(In Proc AAAI’ 97, pp369-376, CA AAAI)

http://ww. cs. ut exas. edu/ user s/ pcl ar k/ paper s

Building Concept Representations from Reusable Components*

Peter Clark

Boeing Company
PO Box 3707, Seattle, WA 98124
clarkp@redwood.rt.cs.boeing.com

Abstract

Our goal is to build knowledge-based systems capa-
ble of answering a wide variety of questions, including
questions that are unanticipated when the knowledge
base is built. For systems to achieve this level of com-
petence and generality, they require the ability to dy-
namically construct new concept representations, and
to do so in response to the questions and tasks posed
to them. Our approach to meeting this requirement
is to build knowledge bases of generalized, represen-
tational components, and to develop methods for au-
tomatically composing components on demand. This
work extends the normal inheritance approach used in
frame-based systems, and imports ideas from several
different areas of Al in particular compositional mod-
eling, terminological reasoning, and ontological engi-
neering. The contribution of this work is a novel inte-
gration of these methods that improves the efficiency
of building knowledge bases and the robustness of us-
ing them.

Introduction

Our goal is the construction of knowledge-based sys-
tems capable of answering a wide range of questions,
including questions unanticipated when the knowledge
base was constructed. Earlier research on one large-
scale project — the Botany knowledge-base project
(Porter et al. 1988) — shows that if detailed, declar-
ative representations of concepts are available, then
sophisticated question-answering performance can be
achieved (Lester & Porter 1997; Rickel & Porter 1997).
However, manually constructing such representations
is laborious, and this proved to be a major bottleneck
in the project; moreover, it is simply not possible to
anticipate all the concept representations that may be
needed for answering questions.

This points to a fundamental requirement for the fu-
ture design of such systems: they must be able to dy-
namically construct new concept representations auto-
matically, and in response to questions posed to them.

Copyright (©1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Bruce Porter
Department of Computer Sciences
University of Texas at Austin, TX 78712
porter@cs.utexas.edu

During the past two years we have been developing
methods to meet this requirement, which we present in
this paper. Our approach is to structure a knowledge-
base as a set of generalized, representational compo-
nents, and to develop methods for automatically com-
posing components on demand. This work extends the
normal inheritance approach used in frame-based sys-
tems, and imports ideas from several different areas of
AT, in particular compositional modeling, terminolog-
ical reasoning and ontological engineering. The con-
tribution of this paper is a novel integration of these
methods that improves the efficiency of building knowl-
edge bases and the robustness of using them. In the
wider context of knowledge-based systems research,
our concern is with building domain models composi-
tionally, as opposed to building problem-solving meth-
ods compositionally, eg. (Chandrasekaren 1986).

Finally, it is important to note that we are not
proposing a new knowledge representation language;
rather, we are concerned with how existing lan-
guages can be used to build representations in flexible,
reusable ways. While this work has been implemented
using a particular representation language called KM
(Eilerts 1994), the approach could also be applied using
several other existing languages, eg. Algernon (Craw-
ford & Kuipers 1991).

A Simple Example

One of our target domains, which we use for illustra-
tion throughout this paper, is bioremediation: the re-
moval of toxic waste using micro-organisms that con-
vert pollutant into harmless bi-products. For a system
to answer a variety of questions about bioremediation
(requiring tasks such as description, prediction, and
explanation), it needs a concept representation — such
as the one in Figure 1 — which states the relationship
of bioremediation to other concepts.

The concept representation combines properties
from numerous abstract concepts. It includes a process
of conversion (in which pollutant is converted into a

V
e L2PPLY e down' | then > 22s0rb]

Figure 1: A Representation of Bioremediation of Soil
Polluted by Oil.

fertilizer-like compound), treatment (in which microbes
are applied to the pollutant), and digestion (in which
microbes digest the pollutant). These three concepts
are shown in Figure 2.

This paper presents a way to construct concept rep-
resentations by composing their constituents, and to
control the process so that only those portions of a con-
cept representation that are needed to answer a query
are built.

Frame-Based Models of Composition

A standard and intuitive account of automatic con-
cept construction, and the starting point for our work,
is the use of frame representations with multiple inher-
itance. In this model, the basic representational unit
is a concept (‘frame’), and concepts are organized into
a taxonomic hierarchy (lattice). In its simplest form,
a concept is described by a set of properties, each of
which is a (slot, value) pair denoting the concept’s re-
lationship to another concept. All of these properties
need not be explicitly encoded on the concept’s frame.
Rather, a concept can be composed from other con-
cepts in two ways:

Inheritance: A concept declared to be a specializa-
tion of (possibly multiple) concepts will automati-
cally acquire their properties. For example, from
(Andersen 1996), the concept house-boat could be
specified as a specialization of house and boat, gain-
ing all their properties, such as inhabited by humans
and floats on water.

Modifying a Base Concept: A new concept can be
declared a specialization of some base concept, with
one or more of its slot values filled by the modifier
concept(s). For example, apartment-dog could be
declared a specialization of dog, with the slot habitat
having the value apartment.

This approach achieves composition efficiently, re-

quires very little inference, and is intuitive. However,

there are two concerns that it fails to address:

1. Conceptual Systems: While we can declare tax-

onomic relationships between individual concepts,
there appears to be no easy way of composing sys-
tems of concepts. For example, the notion of con-
tainment can be viewed as an abstract system of
relationships (or constraints) among a container, a
contained-object, and a portal (eg. the contained-
object is smaller than the container, the portal is
a surface-part of the container). We would like to
automatically import this abstract system to con-
cepts in which it applies (eg. for some tasks, it
might be useful to view a person as a container of
food), rather than manually enumerate its axioms
from scratch. This is difficult to do with inheritance
without adding unintuitive axioms such as food isa
contained-object or most-recent-meal is a special kind
of contained relation; it is impossible to do when
the same abstract system can be applied in multiple
ways, eg. through a different mapping, we can also
view a person as a container of ideas.

2. Concept Interactions: Standard methods of
modifying a base concept do not provide an ade-
quate means of composing two concepts by using one
to modify a property of the other. This type of com-
position is very common and is often used in natural
language to describe a new concept. An adequate
description of apartment-dog, for example, involves
more than a restriction on habitat; such a dog is
fed certain food, gets less exercise, and is probably
smaller than its non-urban counterpart. All these
features are derived from interactions between the
original features of apartment and dog, but this in-
teraction is not well modeled in standard methods.

We address these concerns in two ways:

1. We change the organization of knowledge from one
based on individual concepts to one based on sys-
tems of interacting concepts. This change is partly
conceptual, in that a knowledge base is viewed as a
set of composable mini-theories, and it is partly im-
plementational, in that new mechanisms are needed
to combine these mini-theories. We henceforth refer
to these systems of concepts as components.

2. We add a computational mechanism for composing
a concept description from components, which in-
volves a repeated cycle of classify and elaborate to
compute the components’ relationships:

e During classification, components pertinent to
the concept description are identified.

e During elaboration, the information supplied by
those components is merged with the concept de-
scription, triggering further classification.

Thus classification enables elaboration, and elabo-
ration triggers further classification. As shown be-
low, by applying this mechanism in a goal-directed

uantity

conversion

fi gestion

Figure 2: The concept bioremediation is a composition of multiple concepts, including specializations of conversion,

treatment, and digestion.

way, components required for describing novel con-
cepts can be identified and integrated automatically,
thereby constructing representations of new com-
pound concepts.

Components

Intuitively, a component encapsulates a coherent sys-
tem of concepts and their relationships; it embod-
ies an abstract “mini-theory”, or pattern of inter-
relationships among those concepts, which can be
mapped onto a variety of situations where that pat-
tern is deemed to hold. This view borrows heavily from
work in compositional modeling, where a model frag-
ment encapsulates a system of relationships describ-
ing some aspect of a physical phenomenon, and can
be applied when that phenomenon occurs (Levy 1993;
Falkenhainer & Forbus 1991). It also draws from re-
cent work in ontological engineering, eg. (Farquhar
& Gruninger 1997), in which an ontology encapsulates
axioms describing a theory about some area (eg. sub-
stances, ceramics, sets).

More formally, we define a component as a triple
< P, A, R > where:

e P is a set of participants, denoting the objects
involved in the pattern being modeled.

e A is a set of axioms, describing relationships
among the participants.

e R is a set of roles with which the participants
can be labeled, each role referring to a different par-
ticipant. Roles are parameter names, analogous to
Lisp’s keywords for naming parameters.

We define the component’s interface as the set of role-
participant pairs of the component. Figure 3 shows
the conversion component of Figure 2 expressed in this
framework.

A component is instantiated by binding its partici-
pants to objects in the target domain. When this hap-
pens, the relationships given by the component’s ax-
ioms are asserted for those objects. The roles provide
a set of unique labels with which the participants can
be unambiguously referenced. A component’s axioms

? ? ? Interface

@ av- @rate product @ ; Roles

materials

R Y Participants
R quantity
I+
QY - o
ampunt Axioms

amount
amount

[X substance | [Y:substance |

Conversion

Figure 3: The Anatomy of a Component.

can be expressed in rules in some suitable knowledge
representation language.

Specifying Compound Concepts

We can now specify compound concepts as a com-

position of components. A specification states how

the components’ interfaces “plug together”, describing
how their roles correspond. Figure 4 shows a specifi-
cation for bioremediation stating that:

e it includes an instance of conversion, where the
raw-material of the conversion is the patient in the
bioremediation, etc.

e it includes an instance of digestion, where the eater
in the digestion is the theme in the bioremediation,
etc.

e it is a type of treatment, where all the roles map
directly without renaming.

e The themeis microbes, and the product is fertilizer.

Note that in the case of treatment as a component of

bioremediation, in which all the roles map directly to-

gether (ie. without renaming), composition reduces
to standard inheritance. Therefore, our component-

based framework can be seen as a generalization of a

normal inheritance approach. Note also that the spec-

ification still includes modifiers, specializing parts of
the base concept (eg. that the bioremediation agent is
microbes).

B:Bioremediation = C:Conversion

© D:Digestion

© 1A Treatment @ B.theme @ B.product

C.raw-matl=B.patient D.eater=B.theme (all rolesmap =Microbes =Fertilizer
C.product=B.product D.food=B.patient directly together)
D.script=B.script
Conversion Treatment Digestion
A
(R quantity] [A person]
I+
- o> [Siscript] [F substance |
agent
anmount absorbed
ount agent
amount patient -
down then
M subst ance P: subst ance
M P TR T A 1 s ®R _—/—1 E s _F_
raw—mglterials prgduct ra?e agént thgme script patient eater script food
® o ¢ 4 ®

"\

<

script
S

agent

patient environment
R E
Qquantity
1+
- e
anount _am)unt

ount
amount

‘P:fertilizer ‘

absorbed
product

Bioremediation

Figure 4: Bioremediation can be specified as a composition of components (shown in both text and graphical
forms). By only specifying how the components’ interfaces map together, the target concept can be constructed

automatically.

We now describe a method for generating, in a goal-
directed way, a concept representation from a specifi-
cation.

Dynamic Concept Construction

A ‘concept representation’ is an integration of infor-
mation from the concept’s components, subject to the
mapping given in the concept’s specification. It is more
than a simple union of the components’ axioms, as ax-
ioms may interact to allow additional information to
be inferred about the concept. In general, constructing
a compound concept representation in its entirety (ie.
exhaustively inferring all facts about it) is intractable,
and few of the facts that can be inferred are relevant
for any particular task. Therefore, by design, our con-

cept construction method is driven by the questions
posed to the knowledge-base, either from a user or an
application system. We are concerned with questions
that reference (at least) one concept that is not explic-
itly in the knowledge base, eg. “treatment of crude oil
using microbes”, and ask for one of its properties, eg.
“how much will it cost?”. To answer such questions the
system first creates a scenario, consisting of Skolem in-
dividuals denoting parts of the compound concept (eg.
treatment001, 0il001, microbes001) plus the relation-
ships among them. The system then elaborates the
scenario to find the answer to the given question. In
our work, a top level application system (eg. for di-
agnosis) will typically make many such queries to the
knowledge-base, causing the initial scenario to become

extensively elaborated over time.

The base operation in this process is answering
a single question. This involves more than simply
backward-chaining using the components’ axioms, be-
cause as more facts are inferred about the scenario, it
may become possible to refine the classification of in-
dividuals in the scenario (eg. a tool might be refined
to be a hammer if it is discovered that the tool is used
to affix nails). This refinement results in additional
components (eg. for hammer) becoming applicable;
therefore, it is essential to keep the classification of
individuals in the scenario up-to-date, to ensure the
system has access to all the relevant axioms. As a re-
sult, the question-answering algorithm is based on an
iterating cycle of classify and elaborate, which we will
describe shortly.

There is a well-known trade-off to handle here, be-
tween expressivity on one hand, and completeness and
tractability of inference on the other. With the excep-
tion of a few systems, eg. KRIS (Baader & Hollunder
1991), most reasoners tolerate some incompleteness in
inference, so that a more expressive representation lan-
guage can be used. Our algorithm similarly does this.
Recent work on access limitation (Crawford & Kuipers
1991) has shown how tractability can be maintained
through the use of access paths, which guide the infer-
ences that an inference engine might make. For similar
purposes, our algorithm uses access paths as the lan-
guage for querying the knowledge base.

An access path is a sequence of binary predicates:

Pl (C, iL‘l), P2 (.’L‘l, 11,'2), ceey Pn(iL'nfl,lL'n)

where C is a constant (denoting an individual in the
scenario) and the z;’s are free variables.! An access
path references the set of values for z,, (the last vari-
able in the path) for which there exists at least one
value for all the other variables in the path. For exam-
ple, the access path parent(John, x), sister(z,y) refer-
ences “John’s parents’ sisters”. In terms of the graph-
ical representation of concepts used earlier, an access
path corresponds to the set of paths that start at node
C and traverse arcs labeled P, ..., P,.

Given a query expressed as an access path (posed by
a user or an application program), the composition al-
gorithm applies the Classify-Elaborate Cycle to “follow
the path”. The goal is to compose just the informa-
tion necessary to answer the query (ie. find all values
of the last variable x,, implied by the knowledge-base).
Tt does this by working from left to right, applying the
following Classify-Elaborate Cycle for each predicate
P;(z;_1,x;) in the path in turn:

!This is somewhat simplified, but it suffices for our
purposes.

Classify: Before searching for solutions for the predi-
cate P;(z;_1,x;), first try to refine the classification
of ;1 from its known class to something more spe-
cific, to find its most specific generalization(s). This,
in turn, may require finding additional information
about x;_; to determine whether it satisfies a con-
cept definition, hence making a recursive call to the
Classify-Elaborate Cycle.

Elaborate: To find solutions for P;(x;—1,;), search
for axioms that conclude value(s) of z;, looking in
the components in which z; ;| participates. If any
are found to apply, the concept description can be
extended along the relation P;. This similarly may
call the Classify-Elaborate cycle recursively, to com-
pute the antecedents of those axioms.

To illustrate this, consider the compound concept
microbe-soil-treatment, referring to the treatment of
soil with microbes. The concept specification con-
sists of two modifiers of the base concept treat-
ment: the theme = microbes and the patient = soil:

[T crobes |"°M [FTeatment patient 15677]

This compound concept might be needed for answering
numerous questions, such as “what is the cost of the
equipment required for microbe-soil-treatment?” Ex-
pressed as an access path, this query is:

subevent(treatment001,5), instrument(S,I), cost(I,C)

denoting the cost of the instruments of the subevents

of treatment001, a Skolem instance of the concept

microbe-soil-treatment. The sequence of operations for
constructing a representation of treatment001 to an-
swer the query is as follows:

1. (Classify) Before searching for solutions for the first
predicate in the path, (subevent(treatment001,5)),
try to refine the classification of treatment001 from
treatment to something more specific. We will as-
sume that none are found (no relevant concept defi-
nitions apply).

2. (Elaborate) For subevent(treatment001,S), search
the components that contribute to treatment001
to find axioms that conclude about subevent. In
this case, an axiom from treatment is found
and evaluated. The axiom asserts the exis-
tence of (and hence generates Skolem individu-
als for) two subevents, get and apply. Con-
sequently, the concept description is elaborated
by adding (instances of) get and apply, say
get001 and apply001, as subevents of treatment001.

theme petient

subevent subevent

3. (Classify) Before searching
for solutions for the second predicate in the path,
(instrument(apply001, I)), try to refine the classifi-
cation of apply001. (To simplify discussion, we omit
the process of classifying get001, which is similar.)
One potentially relevant definition (not shown here)
is that a miz is defined as an apply where the pa-
tient is a substance. To ascertain if apply001 satisfies
this definition, the subgoal patient(apply001, X) is
set up. By recursively calling the Classify-Elaborate
Cycle, a solution for this subgoal is found: an axiom
for treatment states that the patient in the apply is
the same as the patient in the treatment, and the
patient in the treatment is known to be soil (from
the initial concept specification). Thus, X is found
to be (an instance of) soil, and, as soil is a sub-
stance, the definition of mix is satisfied. The sys-
tem thus concludes that the most specific general-
ization of apply001 can be refined from apply to mix.

petient

subevent subevent
patient

4. (Elaborate) For instrument(apply001,I), search
the components that contribute to apply001 to
find axioms that conclude about instrument.
In this case, an axiom from miz is found
and evaluated, asserting the existence of (and
hence generating a Skolem individual for) an in-
stance of mixer. Hence the concept descrip-
tion is elaborated by adding an (instance of)
mixer, mizer001, as the instrument of apply001.

[mi crobes }tm&\treat ment %{W\

subevent subevent
patient

M X | rtroment SLm e’]

5. (Classify) Before searching for solutions for the
third predicate in the path, (cost(mizer001,C)),
try to refine the classification of mizer001. One
potentially relevant definition is that a rototiller
is a mizer in which the mixed is soil. To ascer-
tain if mizer001 satisfies this definition, the sub-
goal mizes(mizer001,Y) is set up. Again, calling
this procedure recursively, a solution for this sub-
goal is found: an axiom for miz states that the thing
mixed by the mizer is the same as the patient in
the miz, and the patient in the miz is known to
be soil (from an earlier step). Thus, Y is found
to be (an instance of) soil, and hence the defi-
nition of rototiller is satisfied. The system thus
concludes that the most specific generalization of
mizer001 can be refined from mizer to rototiller.

N

patient

subevent subevent mixes

get et

6. (Elaborate) For cost(mizer001, C), search the com-
ponents that contribute to mizer001 to find ax-
ioms that conclude about cost. In this case,
an axiom from rototiller is found and evalu-
ated, asserting the cost of a rototiller is $200.
Hence the concept description can be elaborated by
adding cost(mizer001,$200) to the representation.

patient]

subevent subevent mixes

cost

insirument =L ototiller

Hence the answer $200 is returned by the inference
engine.?

If the system had started with a different specifi-
cation, for example microbe-oilSlick-treatment, then a
different chain of elaborations and classifications would
occur. For example, the apply would have been refined
to a spread, and the instrument would have been re-
fined to a sprayer.

This example illustrates several distinctive features
of our work. First, the concept of microbe-soil-
treatment can be reasoned about even though it is
not pre-built in the knowledge-base; instead, it is dy-
namically assembled from components. Second, even
small differences in the initial specification of the con-
cept may cause significantly different final represen-
tations to be constructed (eg. microbe-soil-treatment
vs. microbe-oilslick-treatment), illustrating how the
interaction of information from different components
affects the representation built. Finally, the queries
(eg. “what is the cost of the equipment required for
microbe-soil-treatment?”) control the actual represen-
tation that gets built.

Related Work

Our research focuses on two related issues: building
knowledge bases of reusable components and combin-
ing components to build concept representations. We
discuss related work on each of these issues.

2For simplicity this example assumed that each pred-
icate in the query was uniquely satisfied. In fact, when
a predicate can be satisfied in multiple ways (eg. the
subevents of treatment001 are apply001 and get001, and
each subevent might have multiple instruments), all of
these solutions are added to the graph by the algorithm.
Combining this information to answer a query (eg. sum-
ming the costs of the instruments of the subevents) is out-
side the scope of the algorithm.

With regard to building knowledge bases, at a gen-
eral level, we follow the principle of structuring a large
theory as a set of smaller, more manageable ones, as
in “ontologies” in ontolingua (Farquhar, Fikes, & Rice
1997) and TOVE (Fox & Gruninger 1994), and “mi-
crotheories” in Cyc (Blair, Guha, & Pratt 1992). How-
ever, our work differs in two important ways. First,
it is not our goal to partition a knowledge base (eg.
by topic), although this too is useful; rather, our
goal is to identify repeated patterns of axioms in a
large theory, and then abstract and reify those pat-
terns as components in their own right (analogous to
the notion of “design patterns” in object-oriented pro-
gramming). A single component may be used repeat-
edly in a knowledge base, each time with different
mappings of its interface to concepts in the knowl-
edge base3. Second, we add a well-defined interface
to each component, which enables reference to the
objects that participate in the component’s axioms.
We have taken this idea from compositional model-
ing, eg. (Falkenhainer & Forbus 1991; Levy 1993), and
software engineering, eg. (Batory & O’Malley 1992;
Goguen 1986). It is also similar to the use of sig-
natures to characterize theories in category theory
(Pierce 1991), where our participants correspond to
sorts in category theory.

With regard to combining components to build con-
cept representations, our approach relates to work in
description logics (DLs), such as Classic (Brachman
et al. 1991) and Loom (MacGregor & Bates 1987).
Building a concept representation is similar to the pro-
cess of ‘normalizing’ a conjunctive DL concept descrip-
tion, during which information about that concept is
gathered and combined. In particular, the classify-
elaborate cycle is similar to normalizing a concept de-
scription in the presence of ABox rules, whereby ABox
individuals are classified, the classification determines
the rules that apply to those individuals, the rules are
applied, the individuals are reclassified (since the rules
might have added information), and the cycle repeats.
However in contrast to this DL algorithm which ex-
haustively constructs concept representations without
regard to task, our algorithm is goal-driven, construct-
ing only those parts of the concept representation re-
quired to answer questions. Our trade-off is to sacrifice
completeness for a language sufficiently expressive for

our purposes?. An interesting consequence of our ap-

3as opposed to “waterfall” models in which theories are
placed in a partial order, and each theory acquires all the
axioms of theories upstream of it

4In particular, we allow existential quantifiers in com-
ponents’ axioms. As complete reasoning in the presence of
existential quantifiers is undecidable (Donini et al. 1992),
our algorithm only generates and classifies Skolem individ-

proach is that the concept description which is built
is question-specific, containing just that information
required to answer the question(s) which were posed.
Thus the algorithm can also be viewed as a ‘concept
characterization’ method, assembling a ‘view’ of the
concept as required for a particular task. This could
have useful additional benefits in explanation genera-
tion and knowledge acquisition.

While this approach appears promising, there are
several additional issues which must be addressed
to apply this on a large scale. First, we do not
have any principled methodology for identifying gen-
eralized representational fragments when crafting a
knowledge-base, apart from the general heuristic of
“look for recurring patterns of axioms”. A more struc-
tured methodology for identifying and deciding on
the boundaries of components would be invaluable for
helping guide this process. Second, we have not ad-
dressed the issue of handling components based on
conflicting assumptions, or for deciding which set of
assumptions is appropriate for a particular task. Re-
cent work in compositional modeling for selecting and
managing assumptions, eg. (Falkenhainer & Forbus
1991), and on the use of lifting axioms to transform
axioms across contexts based on differing assumptions,
eg. (Blair, Guha, & Pratt 1992), point to methods
for addressing these issues. Finally, methods for en-
suring and maintaining consistency of components are
needed, especially as a knowledge base evolves over
time. We have recently started research on this issue
(Correl & Porter 1997).

Summary

The overall goal of our research is to build knowledge-
based systems capable of answering a wide variety of
questions, including questions that are unanticipated
when the knowledge base is built. This requires that
systems be able to synthesize the knowledge structures
needed to answer questions when those structures are
not explicitly encoded in the knowledge base. We have
described a process by which these structures can be
assembled from abstract, reusable components, as they
are needed to answer questions and perform tasks. We
have presented a way to package information about ab-
stract concepts into components which “plug together”
to build a detailed representation, and we have shown
how this process can be controlled by the knowledge
requirements posed by each question and task, thus al-
lowing a knowledge base to be more easily organized
in a modular fashion.

uals when a query path predicate refers to them, rather
than whenever an object’s existence is implied.

Acknowledgements

The authors thank Keith Williamson, Steve Woods,
Tan Horrocks, Peter Patel-Schneider, Franz Baader and
the anonymous reviewers for comments related to this
paper. Support for this research was provided by a
grant from Digital Equipment Corporation and a con-
tract from the Air Force Office of Scientific Research
(F49620-93-1-0239). This work was conducted at the
University of Texas at Austin.

References

Andersen, C. 1996. A computational model of com-
plex concept composition. Master’s thesis, Dept CS,
Univ Texas at Austin.

Baader, F., and Hollunder, B. 1991. A terminolog-
ical knowledge representation system with complete
inference algorithms. In Proc First Int Workshop on
Processing Declarative Knowledge, volume 572 of Lec-
ture Notes in CS, 67-85. Springer-Verlag.

Batory, D., and O’Malley, S. 1992. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions on Software
Engineering and Methodology.

Blair, P.; Guha, R. V.; and Pratt, W. 1992. Mi-
crotheories: An ontological engineer’s guide. Tech
Rept CYC-050-92, MCC, Austin, TX.

Brachman, R. J.; McGuinness, D. L.; Patel-
Schneider, P. F.; Resnick, L. A.; and Borgida, A.
1991. Living with CLASSIC: When and how to use
a KL-ONE like language. In Sowa, J., ed., Principles
of Semantic Networks. CA: Kaufmann.

Chandrasekaren, B. 1986. Generic tasks in
knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Expert 23—-30.

Correl, S., and Porter, B. 1997. Iterative refinement
of knowledge-bases with consistency properties. In
Farquhar, A., and Gruninger, M., eds., Proc AAAI
Spring Symposium on Ontological Engineering. AAAT
(in press). 17-24.

Crawford, J. M., and Kuipers, B. J. 1991. Algernon
— a tractable system for knowledge-representation.
SIGART Bulletin 2(3):35—-44.

Donini, F. M.; Hollunder, B.; Lenzerini, M.; Nardi,
D.; Spaccamela, A.; and Nutt, W. 1992. The com-
plexity of existential quantification in concept lan-
guages. Artificial Intelligence 53(2/3):309-327.

Eilerts, E. 1994. Kned: An interface for a frame-
based knowledge representation system. Master’s the-
sis, Dept CS, Univ Texas at Austin, USA.

Falkenhainer, B., and Forbus, K. 1991. Composi-
tional modelling: Finding the right model for the job.
Artificial Intelligence 51:95-143.

Farquhar, A., and Gruninger, M., eds. 1997. Proc
AAAI Spring Symposium on Ontological Engineering.
AAAT (in press).

Farquhar, A.; Fikes, R.; and Rice, J. 1997. Tools for
assembling modular ontologies in ontolingua. In Proc
of the Fourteenth National Conference on Artificial
Intelligence (AAAI-97).

Fox, M. S., and Gruninger, M. 1994. On-
tologies for enterprise integration. In Proc 2nd
Conference on Cooperative Information Systems.
Univ Toronto. 82-90. (Also see ontologies at
http://www.ie.utoronto.ca/EIL/tove/toveont.html).

Goguen, J. A. 1986. Reusing and interconnecting
software components. Computer 16-28.

Lester, J. C., and Porter, B. W. 1997. Developing and
empirically evaluating robust explanation generators:
The knight experiments. Computational Linguistics
22(3).

Levy, A. Y. 1993. Irrelevance reasoning in knowledge-
based systems. Tech report STAN-CS-93-1482 (also
KSL-93-58), Dept CS, Stanford Univ., CA. (Chapter
7).

MacGregor, R., and Bates, R. 1987. The LOOM
knowledge representation language. Tech Report ISI-
RS-87-188, ISI, CA.

Pierce, B. 1991. Basic Category Theory for Computer
Scientists. MIT Press.

Porter, B. W.; Lester, J.; Murray, K.; Pittman, K.;
Souther, A.; Acker, L.; and Jones, T. 1988. Al re-
search in the context of a multifunctional knowledge
base: The botany knowledge base project. Tech Re-
port AI-88-88, Dept CS, Univ Texas at Austin.

Rickel, J. W., and Porter, B. W. 1997. Automated
modeling of complex systems to answer prediction
questions. Artificial Intelligence. (to appear).

