The file defines a general pattern of producers and consumers, and
the notion of a consumer being supplied. Now, one instantiation of this pattern is in electrical
circuits, where an appliance ‘consumer’ is supplied by a power ‘producer’. We can thus build a
KB for electrical circuits by importing an morphing this general pattern, rather than writing it
from scratch, as follows:

;;; ========================================
;;; File: electricity-network.km
;;; Instantiate the production "pattern" for electrical circuits
;;; ========================================

(load-kb "production-network.km" :with-morphism
’((NODE -> Electrical-Device)

(PRODUCER -> Power-Supply)
(CONSUMER -> Appliance)
(INTERMEDIARY -> Switch)
(SUPPLIED? -> powered?)
(BLOCKED? -> open?)
(CONNECTS -> connects)))

(Light has (superclasses (Appliance)))
(Battery has (superclasses (Power-Supply)))

(Note that a file can itself contain a load-kb command, as above). In this case, the produc-
tion network file will be read in, but the symbols renamed as listed. We can demonstrate this
instantiation by asking whether a light is receiving power or not in a simple electrical circuit:

;;; Define the trivial circuit: *Battery1 → *Switch1 → *Light1
KM> (*Battery1 has (instance-of (Battery)))
KM> (*Switch1 has (instance-of (Switch)))
KM> (*Light1 has (instance-of (Light)))
KM> (*Battery1 has (connects (*Switch1)))
KM> (*Switch1 has (connects (*Light1)))
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;;; “Is light1 powered?”
KM> (the powered? of *Light1)
(t) ; Yes!

More importantly, we can import the same pattern multiple times, each time under a different
morphism. This enables common patterns such as directed graphs, lines, etc. to be reused.

The idea of capturing patterns is a recurring one in AI, and a particularly inspiring paper is
Chapman’s 1986 memo on cognitive clichés [18]. To our knowledge, KM is one of the few languages
which implements this idea, though as described the implementation is trivial and would be easy to
reproduce in other KR languages. There are parallels with the work on capturing “design patterns”
in object-oriented programming [19]. The mathematical field of Category Theory provides a full,
formal foundation for representing, morphing, and composing theory structures together [20],
and KM’s implementation can be seen as a simple example of this. Our research in this area is
described in [21].

25 Procedural Attachment

25.1 Overview

KM allows slots to be filled with a Lisp procedure, which when executed will compute the value(s)
of that slot (“procedural attachment”). This can be used, for example, to look up values in a
database (rather than translate the entire database into KM structures), or perform algorithmic
computation not supported by KM (e.g., matrix arithmetic). Procedural attachment of course
requires good knowledge of the Lisp programming language. Caution: procedural attachment
should not be used to avoid representing knowledge properly!

An attached procedure must be a Lisp function taking zero arguments, and is placed on the
value of a slot. When encountered, KM will execute the function, and it must return a (possibly
singleton) set of values. If an instance inherits the function as the value of a queried slot, KM
will first substitute that instance’s name for any occurrence of the keyword Self in the function
before evaluating it. Syntactically, the function itself is a Lisp lambda expression, which is written
in Lisp as #’(LAMBDA () ...), or equivalently (FUNCTION (LAMBDA () ...)).

The function itself may require access back into KM, e.g., to look up a slot-value for use in its
computation. For these callbacks, use one of the following two Lisp functions:

(km0 ’expr [:fail-mode ’error])
(km-unique0 ’expr [:fail-mode ’error])

Both take a KM expression, and return its evaluation, either as a list of values (km0 ...), or a
single value (km-unique0 ...). A fail-mode of ’error will cause an error to be reported if no
values are found, while ’fail (the default) will just return NIL. In addition, (km-unique0 ...)
will report an error if more than one value is found. Lambda expressions and these functions
together allow KM and Lisp to interoperate.

There are two critically important things to remember when using procedural attachment:

1. Ensure that the functions km0 and km-unique0, not km and km-unique (described later), are
used for callbacks. km0 is for within-reasoning calls to KM, and does not reset KM’s goal
stack, (desirably) allowing KM to detect and recover from looping. km is for top-level calls
to KM, and does reset KM’s goal stack along with other initial computation parameters,
and hence should not be used as part of a within-reasoning subgoal.
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2. Care must given that upper/lower-case is used correctly in an attached procedure. Unlike
the Lisp reader, KM’s reader is case-sensitive. Thus, in a KM knowledge-base, any Lisp
function names must be in upper case. Similarly, within the Lisp code itself, any callbacks
to KM must be in the correct case (e.g., lower-case for KM keywords). If the attached
procedure is fully specified in the .km file, then KM will automatically read the cases as
written. However, if parts of the attached procedure are specified in a .lisp file, then make
sure that the case for any callbacks is explicit, as Lisp’s reader is not case-sensitive. This
can be done by enclosing symbols in vertical bars ||, or using KM’s built-in reader macro
#$ which turns on case-sensitivity in the reader. For example, from the Lisp prompt, the
user would have to write:

CL-USER> (km0 ’(|every| |Car| |has| (|wheels| (4))))
or
CL-USER> (km0 ’#$(every Car has (wheels (4))))

to ensure KM sees the correct case of the expressions.

25.2 Example: Interface to a Database

As an example, suppose a database for material densities exists, and the density of (an object
made of) some material can be found using a Lisp call (get-db material ’density). Rather than
re-entering the database in KM format, the database can be linked using a function call:

(every Homogeneous-object has
(density (#’(LAMBDA ()

(LIST (GET-DB (KM-UNIQUE0 ’(the material of Self)) ’DENSITY))))))

(This example assumes a homogeneous-object is made of a single material). If the density of a
particular object is asked about, then Self will be replaced by that object’s identifier, and the
lambda expression evaluated. This expression recursively calls KM to find the object’s material
(“(the material of Self)”), and then gets and returns the density of that material. The final
result is returned as a (singleton) value set (list), as required by KM.

25.3 Example: Interface to a Problem-Solving Method

As a second example, imagine that the knowledge engineer has defined a Lisp function #’PATH-BETWEEN,
which implements a heuristic, graph-traversal problem-solving method (PSM). This function takes
as input a start node and a target node, and returns a shortest path between the start and target
as a list of traversed nodes. (Its implementation would need to include a callback km0 to KM, to
find out which nodes were connected to any given node). This could be interfaced with KM by
defining the concept of a Graph-Search-Problem, with slots start, target, and shortest-path,
with this function placed on the shortest-path slot:

(every Graph-Search-Problem has
(result (#’(LAMBDA ()

(LET ( (PATH (PATH-BETWEEN
(KM-UNIQUE0 ’(the start of Self))
(KM-UNIQUE0 ’(the end of Self)))) )

(COND (PATH (LIST (CONS ’:seq PATH)))))))))

Thus:
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KM> (N1 has (connects (N2)))
KM> (N2 has (connects (N3)))
KM> (N3 has (connects (N4)))
KM> (N2 has (connects (N5)))
KM> (N5 has (connects (N6)))

;;; Invoke the problem-solving method for a specific problem instance.
KM> (the result of (a Graph-Search-Problem with

(start (N1))
(target (N6))))

((:seq N1 N2 N5 N6))

26 Calling KM from External Applications

26.1 KM’s API

As well as direct use from the KM> prompt, KM can be used as a module within a larger application.
The larger application can interface with KM simply by passing KM queries to it and collecting
the answers, and thus the minimal API for KM is just two Lisp functions:

(km ’expr [:fail-mode ’error])
(km-unique ’expr [:fail-mode ’error])

These behave in the same way as km0 and km-unique0 (Section 25), except they additionally
reinitialize the inference engine for a new computation. Both take a KM expression, and return
its evaluation, either as a list of values (km ...), or a single value (km-unique ...). A fail-
mode of ’error will cause an error to be reported (i.e., the debugger is activated) if no values are
found, while ’fail (the default) will just return NIL. In addition, (km-unique ...) will report
an error (activate the debugger) if more than one value is found. Again, as Lisp’s reader is not
case-sensitive, the case of symbols in expr must be made explicit in the .lisp files containing the
calls to KM, either by surrounding symbols with vertical bars ||, or using KM’s built-in reader
macro #$.

This minimal API is in theory all that is needed to assert and access any information in the KB.
However, some users may prefer a larger list of KM’s more specialized, lower-level Lisp functions
for accessing and manipulating the KB. These are not provided here, but can be supplied on
request.

26.2 Error Handling

By default, if an error occurs during reasoning, KM reports the error and switches on the inter-
active debugger (tracer), described in Section 6.3. However, when KM is being called from other
software, this behavior may be undersirable. To change this behavior, there are two options:

1. Have KM abort and return the error message to the calling software. To do this, set:

(setq *abort-on-error-report* t)

As a result, top level calls to

(km expr)
(km-unique expr)
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will return two values (use Lisp’s multiple-value-bind to collect these):

• the answer
• If an error occurred, a string describing the error (NIL otherwise)

Thus the calling software should call KM as follows:

(multiple-value-bind
(answer error-string)
(km expression)
...)

error-string will be NIL if no error occurred, a string otherwise.

2. Have KM ignore the error and continue as if nothing had gone wrong. To do this, set

(setq *error-report-silent* t)

With this set, no errors will ever be reported to the calling software. Note that there
is some risk to using this, as this will not fix the error and other errors may occur as a
consequence (which can similarly be ignored). *error-report-silent* takes precedence
over *abort-on-error-report*, if both are set.

26.3 Undoing Operations

In addition, it is sometimes useful for the external application to tell KM to undo (rollback) its
computations, if some external condition holds. KM contains an “undo” mechanism for allowing
this, described later in Section 28.

26.4 The KM Package

For Lisp users using packages, KM does not have an explicit Lisp package declaration at the
start, and so it is loaded into whichever package Lisp is in at the time of the load. During the
load of km.lisp, KM sets the global variable *km-package* to be the current package, i.e., the
KM package can be identified by the variable *km-package*. Without any package declarations
elsewhere, *km-package* will be set to the user package.

27 KB Loading and Saving: Advanced Topics

27.1 Incremental Loading and Updating of KBs

27.1.1 Multiple has Expressions

Multiple KB files can be loaded using load-kb, and the contents of each will be added to memory.
If two files refer to the same frame, or more generally if KM encounters two has expressions for
the same frame, KM will combine the slot-value expressions via unification (&&), e.g.:

KM> (*Pete has (owns ((a Car))))
KM> (*Pete has (owns ((a Sports-Car))))
KM> (showme *Pete)
(*Pete has

(owns ((((a Car)) && ((a Sports-Car))))))
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In this case, asking for (the owns of *Pete) will cause the combined expression to be evaluated,
and the values will unify (assuming Sports-Car is a subclass of Car).

27.1.2 also-has

This combination behavior can be changed with the forms:

(every class also-has slotsvals)
(instance also-has slotsvals)

With these forms, the new slotsvals are appended, rather than unified, with the old slotsvals:

KM> (*Pete has (owns ((a Car))))
KM> (*Pete also-has (owns ((a Sports-Car)))) ; NB also-has
KM> (showme *Pete)
(*Pete has

(owns ((a Car) (a Sports-Car))))

These forms are useful when the new information is known to be new (rather than a refinement
of old information), and are are only intended for use at the KM> prompt. It is not recommended
to use this form in a KB file (unless the slot values are reified instances) as multiple loads will
cause the slots to accumulate multiple copies of the value expressions.

27.1.3 now-has

The forms:
(every class now-has slotsvals)
(instance now-has slotsvals)

cause the new slot values to overwrite, rather than augment, the old values:
KM> (*Pete has (owns ((a Car))))
KM> (*Pete now-has (owns ((a Sports-Car)))) ; NB also-has
KM> (showme *Pete)
(*Pete has

(owns ((a Sports-Car))))

These forms should be used with extreme caution, and only on slots which don’t influence any
other slots’ values (because there is no truth maintenance facility for retracting conclusions based
on the deleted facts). It primarily intended for updating simple book-keeping information stored
in the KB.

Only slots mentioned in the now-has expression will be changed, other slots on the frame will be
unaffected. To delete all slot-values, use an empty new slot-value list, e.g., (*Pete now-has (owns ())).

27.2 Controlling the Load Order

When loading a file or multiple files, the order in which KM encounters expressions can occasionally
(and undersirably) make a difference to the result. This occurs when a loading expression triggers
computation, but the entire KB has not yet been loaded (causing the computation to proceed
with incomplete information). Two specific cases of this to be aware of are:

1. KM may not automatically classify an instance as a class (using KM’s automatic classifica-
tion mechanism), because the instance declaration is encountered before the class definition.
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2. KM may not remove redundant classes on an instance-of or superclasses slot, because
the full taxonomy has not yet been loaded (and hence the redundancy is not noticed).

The user can avoid these problems by appropriately ordering frames in a KB file, but in cases where
the ordering cannot be controlled, the KB may need to be loaded in multiple passes. To support
this, load-kb can be given a list of patterns as an argument, and only expressions matching one of
those patterns will be loaded, allowing control over which expressions are loaded when. A pattern
is a KM expression containing variables, where a variable is either a symbol starting with a ?
character (matching a single item), or the special symbol &rest at the end of a list (matching all
remaining items in that list).

If such problems arise, the following is a suitable load order (depending on the KB content):
KM> (reset-kb)

;;; 1. load slot declarations and taxonomy KM> (load-kb file :load-patterns ’((?x has &rest)))

;;; 2. load classes
KM> (load-kb file :load-patterns ’((every &rest)))

;;; 3. load remainder
KM> (load-kb file)

Note the last command will include redundant reloading of the previously loaded expressions, but
this is not a problem (KM will spot and remove the redundancy at load-time).

27.3 Fast Loading and Saving of KBs

In addition to saving and loading the KB with save-kb, load-kb, and reload-kb, KM also
supports fast loading and saving for large KBs. The commands:

(fastsave-kb "file.fkm")
(fastload-kb "file.fkm")

will save and load the entire KB faster than save-kb and load-kb, but in a non-human-readable
(raw Lisp) form. It is recommended to use the suffixes ".km" for KM files created by save-kb or
by hand, and ".fkm" (fast KM) for files created by fastsave-kb.

27.4 Saving and Restoring the KB State to/from Memory

The current state of the KB can also be saved to memory, rather than file, using the command:

;;; Store current state of KB to runtime memory
KM> (store-kb)

and restored via;

;;; Revert back to the last (store-kb) state
KM> (restore-kb)

Note that this only stores to RAM, so if you exit Lisp, the stored KB will be lost. Use save-kb
or fastsave-kb for a permanent, file-based save.

For Lisp programmers, the entire KB state can also be captured by the command (get-kb),
which returns the large, unreadable Lisp structure representing the current state (namely, a list
of Lisp commands for rebuilding the state). (put-kb state) will restore this state (execute these
commands), e.g.,:
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USER: (setq *x* (get-kb)) ;; save state
USER: (put-kb *x*) ;; restore state

Here the state is stored and restored from the global variable *x*. The contents of *x* are the
same as the contents of the ".fkm" files created by fastsave-kb.

28 Undo

28.1 Overview

KM has a logging mechanism allowing the user to undo commands, including all their side effects,
in reverse chronological order. The log records all internal changes to the KB, and hence (undo)
can incrementally reverse those changes. This is very useful both for debugging, and for an
interface for an end-user. For example, if an error occurs during executing a KM command, you
can abort from the debugger, type (undo), and then retry your query with tracing.
By default logging is turned off. To turn it on, do:

KM> (start-logging)

(The opposite command stop-logging turns it off again). From this point,

KM> (undo)

will undo the most recent command and all side-effects. This command can be issued from Lisp
directly also. To do this, KM creates a checkpoint in the log at each “KM>” prompt, and (undo)
undoes back to the most recent chackpoint. Multiple (undo) are thus possible.

Note that the commands load-kb, reload-kb, and reset-kb will reset the log, so you cannot
undo past these commands. Also note that keeping the log is memory-intensive, which is why it
is by default turned off.

28.2 For Lisp programmers

For Lisp programmers calling KM from a Lisp program, checkpoints can be manually set using
the Lisp function (also KM command):

(set-checkpoint [id])

where id is some name for the checkpoint (any non-nil s-expression). The command

(undo [id])

will undo back to the checkpoint with name id, or back to the most recent checkpoint if no id is
given.

(undo) reverses state changes within KM made between checkpoints, but not any state changes
made by the calling Lisp program. In some cases, this is undesirable – there may be state changes
made by the calling Lisp program that the programmer would like to be included in the (undo). To
deal with this, KM has the function km-setq, which is just like Lisp’s setq except routed through
KM’s logging mechanism, meaning that (undo) will also undo these external setq operations (i.e.,
put the variables back to their old values) as well as KM’s internal operations. Note, however,
that with km-setq the variable being set must be quoted, e.g.:

USER: (km-setq ’*x* ’cat) ; Note the variable is quoted with km-setq
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For example:

USER: (setq *x* ’dog)
dog
USER: (start-logging)
USER: (set-checkpoint ’cp1)
USER: (km-setq ’*x* ’cat) ; Note the variable is quoted with km-setq
USER: *x*
cat
USER: (undo) ; Undo back to checkpoint cp1
USER: *x*
dog ; *x* has reverted back to its old value

29 Additional Representational Capabilities

29.1 N-ary Predicates

29.1.1 Representing N-ary Predicates

In most cases, the simplicity of working with just binary predicates is highly advantageous for both
knowledge entering and inference. N-ary predicates should normally be handled by the knowledge
engineer by reifying them, recasting them as a set of binary predicates. For example, the formula
gives(John,Mary,Book1) (“John gives Mary the book.”) would be expressed in KM as:

KM> (a Giving with
(agent (*John))
(recipient (*Mary))
(patient (*Book1)))

(_Giving23)

corresponding to reifying the notion of “a giving” and rewriting the formula as

∃g isa(g,Giving) ∧ agent(g, ∗John) ∧ recipient(g, ∗Mary) ∧ patient(g, ∗Book1)

However, in occasional circumstances this approach can be counterintuitive or cumbersome. As a
result, KM provides support for N-ary predicates as a generalization of its normal slot mechanism.
Just as a binary slot contains the values of a predicate’s second argument, given the first, so a
N-ary slot contains the value sets of a predicate’s second,...,Nth arguments, given the first. These
sets are bundled together in parentheses, and given the keyword :args to denote they are a list
of arguments (rather than a path).

For example suppose we wish to use the predicate connects(tank, tank′, pipe) to denote that
tank is connected to tank′ via pipe, without reifying the concept of “a connection”. To do this,
we would “bundle” the second and third arguments together as illustrated:

;;; “Tank1 is connected to Tank2 via Pipe1”
;;; connects(∗Tank1, ∗Tank2, ∗Pipe1)
KM> (*Tank1 has

(connects ((:args *Tank2 *Pipe1))))

29.1.2 Accessing N-ary Predicate Arguments

In fact, a :args list is a kind of sequence, and so the same forms are used for accessing individual
arguments in that list as for sequences. Section 13 described these forms, and they are also
illustrated below:
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;;; Normal query: Will return the 2nd...Nth arguments, given the first.
KM> (the connects of *Tank1)
((:args *Tank2 *Pipe1))

;;; “What is Tank1 connected to?” (return the first argument only)
KM> (the1 of (the connects of *Tank1))
(*Tank2)

;;; (Equivalent shorthand)
KM> (the1 connects of *Tank1)
(*Tank2)

;;; “What is it connected by?” (return 2nd argument only)
KM> (the2 of (the connects of *Tank1))
(*Pipe1)

;;; “Which pipe(s) connect Tank1 to Tank2?”
;;; { p | connects(∗Tank1, Tank2, p) }24

KM> (the2 of (allof (the connects of *Tank1)
where ((the1 of It) = *Tank2)))

(*Pipe1)

Finally, just as the range is used to specify the range of a predicate’s second argument, so
range2, range3, etc. can specify the ranges of the predicate’s third, fourth, etc. arguments. If
the run-time checking is turned on (with (checkkbon), Section 6.8), then KM will check these
ranges are conformed to during inference.

29.1.3 Inverses of N-ary Predicates

For binary slots, we can declare the slot’s inverse (Section 4), namely the slot corresponding
to switching the first and second arguments. Generalizing this, for N-ary predicates we can also
define the slot’s inverse2, corresponding to switching the first and third arguments (leaving all
others in place), inverse3 corresponding to switching the first and fourth (leaving all others in
place), and inverse12 corresponding to switching the second and third arguments (leaving all
others in place). KM will always install inverses (switching first and second arguments), even if
the inverse is not explicitly declared (in which case the inverse slot’s name defaults to slot-of).
However, it will not install inverse2s and inverse3s unless there is an explicit declaration of
the name of those inverted slots, indicating that they are of interest to the knowledge engineer.
This is to avoid making assertions for all possible permutations of argument orderings for a single
ground assertion. For example:

;;; Define reaches(from, to, via), and its inverses
;;; reachable-from(to, from, via), and path-from-X-to-Y (via, to, from)
KM> (reaches has

(instance-of (Slot))
(inverse (reachable-from))
(inverse2 (path-from-X-to-Y)))

;;; “Battery1 reaches light1 via wire1.”
;;; reaches(∗Battery1, ∗Light1, ∗Wire1)

24Or more literally, { p | ∃ t connects(∗Tank1, t, p) ∧ t = ∗Tank2 }
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;;; (KM will also automatically install reachable-from(∗Light1, ∗Battery1, ∗Wire1) and
;;; path-from-X-to-Y (∗Wire1, ∗Battery1, ∗Light1))
KM> (*Battery1 has

(reaches ((:args *Light1 *Wire1))))

;;; (Confirm that the inverse2 was installed)
KM> (showme Wire1)
(*Wire1 has
(path-from-X-to-Y ((:args *Light1 *Battery1))))

Another example using inverse12 is as follows:
KM> (is-between has

(inverse12 (is-between)))

KM> (*Austin has
(is-between ((:args *SanAntonio *Dallas))))

KM> (showme *Austin)
(*Austin has
(is-between ((:args *SanAntonio *Dallas)

(:args *Dallas *SanAntonio))))

29.2 Transitivity

29.2.1 Defining Transitive Relations

Transitive relations (eg. parts) should be represented in KM using the standard technique of
distinguishing the ‘direct’ relation (eg. d-parts, referring to the immediate parts of an object)
from the transitive closure of that relation (eg. parts). The transitive relation is then defined in
terms of the direct relation:

∀x, y d-parts(x, y)→ parts(x, y)
∀x, y, z d-parts(x, y) ∧ parts(y, z)→ parts(x, z)

This would be expressed in KM as follows:

;;; “An object’s parts are its direct parts [1], and the parts of its direct parts [2].”
;;; ∀p isa(p, Physobj)→ ( ∀d d-parts(p, d)→ parts(p, d) ) ∧
;;; ( ∀d, p′ d-parts(p, d) ∧ parts(d, p′)→ parts(p, p′) )
(every Physobj has

(parts ((the d-parts of Self) ; [1]
(the parts of (the d-parts of Self))))) ; [2]

To illustrate this, enter the following KB:

(every Physobj has
(parts ((the d-parts of Self)

(the parts of (the d-parts of Self)))))

(Car has (superclasses (Physobj)))

(every Car has (d-parts ((a Engine) (a Chassis) (a Body))))

92



(Engine has (superclasses (Physobj)))

(every Engine has
(d-parts ((a Carburetor) (a Battery) (a Combustion-chamber))))

(Body has (superclasses (Physobj)))

(every Body has
(d-parts ((a Door) (a Door) (a Frame) (a Windshield))))

(Door has (superclasses (Physobj)))

(every Door has
(d-parts ((a Handle) (a Window) (a Panel))))

Thus a query for parts will descend the partonomy, collecting all parts:
KM> (the parts of (a Car))
(_Engine415 _Chassis416 _Body417 _Carburetor418 _Battery419
_Combustion-chamber420 _Door421 _Door422 _Frame423 _Windshield424
_Handle425 _Window426 _Panel427 _Handle428 _Window429 _Panel430)

If just the leaves of the partonomy are required (ie. parts which are not composites of other parts),
we can define:

( ∀x, y parts(x, y) ∧ ¬∃z d-parts(y, z))→ leaf -parts(x, y)

which in KM can be expressed using a where clause (Section 8):
;;; ”Leaf parts = all the parts [1] which don’t have direct parts [2].”
(every Physobj has
(parts ((the d-parts of Self)

(the parts of (the d-parts of Self))))
(leaf-parts ((allof (the parts of Self) ; [1]

where (not (the d-parts of It)))))) ; [2]

Thus we can find all the leaf parts (according to the KB) as follows:
KM> (the leaf-parts of (a Car))
(_Chassis433 _Carburetor435 _Battery436 _Combustion-chamber437 _Frame440
_Windshield441 _Handle442 _Window443 _Panel444 _Handle445 _Window446 _Panel447)

29.2.2 Built-In Transitive Relations

For convenience, KM has the following built-in slots, which efficiently return the transitive closure
of their corresponding relations:

Slot Computes transitive closure of:
all-classes instance-of
all-instances instances
all-superclasses superclasses
all-subclasses subclasses
all-subslots subslots
all-superslots superslots
all-prototypes prototypes
all-supersituations supersituations (used for situations [8])
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29.2.3 “Multi-depth” Paths

Paths of the form (the slot of expr) can be thought of as searching one-level deep in a hierarchy
made up of slot relations. For convenience, KM provides a simple macro expansion to allow
searching N levels instead, with a path of the form

(the (slot * [N]) of expr)

(N defaults to 5 if unspecified). This provides an alternative to defining a transitive version of
slot, although the depth-limit of the search is bounded.

;;; “How many parts has my car?”
KM> (the number of (the (d-parts *) of (a Car)))
(16)

29.3 Booleans

When evaluating expressions that use logical connectives (and, or, etc. see Section 7), KM treats
any non-NIL value as “true” and the value NIL as “false”. For convenience, KM also has the
built-in instance t, an instance of the class Boolean, which can be used as an arbitrary non-NIL
symbol to denote “true”.

In exceptional circumstances, using NIL to denote false may be undesirable, as it does not
distinguish “no result” from “a false result”, and (unlike t) cannot be used as a slot-value. For
these circumstances, KM also provides the symbol f. f has no meaning except as a convenient
arbitrary symbol to use, and its interpretation as denoting “false” is left to the user. In addition,
note that the value f does not mean “false” to KM’s logical connectives (and, or, not) as it is a non-
NIL value, and so care must be taken. An example of using f might be to include it in a truth table,
whose values are then manipulated by expressions such as if ((the ...) = f) then ....

29.4 Printing

The commands print, format, and km-format are understood by KM, and their “evaluation”
produces printed output as a side-effect. Their primary purpose is to support debugging; nor-
mally any text output would be generated by some program outside KM, rather than from KM
itself. When KM evaluates these forms, it evaluates the value arguments through the normal KM
interpreter first, then executes the output command itself with the results, i.e.:

KM> (print (a Car))
(_Car6)
(_Car6)

KM> (format t "I have a ~a and a ~a~%" (a Car) (a Book))
I have a (_car11) and a (_book12)
(t)

KM> (km-format t "I have a ~a and a ~a~%" (a Car) (a Book))
I have a (_Car9) and a (_Book10)
(t)

format is Lisp’s built-in format command. km-format is similar, except arguments are written
out in a case-sensitive way. print returns its evaluated argument, format and km-format return
t (so that they can be embedded in a conjuctive and expression).

94



29.5 Quoting Expressions

In some cases, it is desirable to manipulate KM expressions as objects in their own right, rather
than have KM evaluate them. To do this, KM expressions can be quoted by preceding them by
a single quote (’) character. Elements within quoted expressions can be unquoted using the two
characters #,. The result of evaluating a quoted expression is itself, with the following exception:
If there are any unquoted expressions within it, they will be evaluated and the subexpression
replaced with the result. This allows KM to represent second order logic expressions, using a
quoting/unquoting mechanism similar to Lisp’s programmatic quoting/unquoting mechanism.

KM> ’(1 + 2 + 3)
(’(1 + 2 + 3))

As a special case, the keyword Self in a quoted expression is automatically unquoted, and a “#,”
prefix is not necessary. It is thus not possible to quote the symbol Self itself.

Examples of equivalent quoted expressions are shown below:

(1 + (2 + 3) + 4) = 10
’(1 + (2 + 3) + 4) = ’(1 + (2 + 3) + 4)
’(1 + #,(2 + 3) + 4) = ’(1 + 5 + 4)

29.6 Aggregates

For slots with multiple values, it is sometimes useful to denote the set (“aggregate”) of values
as a single representational unit. Aggregates correspond to plurals in English, e.g., we might
represent “the wheels of a car” as an aggregate, whose elements are of type (class) Wheel. Because
an aggregate of wheels is not itself a wheel (say), aggregates need to have special behavior with
(must-be-a class) constraints, and to support this KM has a built-in class called Aggregate. The
sole purpose of the Aggregate class is to have KM by-pass the usual must-be-a constraint checks.
Instead, for (must-be-a class) slot-value constraints applied to aggregates, rather than checking
that the aggregate is an instance of class, it checks that the element-type of the aggregate is
not disjoint with class, where element-type is a built-in slot denoting the class of the aggregate’s
members. For example:

KM> (every Car has
(parts ((must-be-a Mechanical-Part)

(a Aggregate with ; 4 wheels
(number-of-elements (4))
(element-type (Wheel)))

(a Engine))))
KM> (the parts of (a Car))
(_Aggregate2 _Engine3)

Note that the Aggregate is (desirably) not coerced to be a Mechanical-Part. The only built-in
slot for Aggregate is element-type, all other slots on Aggregate can be chosen by the user.

29.7 Deleting Frames

The command (delete frame) will delete the frame frame, including removing inverse links if
frame is an instance. This command does not undo earlier computations made using frame (there
is no truth maintenance). Its use is not recommended.
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29.8 Forward Chaining on Slots

KM normally operates in a backward-chaining mode, i.e., a slot’s value is only evaluated when
needed to help conclude another slot’s value. However, as an experimental and relatively untested
feature, the user can also declare certain slots on a class to be evaluated “opportunistically”. For
these slots, when an instance of that class is created, KM will immediately query these slots, rather
than waiting for an explicit query from normal reasoning. To declare these slots for a class, list
them on the built-in slot slots-to-opportunistically-evaluate, e.g.:

(every Property-Value has
(slots-to-opportunistically-evaluate (value)))

Given the above, every time a new instance of Property-Value is created, the value slot on that
instance will be immediately queried by KM.

29.9 Ignoring Inverses

Normally, when KM asserts a ground fact (i.e., computes an instance’s slot value) it will also
assert the inverse fact (i.e., the value’s inverse-slot is filled by instance). To disable this feature,
so that inverses are not recorded, the ignore-inverses property of that slot should be set to t:

(part-of-speech has
(instance-of (Slot))
(ignore-inverses (t)))

Given the above, if KM now asserts (X has (part-of-speech (Y))), KM will not assert the
inverse (Y has (part-of-speech-of (X))).

This feature is for efficiency, and is useful when a slot value is used many times in the KB
(and hence the inverse slot would be cluttered with many values). For example, the part of speech
*Noun) applies to many nouns, and hence the list of values on the inverse slot (*Noun has (part-of-speech-of (...)))
would become extremely large if they were all recorded.

KM does not install inverses for the following built-in slots: aggregation-function, called,
uniquely-called. cardinality, combine-values-by-appending, dont-cache-values, ignore-inverses,
inherit-with-overrides, name, cloned-from, prototype-scope, remove-subsumers, remove-subsumees,
and (for KM’s situation mechanism) add-list, del-list, ncs-list, pcs-list. . In addition,
to avoid cluttering the KB, KM will not install the inverse link after asserting the following slot-
values: t, f, 1-to-N, 1-to-1, N-to-1, N-to-N, and (for KM’s situation mechanism) *Global,
*Fluent, *Inertial-Fluent, *Non-Fluent.

29.10 Preventing Value Cacheing

Normally, when KM evaluates an expression on a slot, it replaces the expression with the result
(i.e., the result is cached). This behavior can be prevented using the slot’s slot dont-cache-values,
e.g.:

KM> (text-def has
(instance-of (Slot))
(dont-cache-values (t)))

This prevents KM cacheing the computed values on this slot, and instead leaves the original
expression on the slot. It should only be used in exceptional circumstances, e.g., when a slot’s
values may change, and nothing else is dependent on those values (as KM does not perform truth
maintenance to revise those dependent facts).
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29.11 Manipulating Classes as Slot-Values

Classes are themselves instances (of the metaclass Class, see Section 29.12), and can be used as
slot-values, just like any other instance. For example, “pizza” in “Fred likes pizza” is best viewed
as denoting the class Pizza, rather than some specific instance of Pizza.

For slots which take classes as values, sometimes you may want to retain only the most specific
classes on the slot, if the semantics of the slot suggest that the more general classes merely give
a less precise statement of information which the specific class expresses. These slots can be
declared as “remove subsumers” slots, and KM will then remove the subsumers (i.e., any class
which subsumes some other class on the slot). superclasses is an example of a built-in “remove
subumers” slot, e.g., if Big-Car has superclasses Car and Vehicle, then KM will remove the
Vehicle superclass as it is redundant given the semantics of the slot (and assuming Vehicle is a
superclass of Car).

Conversely sometimes you may want to retain only the most general classes on the slot, if the
semantics of the slot suggest that the more specific classes merely repeat a narrower part of the
information which the general class expresses. These slots can be declared as “remove subsumees”
slots, and KM will then remove the subsumees (i.e., any class subsumed by some other class on
the slot). subclasses is an example of a built-in “remove subumees” slot, e.g., if Vehicle has
subclasses Car and Big-Car, then KM will remove the Big-Car, as it is redundant given the
semantics of the slot.

Remove subsumers/subsumees slots are declared by setting the remove-subsumers/remove-subsumees
property on those slots to t. Here is a simple example:

;;; Retain only most general class values on this slot
(hates-food-type has (instance-of (Slot)) (remove-subsumees (t)))

(Vegetables has (superclasses (Food)))
(Soggy-Vegetables has (superclasses (Vegetables)))

(every Person has
(hates-food-type (Soggy-Vegetables)))

(Kid has (superclasses (Person)))

(every Kid has
(hates-food-type (Vegetables)))

Now:
;;; What food types does a kid hate?
KM> (the hates-food-type of (a Kid))
(Vegetables) ; NB not Soggy-Vegetables too

Here, the query answers just Vegetables, as the Soggy-Vegetables has been removed (it is
a subsumee of Vegetables). The slot semantics makes this (user-specified) operation valid, as
Soggy-Vegetables would be redundant given Vegetables is already hated.

29.12 Metaclasses

As classes are themselves represented by frames, KM will also support the representation of
metaclasses (sets of classes). Note that a metaclass is distinct from a superclass, the former
denoting a set of classes, the latter a set of instances. By default, all classes are instances of the
metaclass Class, however we can also define our own metaclasses, eg.
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;;; Cars and Vehicles are both instances of vehicle types.”
;;; isa(Car, V ehicle-Class)
KM> (Car has (instance-of (Vehicle-Class)))

;;; isa(V an, V ehicle-Class)
KM> (Van has (instance-of (Vehicle-Class)))

KM> (the instances of Vehicle-Class)
(Van Car)

This is useful if we want to return an answer which is a class, rather than an instance – the meta-
class defines a set of valid answers to search through (each a class). The expression (an instance of class),
below, asserts the existence of an instance25 of class:

;;; “All cars are small.”
;;; ∀c isa(c, Car)→ size(c, ∗Small)
KM> (every Car has (size (*Small)))

;;; “Which vehicle types are small?”
;;; { c | isa(c, V ehicle-Class) ∧ ( ∀i isa(i, c)→ size(i, ∗Small) ) }
KM> (allof (the instances of Vehicle-Class)

where ((the size of (an instance of It)) = *Small))
(Car)

29.13 Functions

Some (non-KM) representations make heavy use of functions, e.g., in height(*Fred), height is a
function which takes a person and returns the person’s height. We have described the semantics
of KM in terms of binary predicates, e.g., the slot height is taken as a binary predicate whose
arguments are a person and a height, but one could alternatively interpret KM in terms of func-
tions, e.g., the slot height could alternatively be viewed as a function, taking a person as input
and returning the person’s height. This alternative interpretation of KM’s semantics is equally
valid, but one we have not used.

In addition, sometimes one might like to use functions within KM expressions. For example,
feet(12) might denote “12 feet”, where feet is a function from numbers to distance in feet. KM has
a primitive, untested, and purely syntactic way of supporting this by using the prefix :function,
for example:

KM> (*Fred has
(height ((:function Feet 5))))

state that Fred is five feet, where Feet can be interpreted as a function applied to 5. In fact,
implementationally :function is simply a synonym for :seq, and thus this is purely a notational
way of creating function-like structures in KM. KM performs no reasoning with these structures,
e.g., KM does not realize that (:function Feet 3) equals (:function Yards 1). However, it
does recognize equality when the structures are identical, e.g.:

KM> (*Joe has
(height ((:function Feet 5))))

KM> ((the height of *Fred) = (the height of *Joe))
(t)

25In this case, a hypothetical instance for reasoning purposes.
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This is in contrast to writing:

KM> (*Joe has
(height ((a Length with

(magnitude (5))
(units (*Feet))))))

which makes a different representational decision that each instance of a length is distinct.
As :function is a synonym for :seq, the user can equivalently use :seq or :pair to denote

a function.

29.14 Introspection

KM provides two (rather rudimentary) forms for retrieving KM expressions themselves from the
knowledge base using the KM interpreter, thus allowing “introspection” on its own knowledge.
These are:

(rules-for (the slot of instance))
(constraints-for (the slot of instance))

The former retrieves all the expressions used to compute an instance’s slot values, comprising
both local and inherited expressions, and local and inherited constraints. The latter retrieves just
the local and inherited constraints which apply to an instance. Results are returned as a set of
quoted expressions. For example:

KM> (every Car has
(parts ((a Engine) (must-be-a Engine))))

KM> (rules-for (the parts of (a Car)))
(’(a Engine) ’(must-be-a Engine))

KM> (constraints-for (the parts of (a Car)))
(’(must-be-a Engine))

Currently, additional access to expressions and structures within a KM knowledge base needs
to be made via Lisp functions in KM’s Lisp API (not documented in this manual), rather than
through calls to the KM interpreter.

29.15 User-Defined Aggregation Slots

The built-in slots sum, difference, product, quotient, max, min, and number (Section 14) are
called aggregation slots, because they are applied to multiple values and return a single, combined
value. In fact the first five are instances of the built-in class Bag-Aggregation-Slot, as they take a
bag of values as an argument, while number is an instance of Set-Aggregation-Slot, as it takes a
set of values as an argument. The built-in classes Bag-Aggregation-Slot, Set-Aggregation-Slot,
and Seq-Aggregation-Slot are subclasses of Aggregation-Slot, which is a subclass of Slot.

KM also allows the user to define their own set aggregation slots, by specifying the aggregation
function on the special slot aggregation-function:

KM> (max-plus-one has
(instance-of (Set-Aggregation-Slot))
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(aggregation-function (’#’(LAMBDA (VALS) (+ (APPLY #’MAX VALS) 1)))))

KM> (the max-plus-one of (:set 1 2 3))
(4)

The Lisp function must be quoted, take a single argument (namely the set of values to aggregate),
and return a single value (the aggregation). Currently only set aggregation functions can be
user-defined (KM does not yet support user-defined bag and sequence aggregation functions).

29.16 User-Defined Infix Operators

KM has several built-in infix operators (+, -, isa, covers, etc.), which take two arguments
(before and after) and return a result. As a syntactic convenience, KM also allows users to define
their own infix operators (which requires knowledge of Lisp). Suppose the user wanted to define
my-older-than, which took two people as arguments and returned *Yes if the first was older than
the second, *No otherwise, i.e., have KM accept queries like:

;;; Is Joe older than Sue?
KM> (*Fred my-older-than *Joe)
(*Yes)

To declare my-older-than as an infix operator, the global Lisp variable *user-defined-infix-operators*
must be set to be a list of (for each user-defined infix operator) a pair

(infix-operator-name lisp-function-implementing-it)

For example:

USER: (setq *user-defined-infix-operators* ‘((|my-older-than| ,#’my-older-than) ... )

declares my-older-than as a KM infix operator, whose behavior is defined by the Lisp function
#’my-older-than. Note the quoting and unquoting with ‘ and , in the above example so that
the function itself, rather than its name, is in the list. Because of this, the setq must come after
the function definitions themselves.

The Lisp implementation of the operator must take exactly two values, which will be fully-
evaluated KM expressions (typically two instances, though they could be (:set ...) etc con-
structs also, if the user passes those). KM will call this function with the two objects on the left
and right of the infix operator. The function must return a result which is either a single or list of
KM values. As for procedural attachment (Section 25), any callbacks to KM from the Lisp code
must use the Lisp functions

(km0 ’expr [:fail-mode ’error])
(km-unique0 ’expr [:fail-mode ’error])

Note don’t use the functions (km ...) or (km-unique ...) for callbacks.
In this case, we might implement #’my-older-than like this:

(defun my-older-than (a b)
(format t "Calling (my-older-than ~a ~a)...~%" a b) ; for debugging
(let ( (age1 (km-unique0 ‘#$(the age of ,A))) ; in this toy, returns a number

(age2 (km-unique0 ‘#$(the age of ,B))) )
(cond ((and (numberp age1) (numberp age2))

(cond ((> age1 age2) ’#$*Yes)
((<= age1 age2) ’#$*No)))

(t ’#$*DontKnow))))
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with the resulting behavior:

KM> (*Fred has (age (20)))
KM> (*Joe has (age (19)))
KM> (*Fred my-older-than *Joe) ; Is Fred older than Joe?
Calling (my-older-than *Fred *Joe)...
(*Yes)

KM> (*Joe my-older-than *Fred) ; Is Joe older than Fred?
Calling (my-older-than *Joe *Fred)...
(*No)

KM> (*Joe my-older-than *Sue) ; Is Joe older than Sue?
Calling (my-older-than *Joe *Sue)...
(*DontKnow)

29.17 Identifying Anonymous Instances

The test (anonymous-instancep instance) returns t if instance is anonymous (starts with a ),
NIL otherwise.

29.18 KM Versioning Control

The command (version) displays the KM version you are running. To ensure that your KB
is using a sufficiently up-to-date version of KM, you can add the following to your KB (or Lisp
code):

(requires-km-version "1.4.5.9")

When encountered, KM will check its current version is at least as recent as the one specified. If
it is not, it will abort with a friendly message requesting you to upgrade your KM version.

30 KM: Known Limitations

30.1 Sources of Incompleteness and Incorrectness

There is a well-known trade-off in AI between having a language which is expressive, and one which
has a tractable, logically complete inference procedure associated with it. KM tries to maintain
a balance in this respect by using a language which is expressive, and an inference procedure
which is ‘reasonably complete’; that is, KM can infer many, but not all, logical consequences of a
KB. The degree to which incompleteness is a practical problem depends on how the KB is built,
and whether expressions can be specified such that logical incompleteness has minimal effect on
question-answering ability. As KM makes the closed-world assumption and treats negation as
failure, sources of incompleteness can in principle also cause incorrectness.

30.1.1 “Hidden Inverses”

In the absence of other information, KM will not realize that the inverse relation R−1(I2, I1) holds
between two instances until the ‘forward’ relation R(I1, I2) has been computed. An example of
this is:

;;; connected-to is a reflexive relation (inverse is the same)
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KM> (connected-to has
(inverse (connected-to)))

;;; Every car has an engine, and a fuel-tank connected to that engine.
KM> (every Car has

(parts ((a Engine)
(a Fuel-Tank with

(connected-to ((the Engine parts of Self)))))))

KM> (a Car)
(_Car1)

KM> (the parts of _Car1)
(_Engine2 _Fuel-Tank3)

;;; What is Engine2 connected to?
;;; Answer should be Fuel-Tank3! KM doesn’t realize this fact as the
;;; expression on Fuel-Tank has not yet been evaluated.
KM> (the connected-to of _Engine2)
NIL

;;; What is the fuel tank connected to? (Triggers evaluation of the expression)
KM> (the connected-to of _Fuel-Tank3)
(_Engine2)

;;; Now that KM knows the Fuel-Tank is connected to the Engine, it also
;;; knows the inverse (that the Engine is connected to the Fuel-Tank)
KM> (the connected-to of _Engine2)
(_Fuel-Tank3)

In this example, KM does not realize the engine is connected to the fuel-tank until it computes that
the fuel-tank is connected to the engine, i.e., it does not “realize” that a computation elsewhere
in the KB might indirectly help it conclude what the engine is connected to.

In our experience, problems from this kind of incompleteness have been rare. In cases where it
may be a problem, it can be avoided by stating axioms in both forward and backward directions
of the predicate, eg:

KM> (every Car has
(parts ((a Engine with

(connected-to ((the Fuel-Tank parts of Self))))
(a Fuel-Tank with

(connected-to ((the Engine parts of Self)))))))

Alternatively, controlled forward chaining or use of prototypes can remove or reduce this source
of incompleteness.

30.1.2 Non-Local Effects do not Trigger Classification

Every time there is a change to an instance (ie. one of its slot-values is computed or asserted),
KM rechecks that the instance is still correctly classified. However, if there is a change elsewhere
in the KB, for example a slot-value of one of its slot-values is computed/asserted (ie. one step
removed from a change on its immediate slots), KM will not recheck that instance’s classification.
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In some cases, it is possible that these “non-local” effects imply that instance’s (most specific)
class should change, but KM will not realize this. For example, consider the definition below:

;;; “Fast cars are cars with big engines.”
;;; ∀f isa(f, Fast-Car)↔ ∃e isa(f, Car) ∧ isa(e,Engine) ∧ engine(f, e) ∧ size(e, ∗Big)
KM> (every Fast-Car has-definition

(instance-of (Car))
(engine ((a Engine with (size (*Big))))))

Noting definition for Fast-Car...

;;; “My car has an engine called *My-Engine.”
KM> (*My-Car has (instance-of (Car)) (engine (*My-Engine)))

Suppose we now assert that *My-Engine (which is the engine of My-Car) is big:

;;; “*My-Engine is big.”
KM> (*My-Engine has (instance-of (Engine)) (size (*Big)))

According to the definition of Fast-Car, *My-Car is now a Fast-Car. But KM will not reclas-
sify *My-Car, as *My-Car itself wasn’t directly touched by this last assertion (we only touched
*My-Engine). As a result, KM is unaware that Fast-Car properties now hold for *My-Car. Only
when a subsequent direct change is made to *My-Car will KM check it is properly classified, and
here find its most specific class (Car) is overly general (and hence specialize it), eg.:

;;; “*My-Car is red.”
;;; As this touches the *My-Car instance, KM rechecks its classification and
;;; only now realizes *My-Car’s class can be refined.
KM> (*My-Car has (color (*Red)))
(*My-Car satisfies definition of Fast-Car:
Changing *My-Car’s classes from (Car) to (Fast-Car))

30.1.3 Heuristic Unification

As described in Section 10, KM’s set unification is (deliberately) heuristic rather than deductive.
As a result, KM’s heuristics may incorrectly assume coreference. Section 10.3.2 discussed this in
more detail, and how heuristic unification can be more tightly controlled if necessary.

30.1.4 Mutually Inconsistent Constraints

KM currently will not spot mutually inconsistent constraints during unification (e.g., must-be-a
and mustnt-be-a constraints), it will only spot when a slot’s constraint conflicts with a slot’s
instance (and hence block the unification).

30.2 Other Implementational Limitations

30.2.1 No Truth Maintenance

KM’s reasoning is essentially monotonic, and KM does not have a truth maintenance capability
built into it (although “weak” techniques are available such as full rollbacks of the KB state via
(undo), or explicit KB state editing via now-has assertions). Thus for a KB where the user is
incrementally supplying more information, KM is not able to recognize where old conclusions are
no longer valid (e.g., a conclusion based on negation as failure or heuristic unification), and that
it should be retracted.
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30.2.2 Unifying Sequences and bags

The following set unification of two sequences generates an error, rather than the set of the two
sequences:

KM> (((:seq _X 1)) && ((:seq 2 _X)))
ERROR! Yikes! I partly unified two sequences...

In this case, KM recognizes too late that a multiply occurring variable can only be consistently
bound locally, but not globally.

Bags are currently unified as if they were sequences, a limitation of the current implementation.
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reference by description 52,53
(reload-kb filename [:verbose t]

[:load-patterns pattern]
[:with-morphism table]) 6

remove-subsumees slot 96,97
remove-subsumers slot 96,97
representational patterns 81
(requires-km-version version) 101
(reset-kb) 6
resetting the KB 6
(restore-kb) 88
retracting slot values (now-has) 87
reuse, of theory patterns 81
(reverse seq) 47
reversing sequences 47
(rules-for (the slot of instance)) 99

S, tracing option 21
s, tracing option 21
+/-S, tracing options 21
(sanity-check ...) 44
sanity checks 44
(sanity-checks) 44
(save-kb filename) 19
saving a KB 18
saving a KB, fast 88
saving the KB state 88
(scan-kb) 23
scope, of a prototype 78,79
(the second of expr) 45
second-order expressions 95
(see-theory theory) 80
Self keyword 17
Self, in quoted expressions 95
sequences 44
sequences, equality of 48
sequences, for text generation 55

sequences, unification of 48,104
seq aggregation slots 99
:seq, keyword 44
Seq-Aggregation-Slot class 99
(the seq of expr) 46
(the seq-length of seq) 47
sets 44,45
(:set expr*) 49
:set, keyword 44
set aggregation slots 99
Set-Aggregation-Slot class 99
set constraints 40,42
set unification 35
sets, conversion to bag/seq 46
sets, converting to text 56
sets, equality of 48
(set-checkpoint [checkpoint-id]) 89
(set-constraint n class) 42
(the set-unification of expr) 38
(show-bindings) 19
(showme expr) 10
(showme-all expr) 11
(show-obj-stack) 52
single-valued slots 31
slots 2,9,11
Slot class 11
slots on slots 11
slots, with classes as values 97
slot hierarchies 11,12,14
slot inheritance 12,14
slot inverses 11
slots-to-opportunistically-evaluate slot

96
spaces, in frame names 10
spaces, in text generation 56
special characters, in frame names 10
speed, of KM 20
Spy points 20
(spy) 20
(spy [expr]) 20
(the sqrt of expr) 49
starting KM 5
starting Lisp 3
(start-logging) 89
state of the KB, saving 88
(stop-logging) 89
(store-kb) 88
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subclasses slot 13
subslots slot 11,12,13,14
subsumption 68
(expr1 subsumes expr2) 68
(the sum of bagexpr) 49,63
Suns, KM availability for 2
superclasses 7
superclasses slot 8,13
superslots slot 11,13
syntax 3

t instance 24,27,94,96
tags 72
taxonomy, viewing 22
(taxonomy [class-or-instance [reln-to-descend]])

22
ternary predicates 90
test suites 6,22
text generation 55
text templates 57
(the [class] slot of expr) 8,14
(the class [with slotsvals]) 53
(the (slot * [N]) of expr) 94
(the+ class [with slotsvals]) 54
(the1 slot of expr) 90
(the1 of expr) 45,90
(the2 slot of expr) 90
(the2 of expr) 45,90
(the3 slot of expr) 90
(the3 of expr) 45,90
(the-class class [has slotsvals]) 67
(thelast class) 52
(theN N of expr) 45,90
(theNth n of expr) 45
(theoneof [var in] expr1 where expr0) 26
theories 80
Theory class 80
TheValue, keyword 40
TheValues, keyword 42
Thing 8
(the third of expr) 45
tolerance (arithmetic) 51
*tolerance*, parameter 51
(trace) 19
(tracekm) 19
tracer, preventing activation 85
tracing 18,19,23

tractability 101
transitive closure slots 13
transitivity 92
(:triple expr expr expr) 69
true (t), Boolean 94
truth maintenance 103

+/-U, tracing options 21
(undo [checkpoint]) 89
Undoing operations 89
unification 30,31,33,39
unification, controlling 37,73
unification, eager 35,38
unification, lazy 32
unification, limitations 103
unification, of bag/seqs 48,104
unification, of sets 35
unification, preventing 73
unification, viewing bindings 19
(the unification of expr) 35
unique names assumption 10,34,39
uniquely-called slot 96
(expr uniquely-called tag) 73
(unspy) 20
(untrace) 19
(untracekm) 19
user-defined infix operators 100

value constraints 40
variables 27
variables, local 30
version, of KM 101
viewing frames 10,18
(visible-theories) 80

w, tracing option 21
(why [triple]) 70
:with-morphism, in load-kb 82
(write-kb) 19

+/-X, tracing options 21

z, tracing option 21
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