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ABSTRACT such as: speech understanding, dialog interpretationylkno

An ultimate goal of Al is to build end-to-end systems that edge representation and reasoning, machine learning, plan
interpret natural language, reason over the resultingédgi  ning and action, physical awareness, and cyber awareness.
forms, and perform actions based on that reasoning. ThisOne of the evaluation tasks @falo is to engage its user in
requires systems from separate fields be brought togethera speech-based dialog to elicit the user’s desireClo to

but often this exposes representational gaps between themassist in performing an action. An example is @alo to

The logical forms from a language interpreter may mirror help its user buy a computer. This problem requires, among
the surface forms of utterances too closely to be usablg,as-i many other things, a tight integration of a dialog underdtan
given a reasoner’s requirements for knowledge representaing system with a knowledge-based reasoner. The following
tions. What is needed is a system that can match logicalsteps illustrate wher€alo’s subsystems need to collaborate
forms to background knowledge flexibly to acquire a rich se- to achieve this goal. This particular list of steps is forlalis
mantic model of the speaker’s goal. In this paper, we presentexpressing a user’s desire fBalo to perform an action (as
such a “matcher” that uses semantic transformations te over opposed to a user stating a belief or intention).

come structural differences between the two representatio
We evaluate this matcher in a MUC-like template-filling task

and compare its performance to that of two similar systems. 1+ The user makes an utterance

2. The dialog understanding system produces a logical

Categories and Subject Descriptors form of the utterance

1.2.4 [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods 3. The dialog system engages the knowledge-based rea-
soner to help interpret the utterance as a desire for sys-

General Terms tem action

Algorithms

4. The KB reasoner establishes a match between the logi-
cal form and existing structures in the KB, establishing

Keywords . .
. . . a model of the utterance as expressing a new desire
semantic matching, ontology, knowledge-based systemss, di
course, natural language understanding 5. Interpretations of subsequent utterances (within threesa
topic) are given to the KB reasoner to be related to the
1. INTRODUCTION current model of the user’s desire (so as to elaborate
Calois a system being developed as an intelligent personal this model)

office assistant. It is intended to be a platform for the in-

tegration of system components from various fields of Al 6. If there is a shift in topic or user pause, the dialog sys-
tem takes initiative to elicit from the user any extra in-
formation (as identified by the KB reasoner’s knowl-

edge of the model) required to perform the desired ac-
Permission to make digital or hard copies of all or part o twork for tion
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies . .
bear this notice and the full citation on the first page. Toycofherwise, to 7. Once the dialog manager and KB reasoner determine
republish, to post on servers or to redistribute to listguies prior specific that the model of the user’s desire is complete, a re-

permission and/or a fee. ; _
K-CAP'05,October 2-5. 2005, Banff, Alberta, Canada. quest is passed to a task manager to perform the de
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In this paper, we focus on the issue of matching logical forms
to existing representations in the KB — required in steps 4
and 5 — to acquire a model of the user’s desire. This match

the KB, as is often the case due to the conciseness of natu-
ral language and the close mirroring of a logical form to the
surface form of its utterance.

process is necessary because the logical form produced by a

natural language interpreter is often underspecified fioan t
point of view of a reasoner attempting to reason over it. This
underspecification occurs because:

e implicit knowledge in an utterance (needed for reason-
ing) is often missing from the logical form.

e the user’s desire is split across multiple utterances, so
the links (both direct and indirect) between these utter-
ances are missing from the logical forms.

These problems are not due to weaknesses of natural lan

In this paper, we describe a flexible matcher for matching
logical forms to representations in a rich KB to build a model
of the user’s goal. Our matcher achieves this flexibility by
using semantic transformation rules to overcome struktura
differences between two representations. Our matcher has
been used successfully in the gre&afoarchitecture, tightly
coupled to the system’s automatic dialog interpreter. Fo fo
cus evaluation on our matcher, we present an experimental
setup in which its performance is isolated from the greater
system by providing it with a “perfect” (hand-built) corpus
of logical forms. We also compare this performance to that
of two similar systems: one from the MUC template-filling

task and a matcher that does not use semantic transforma-

guage interpreters because often the logical form producedtions

by these systems captures all of the information in an ut-

terance. Instead, these problems are due to the conciseness

of human communication, which assumes common back-

2. SEMANTIC MATCHING

ground knowledge between speaker and listener. For exam-A semantic matcher takes two representations and returns

ple, a user may say:

| want to buy a new laptop. | need 512 MB of
memory.

The dialog system produces a logical form for the first ut-
terance, but this logical form only captures semanticsat th
level of case roles, etc. To determine whether this utteranc
is a statement of a new user belief or desire, the dialog sys-
tem must consult the KB reasoner. The KB reasoner, in this
case, can match the logical form to the goal modgbamf
chasein the KB, supporting the dialog system’s preferred
interpretation of the utterance as a desire for action (oe.
purchase a computer).

For the second utterance, the logical form only captures the
need for memory. It does not capture the link between this
statement and the previous one —i.e. the memory is part of
the new laptop. The KB reasoner can establish this link by
matching this logical form to structures in the KB relevant
to the established model plurchase This supports the di-
alog system'’s preferred interpretation of elaboratingebe
tablished model (as opposed to signalling a shift in topic).

There has been significant previous work on matching logi-
cal forms to an existing KB [1, 2, 6, 9, 8, 12, 13] to establish
links between utterances and detect additional knowledge

that does not appear in the discourse. These approaches can

establish the indirect link between the first and secona-utte
ances above by matching their logical forms with knowledge
that laptops have memory as a part.

the best match between them based on knowledge about the
concepts and relations referenced in the representatitos.
semantic matchers [7, 10, 11, 15, 20] use only taxonomic
knowledge —i.e. the subsumption relationships among con-
cepts and relations. The top half of Figure 1 shows the result
of matching two representations (here drawn as conceptual
graphs [16]) by using the knowledge tHdrsonsubsumes
*Bob andGetsubsume8uy. Unfortunately, the other parts

of the representations are left unmatched.
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Figure 1: Top: Two conceptual graphsG; and G,. The
dashed lines show those nodes that can be matched using

Previous systems, however, require an exact match betweernaxonomic knowledge. Bottom: A part descension trans-

logical forms and the KB (i.e. an ontology). This creates
a matching problem when logical forms produced by a lan-
guage interpreter differ structurally from representagiin

formation rule augmentsG; by adding anobject relation
betweenBuy and Memory. This allows additional nodes
to be matched.



Our semantic matcher is designed to address this shortcom3. USING SEMANTIC MATCHING TOBUILD

ing. Itfirst uses taxonomic knowledge to find the largest con- A MODEL OF THE USER’S GOAL

nected subgraph in one representation that matches a subeg|g's dialog system tracks topic shifts in the dialog and
graph in the other (it ignores degenerate — i.e. single node —jids a semantic model of the user’s goal. Its KB reasoner
subgraphs). Our matcher then uses a library of transforma-gypports this task with two functions that use the semantic
tion rules to shift the representations to improve the match yatcher described in Section EstablishModels invoked
This improvement might enable other (non-degenerate) sub-yhen a new topic is introduced in the dialoBelateUtter-
graphs to match taxonomically, which in turn might enable 4nceis invoked to augment an existing goal model with the
more transformation rules, and so on until the match im- |ogical form of a subsequent utterance. The logical forms
proves no further. and model of the user’s goal are conceptual graphs.

The bottom half of Figure 1 shows the result of applying a 3.1 Establish Model
transformation rule t@;. This rule augments the represen- _/
tation by adding ambjectrelation betweeBuy and Mem-
ory, thereby enabling the matcher to align they of memory

in G with the get of memorin G». The intuition behind this
rule is that the purchase of a computer includes the purchas
of its memory. This, of course, is a very domain specific rule
and achieving broad coverage with such rules is infeasible.

EstablishModel (see Figure 2) builds an initial model of
the user’s goal by matching the logical form of an utterance
introducing a new topic with representations in an ontology
We assume this ontology encodes the following information
Sor concepts and relations — 1) their naien (which is also
their type), 2) their immediate superclassgs 3) their im-
mediate subclasse#, and 4) a representatidi (which is

a conceptual graph) of each concept (see middle of Figure 3

In contrast, our library of transformation rules is basedhon ;
for a fragment of this ontology rooted &went).

domain-independent upper ontology [3] consisting of about
500 generic entities, events, and roles, and about 75aekati
—each with a _vveII defined semantics. We gener_ated _t_h|s li- RETURN: An initial model of the user's goal.
brary of rules in a systematic manner. First, we identified a B -

recurring pattern of rules that are useful for semantic matc LET Maz = 0andM = NTL,

ing called “transfers through” [14]. The general form ofsthi FOR eachN'm, Sp, 5b, R) in O where

GIVEN: alogical formL and an ontology).

Nm is a concept DO

patternis: IF Nm €gp concepts(L) THEN
C: 250y 2 05= 00 2 O LET match = SemMatch(L, R, Transforms, O)
_ TSum(match)
whereC; is a concept and, is a relation. Then, we ex- LET score = IL]
haustively enumerated all semantically valid instardiai IF score > Maz THEN
of this pattern using concepts and relations from our upper LET Maz = score andM = R

ontology. The result was a comprehensive library of about RETURN Join (L, M)
200 rules such as:

Event; 25" Entity, "***8"" Entitys 1) Figure 2: The algorithm for EstablishModel. Builds an
— Event, object Entitys initial mpde! by matching a logical form introducing a
new topic with an ontology.

Event; ““° Events ““2° Events . .
— Bvent, “™%° Bvent, (2) To reduce the search spaﬂ_égtablzshModel c.on5|ders.only
those concepts that are either referenced in the logicad for
The first rule encodgsart descensiofi.e. actingonawhole  or have an immediate subclass that is referenced in the log-
also acts onits parts), and is the general form of the transfo ical form. It then computes a score for each match based

mation rule used in Figure 1. The second rule encodes theon the sum of the taxonomic distance between the matched

transitivity of causality. nodes over the total number of nodes in the logical form:
This library of transformations has been used previously to T Sum(match)
significantly improve matching in the domains of battle spac |L|

planning [18] and chemistry [19]. For a complete list of

where|L| is the number of nodes in the logical form and
these rules, we refer the reader to [17].

T Sum(match) is defined as:

In our semantic matcher, a rule is applicable to a represen- T Sum(match) — Z 1

tation if its antecedent subsumes a subgraph of the represen taxdist(ng, n;) + 1
tation (i.e. it either matches exactly or matches using tax-
onomic knowledge). Our matcher applies a transformation wheretazdist is the minimum number of steps between two
rule byjoining [16] the rule’s consequent with the subgraph concepts (or relations) in our ontology. The best match is
that matched the rule’s antecedent. See [18] for a completejoined [16] — i.e. merged — with the logical form to obtain
description of our semantic matcher. an initial model of the user’s goal.

(ni,nj)Ematch



We illustrate this function with the following utterancegere
the speaker is Bob:

| want to buy a computer with monitor. | want to
get a large monitor. Order it today.

To establish aninitial model of Bob’s godi,stablish M odel
matches the logical form of the first utterance (we’ll daf))
with an ontology (see Figure 3).

L;: “T want to buy a

computer with monitor.”

agent objlect
[ Computer | | Monitor |

haspart

agent nbject
o uent
(ooney ] hmspan

Figure 3: Top: The logical form of the first utterance.
Middle: A fragment of the ontology rooted at Fwvent.
This ontology also shows the representations dduy and
Get, both of which match L,. Subgraphs that match
L, are shown in bold along with the match score. Bot-
tom: An initial model of Bob’s goal obtained by joining
L, with Buy.

To reduce the search spa¢®yrchaseand Place-Orderare

not considered because neither they nor any of their im-
mediate subclasses are referenced.in This leavesGet
andBuywhich are matched witlL; . Buymatchesl; with

a score of 0.493 becausé,| is 7, and in our ontology,
tazdist(Artifact, Computer) = 3, taxdist(Entity, Bob)

= 4, andtazdist is O for the other 3 matched node&et
matchesl; also, but its match score is 0.421. This is be-
causefazdist(Get, Buy) = 1 and the other matched nodes
have the same taxonomic distance as before. Hoges the
better match, it is joined witlL; to obtain an initial model
of Bob’s goal to buy a computer (as shown in the bottom
of Figure 3). This match also detects additional infornmatio
not in the utterance — i.&Moneyis the instrument of 8uy.

3.2 Relate Utterance

RelateUtterance (see Figure 4) elaborates the current goal
model by matching it with the logical form of a subsequent
utterance. If a match does not exist, then there is an indirec
link. To establish this linkRelateUtterance elaborates the
current model with a new concept, drawn from the ontology,
that also has features in common with the logical form. We
call this new concept the bridging concept, and it is setécte
based on how well it matches both the current model and the
logical form:

T Sum(matchl) x T Sum(match2)
|R|
where|R| is the number of nodes in the representation of
the bridging conceptmatchl is the set of matched nodes

between the logical form anf?, andmatch?2 is the set of
matched nodes betwedhand the current model.

GIVEN: alogical formL, the current model of the
user’s goalM and an ontology).

RETURN: An elaborated model of the user’s goal.
LET match = SemMatch(L, M, Transforms, O)
IF jmatch| > 0 THEN

RETURNJoin(L, M)
ELSE

LET Maz = 0 andBridge = NIL

FOR eachNm, Sp, Sb, R) in O where

Nm is a concept DO
LET matchl = SemMatch(L, R, Trans forms, O)

LET match2 = SemMatch(R, M, Transforms, O)
LET score = TSum(matchl) X T Sum(match2)

IR]
IF score > Max THEN
LET Maz = score andBridge = R
RETURN Join(L, Join(Bridge, M))

Figure 4: The algorithm for RelateUtterance. Elaborates
the current model by matching it with the logical form of
a subsequent utterance.

Selecting the bridging concept can become intractable for
large ontologies, but several methods can be used to reduce
the search space. One method is to only consider a repre-
sentation as a possible bridge if it includes concepts also
referenced in both the logical form and the current model.
Another method is to set a minimum match threshold for the
bridging concept, and terminate the search when a represen-
tation meeting this threshold is found. Both methods work
well in practice. We use the first one in our implementation.



We continue our example from section 3.1. Figure 5 shows tation of Purchase however, matches both; and M (see
the logical form of the second utterance (we’ll cal) and top of Figure 6), so it is selected as the bridging concept.
the current model of Bob’s goal to purchase a computer (we’ll This match establishes: 1) the indirect link betw&saryand

call M). RelateUtterance matchesL, with M, and there Place-Order(i.e. Buyis anext-evenbf Place-Orde}, and

is a match -Getin L, matchesBuyin M and the agent 2) the Computeris the object to be ordered today. More
of Get (i.e. Entity) matches the agent @uy (i.e. *Bob). importantly, a coherent model of Bob'’s goal to purchase a
Since there are unmatched nodes, transformations are usedomputer with a large monitor is built through this matching
to improve this match. A part descension transformation can process (see bottom of Figure 6).

be applied toM to add an object relation connectiiyy

to Monitor. This allows theMonitor in L, to be matched

with theMonitorin M. These are the only nodes that can be M: Ent———uh]ect

matched using transformations, &bis elaborated to reflect v ' e
that: the large monitor that Bob wants to get is part of the T e
computer he wants to bigee bottom of Figure 5). has-part

oh ]ect

M: e:nt
o - k-
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Figure 6: Top: The logical form of the third utterance

agent oll]ect Lg, the current model of Bob’s goal M, and the bridg-
;*Bob

ing conceptPurchase. Matches betweenl;, M, and the

Tmm %‘ ‘7—] (Harze | bridging concept are shown in Bold. Bottom: The result

has-part of using Purchase to establish the indirect link between
L3 and M.

Figure 5: Top: The logical form of the second utterance
(i.e. L,), and the current model of Bob’s goal to buy a 4. EVALUATION
computer (i.e. M). M is transformed to better match L,

(matches are in bold). Bottom: The result of elaborating

We evaluate our system on a MUC-like template-filling task
using a corpus of purchase requests, and we compare its per-
formance to that of two similar systems.

The logical form of the last utterance (we'll call;) does

not match the model resulting from the previous elaboration 4.1 Experimental Setup

(also calledM), so RelateUtterance must establish the in-  In order to evaluate the performance of our system (and those
direct link between them using a new concept drawn from being compared), we need to isolate it from the other com-
the ontology. It cannot usBuy or Get (from Figure 3) be- ponents of the great&alo system. Hence, we constructed
cause their representations do not matgh The represen-  the following corpus with this goal in mind.



We selected, as our corpus, a log of Purchase REQuisitionsWe model our evaluation after the MUC template-filling task
(PREQs) kept by the department of Computer Sciences at[4, 5]. For each PREQ, we had the human subject answer as
the University of Texas at Austin. Each PREQ is an e-mail many questions as he could based on his background knowl-
message from faculty or staff specifying items they want to edge and understanding of the PREQ. This was done us-
purchase such as books, supplies, computers, etc. We chosig an interactive program which begins with generic ques-
this corpus because each e-mail is a discourse on a singlgions about purchase — e.g. “what is the object of the pur-
topic, so the topic tracking component of tBalo system is chase?”, “what is the objective of the purchase?”, etc. An-
not involved. swers are given as concepts (elgiptop-Computer), and
multiple answers are allowed for each question. The pro-
This corpus contains over 13,000 PREQs. From this large gram then asks follow-on questions for each answer. For
set, we selected only those PREQs concerning the purchasexample, if the subject enterdthptop-Computer as the
of computer equipment during the past year. This gave usobject of the purchase, then the program asks: “what is the
193 PREQs, and we randomly selected 75 for this evalua-cost of the Laptop-Computer?”, “what are the parts of the
tion. These 75 PREQs contain a total of 468 utterances andLaptop-Computer?”, etc. This interaction continues umil
4252 words. The average length of each PREQ is 6.24 ut-more answers are given. We use these answers aSaldr
terances, and the average length of each utterance is 9.0%tandardGS).
words.
We then measured how well each system performed on this
To further isolate our system from the grea@alo system, same task. First, the systems built a model of each PREQ
we provide it with logical forms of utterances which were from its logical forms. Then these models were used to an-
hand-built by three human subjects using an ontology in do- swer questions about the purchase. Each question was an-
main of office space (which we’ll call the “office ontology”).  swered by using its internal encoding to extract the answers
This office ontology was built by extending the same domain- from the models. Each question was encoded as a 3-tuple —
independent upper ontology [3] from which our transforma- i.e. (Ref, rel, Filler) whereRef is the conceptin question,
tions were derived. The three subjects, however, were un-rel is the relation the question maps to, aidler is the an-
aware of this library of transformations, the existing stru  swer. For example, “what is the object of the purchase?” is
tures in the office ontology, or the intended use of these log- encoded aéPurchase, object, ?), and this is used to extract
ical forms. They knew only of the vocabulary in the office concepts related tBurchase via anobject relation.
ontology, so this encoding task was a literal translatiomfr
English to logical forms. This setup mirrors the behavior of As our baseline, we used each question’s internal encoding
Calo'sdialog system and how it interacts with our matcher. to extract the answers directly from the logical forms offreac
PREQ.
We then asked an independent third party to review the fi- N
delity of these encodings to ensure they mirror exactly the Each system’s answers along with the baseline answers were
surface forms of their utterances. Those encodings with fi- compared with the gold standard and scored using the fol-
delity problems were either corrected by this third party or lowing MUC metrics [4]. A system’s answer wasrrect
discarded. if the GS gave the same answpartially correct if the GS
gave an answer that is a super/subclass of it (e.g. the GS
said Laptop-Computer and the system sai@omputer),
andincorrectif the GS gave a different answer. If the sys-
4.2 Experimental Methodology tem answered a question that the GS left blank, then this
answer was counted apurious Questions answered by the

We compare our system to two similar systems on the same N
b y y GS but left blank by the system were countedrassing

task. We chose the Discourse Interpreter (DI) in LaSIE-
Il [13] because it performed well in the MUC-7 competi-
tion. This system adds the concepts in each logical form to
the existing discourse model. It then “expands” each con-
cept to bring in additional information from the ontology
and merges those with high similarity, based on the num-
ber of common attributes (i.e. shared nodes) and the tax- Precision _ #Correct+(#Partialx0.5)
onomic distance between the concepts being merged. We SysAnswers
chose Overlay [1, 2] because it is just like our approach ex-

These metrics were then used to calculate Precision, Recall
and Overgeneration [4]:

i N . _ #Correct+(#Partial X0.5)
cept: 1) it does not use transformations (it uses only tax- Recall = GSAnswers (3)
onomic knowledge), and 2) it uses a different function to Souri
compute the match score. Overgeneration = Z-Shurious

The three systems used the same office ontology as their sole
source of background knowledge, and all three systems werewhereGS AnsweraindSys Answerare the total number of
evaluated on the PREQ data set. answers given by the gold standard and system respectively.



4.3 Results and Discussion concepts and 55 relations [9]. Because of the size of the of-
Table 1 shows each system’s performance along with thefice ontology, different concepts often have many attrisute
baseline on the MUC metrics, and Figure 7 shows their per- in common. This causes a serious problem for LaSIE-II's
formance on precision, recall, and overgeneration. Our ap-DI when it tries to merge new concepts (introduced by an
proach outperformed the baseline, LaSIE-II's DI, and Over- utterance) with previous ones based on how many attributes
lay on precision, recall, and overgeneration. This diffiere they share. LaSIE-II's DI eagerly expands new concepts, so
was significant at the 0.01 level for the 2-tailed t-testiolrea  much irrelevant information is brought in from the ontology
case {f = 148 in each case). causing many concepts to be merged incorrectly.

Our approach is not affected by this problem for two reasons.

Table 1: How each system performed on the MUC met-  Ejrst our approach brings in additional knowledge from the

ncs. ontology only when there is no match between the logical

Critena Our TOver- | LaSIE | Base- formof an utterance_and an existi_ng model of t_he user’s_, goal.
Approach lay | 11D line Second, our similarity measure is bas_ed on information in

Correct 54711 1453 1330] 941 th_e utterances themselves, SO !nformatlon not relevahieto t
Partial 102 329 99 104 discourse will not bias the scoring.
Incor_rect 65 292 300| 116 Our system also performed significantly better than Overlay
S[.)UI’.IOUS 675 894| 2686 586 on precision, recall, and overgeneration. We attribute thi
Missing 569 1083) 1428| 1996 improvement to the only significant difference between our
GS Answers 3157) 3157] 3157] 3157 system and Overlay: our system uses transformation rules
Sys Answers 3263| 2968| 4415| 1747 while Overlay uses only taxonomic knowledge. On average,

our approach appliedl9 transformations per PREQ.

These results are encouraging, and they show that flexible
matching is essential for relating logical forms to the KB

& Ow Approach | |

substantially in form. We achieve flexible matching using
transformation rules, but more importantly, useful transf
mations do not have to be tailored for the domain at hand.
Instead, they can be derived from a domain-independent up-
per ontology and still be effective at overcoming structura
differences between two representations.

|

5. CONCLUSION

Precision Recall Overgeneration In this paper, we presented a matcher to bridge the represen-
tational gap between the logical forms generated by a lan-
guage interpreter and semantically related content inta ric

Figure 7: Each system’s performance on precision, re- knowledge base. We argued that a semantic matcher with
call, and overgeneration averaged over all 75 PREQs. transformations is needed because logical forms and repre-
sentations in the KB can differ structurally, even thouggitth
Our system performed significantly better than the baseline intended content is similar.
on precision, recall, and overgeneration. As expected, the
baseline had the worst recall because it does not attempt to/Ve evaluated our system on a MUC-like template-filling task
recover any missing information. As a result, only question using e-mail messages about computer equipment purchases,
whose answers were explicit in the logical form of an utter- and compared our approach to two similar ones — LaSIE-II
ance could be answered. This shows that logical forms (evenDI and Overlay. We showed that our approach performed
“perfect” hand-built ones) are insufficient by themselves.  significantly better than both on precision, recall, androve
generation. We also showed how using the logical forms di-
Our system outperformed LaSIE-II's DI across all dimen- rectly is insufficient. We also learned that useful transfar
sions. We found, to our surprise, that the poor performancetions do not have to be ad hoc or domain-specific. They can
of LaSIE-II's DI was due to the size of the ontology used in be derived from a domain-independent upper ontology and
this evaluation — the office ontology contains over athodsan still be effective at resolving mismatches. Our contribati
concepts (and relations) and several thousand axioms. Theds showing how a semantic matcher with a library of domain-
ontology used by Gaizauskas et al. in the MUC-6 competi- independent transforms can bridge the representatiopal ga
tion, for example, was significantly smaller — it contain€d 7  between a language interpreter and a KR&R system.

]



Our approach can also be applied to other domains with min-
imal effort because it is based on a domain-independent up-
per ontology. All that needs to be done is to extend the upper
ontology to include concepts and representations speaific t
the domain of interest. This was what we did to apply our
approach to all three domains in which it has been used.

[8] R. Gaizauskas and K. Humphreys. Quantitative
evaluation of coreference algorithms in an information
extraction system. In S. Botley and T. McEnery,
editors,Corpus-based and Computational Approaches
to Discourse Anaphord 996.

[9]
Several issues still need to be explored. First, we plan to
examine whether domain-specific transformations can aug-
ment domain-independentones to further improve matching.

R. Gaizauskas, T. Wakao, K. Humphreys,

H. Cunningham, and Y. Wilks. University of Sheffield:
Description of the LaSIE system as used for MUC-6.
In MUC-6, 1995.

Next, we plan to study whether this matching technique can [10]

be used for other tasks such as topic identification. Finally

we plan to study whether the output of this match process

D. Genest and M. Chein. An experiment in document
retrieval using conceptual graphs.I®&CS 1997.

can provide context to the language interpreter to improve [11] N. Guarino, C. Masolo, and G. Vetere. Ontoseek:

interpretation.

6. ACKNOWLEDGMENTS

Support for this research was provided by SRI International

as part of DARPAs PAL project. The authors would like

Content-based access to the W&EE Intelligent
Systemsl4(3), 1999.

| [12] J. Hobbs, M. Stickel, P. Martin, and D. Edwards.

Interpretation as abduction. &CL, 1988.

to thank Geoffery King, Jason Chaw, James Fan, and Dan[13] K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck,

Tecuci for their help on this project.

7. REFERENCES
[1] J. Alexandersson and T. Becker. Overlay as the basic
operation for discourse processing in a multimodal
dialogue system. INCAI Workshop on Knowledge
and Reasoning in Practical Dialogue Syste2801.

[2] J. Alexandersson and T. Becker. The formal
foundations underlying overlay. INWCS-5 2003.

[3] K. Barker, B. Porter, and P. Clark. A library of generic
concepts for composing knowledge basesKGAP,
2001.

[4] N. Chinchor. MUC-3 evaluation metrics. MUC-3,
1991.

[5] N. Chinchor. Overview of MUC-7/MET-2. IMUC-7,
1998.

[6] P. Cimiano. Ontology-driven discourse analysis in
GenlE. INNLDB, 2003.

[7]1 N. Foo, B. Garner, A. Rao, and E. Tsui. Semantic
distance in conceptual graphs. In P. Eklund, T. Nagle,
J. Nagle, L. Gerhotz, and E. Horwood, editdEsirrent
Directions in Conceptual Structure Researt892.

B. Mitchell, H. Cunningham, and Y. Wilks. University
of Sheffield: Description of the LaSIE-Il system as
used for MUC-7. InMUC-7, 1998.

[14] D. B. Lenat and R. Guha&uilding Large
Knowledge-Based Systemsidison-Wesley, 1990.

[15] P. Mulhem, W. Leow, and Y. Lee. Fuzzy conceptual
graphs for matching images of natural scenes. In
[JCAI, 2001.

[16] J. F. SowaConceptual Structures: Information
Processing in Mind and Machin@dddison-Wesley,
1984.

[17] P. Yeh, B. Porter, and K. Barker. Transformation rules
for knowledge-based pattern matching. Technical
Report UT-AI-TR-03-299, U.T. Austin, 2003.

[18] P. Yeh, B. Porter, and K. Barker. Using
transformations to improve semantic matching. In
KCAP, 2003.

[19] P. Yeh, B. Porter, and K. Barker. Mining
transformation rules for semantic matching. In
ECML/PKDD 2nd International Workshop on Mining
Graphs, Trees, and Sequenc2804.

[20] J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual graph
matching for semantic search.l@Cs 2002.



