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ABSTRACT
An ultimate goal of AI is to build end-to-end systems that
interpret natural language, reason over the resulting logical
forms, and perform actions based on that reasoning. This
requires systems from separate fields be brought together,
but often this exposes representational gaps between them.
The logical forms from a language interpreter may mirror
the surface forms of utterances too closely to be usable as-is,
given a reasoner’s requirements for knowledge representa-
tions. What is needed is a system that can match logical
forms to background knowledge flexibly to acquire a rich se-
mantic model of the speaker’s goal. In this paper, we present
such a “matcher” that uses semantic transformations to over-
come structural differences between the two representations.
We evaluate this matcher in a MUC-like template-filling task
and compare its performance to that of two similar systems.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence ]: Knowledge Representation
Formalisms and Methods

General Terms
Algorithms

Keywords
semantic matching, ontology, knowledge-based systems, dis-
course, natural language understanding

1. INTRODUCTION
Calo is a system being developed as an intelligent personal
office assistant. It is intended to be a platform for the in-
tegration of system components from various fields of AI
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such as: speech understanding, dialog interpretation, knowl-
edge representation and reasoning, machine learning, plan-
ning and action, physical awareness, and cyber awareness.
One of the evaluation tasks ofCalo is to engage its user in
a speech-based dialog to elicit the user’s desire forCalo to
assist in performing an action. An example is forCalo to
help its user buy a computer. This problem requires, among
many other things, a tight integration of a dialog understand-
ing system with a knowledge-based reasoner. The following
steps illustrate whereCalo’ssubsystems need to collaborate
to achieve this goal. This particular list of steps is for dialogs
expressing a user’s desire forCalo to perform an action (as
opposed to a user stating a belief or intention).

1. The user makes an utterance

2. The dialog understanding system produces a logical
form of the utterance

3. The dialog system engages the knowledge-based rea-
soner to help interpret the utterance as a desire for sys-
tem action

4. The KB reasoner establishes a match between the logi-
cal form and existing structures in the KB, establishing
a model of the utterance as expressing a new desire

5. Interpretations of subsequent utterances (within the same
topic) are given to the KB reasoner to be related to the
current model of the user’s desire (so as to elaborate
this model)

6. If there is a shift in topic or user pause, the dialog sys-
tem takes initiative to elicit from the user any extra in-
formation (as identified by the KB reasoner’s knowl-
edge of the model) required to perform the desired ac-
tion

7. Once the dialog manager and KB reasoner determine
that the model of the user’s desire is complete, a re-
quest is passed to a task manager to perform the de-
sired action



In this paper, we focus on the issue of matching logical forms
to existing representations in the KB – required in steps 4
and 5 – to acquire a model of the user’s desire. This match
process is necessary because the logical form produced by a
natural language interpreter is often underspecified from the
point of view of a reasoner attempting to reason over it. This
underspecification occurs because:� implicit knowledge in an utterance (needed for reason-

ing) is often missing from the logical form.� the user’s desire is split across multiple utterances, so
the links (both direct and indirect) between these utter-
ances are missing from the logical forms.

These problems are not due to weaknesses of natural lan-
guage interpreters because often the logical form produced
by these systems captures all of the information in an ut-
terance. Instead, these problems are due to the conciseness
of human communication, which assumes common back-
ground knowledge between speaker and listener. For exam-
ple, a user may say:

I want to buy a new laptop. I need 512 MB of
memory.

The dialog system produces a logical form for the first ut-
terance, but this logical form only captures semantics at the
level of case roles, etc. To determine whether this utterance
is a statement of a new user belief or desire, the dialog sys-
tem must consult the KB reasoner. The KB reasoner, in this
case, can match the logical form to the goal model ofpur-
chasein the KB, supporting the dialog system’s preferred
interpretation of the utterance as a desire for action (i.e.to
purchase a computer).

For the second utterance, the logical form only captures the
need for memory. It does not capture the link between this
statement and the previous one – i.e. the memory is part of
the new laptop. The KB reasoner can establish this link by
matching this logical form to structures in the KB relevant
to the established model ofpurchase. This supports the di-
alog system’s preferred interpretation of elaborating thees-
tablished model (as opposed to signalling a shift in topic).

There has been significant previous work on matching logi-
cal forms to an existing KB [1, 2, 6, 9, 8, 12, 13] to establish
links between utterances and detect additional knowledge
that does not appear in the discourse. These approaches can
establish the indirect link between the first and second utter-
ances above by matching their logical forms with knowledge
that laptops have memory as a part.

Previous systems, however, require an exact match between
logical forms and the KB (i.e. an ontology). This creates
a matching problem when logical forms produced by a lan-
guage interpreter differ structurally from representations in

the KB, as is often the case due to the conciseness of natu-
ral language and the close mirroring of a logical form to the
surface form of its utterance.

In this paper, we describe a flexible matcher for matching
logical forms to representations in a rich KB to build a model
of the user’s goal. Our matcher achieves this flexibility by
using semantic transformation rules to overcome structural
differences between two representations. Our matcher has
been used successfully in the greaterCaloarchitecture, tightly
coupled to the system’s automatic dialog interpreter. To fo-
cus evaluation on our matcher, we present an experimental
setup in which its performance is isolated from the greater
system by providing it with a “perfect” (hand-built) corpus
of logical forms. We also compare this performance to that
of two similar systems: one from the MUC template-filling
task and a matcher that does not use semantic transforma-
tions.

2. SEMANTIC MATCHING
A semantic matcher takes two representations and returns
the best match between them based on knowledge about the
concepts and relations referenced in the representations.Most
semantic matchers [7, 10, 11, 15, 20] use only taxonomic
knowledge – i.e. the subsumption relationships among con-
cepts and relations. The top half of Figure 1 shows the result
of matching two representations (here drawn as conceptual
graphs [16]) by using the knowledge thatPersonsubsumes
*Bob andGetsubsumesBuy. Unfortunately, the other parts
of the representations are left unmatched.

Figure 1: Top: Two conceptual graphsG1 and G2. The
dashed lines show those nodes that can be matched using
taxonomic knowledge. Bottom: A part descension trans-
formation rule augmentsG1 by adding anobje
t relation
betweenBuy andMemory. This allows additional nodes
to be matched.



Our semantic matcher is designed to address this shortcom-
ing. It first uses taxonomic knowledge to find the largest con-
nected subgraph in one representation that matches a sub-
graph in the other (it ignores degenerate – i.e. single node –
subgraphs). Our matcher then uses a library of transforma-
tion rules to shift the representations to improve the match.
This improvement might enable other (non-degenerate) sub-
graphs to match taxonomically, which in turn might enable
more transformation rules, and so on until the match im-
proves no further.

The bottom half of Figure 1 shows the result of applying a
transformation rule toG1. This rule augments the represen-
tation by adding anobjectrelation betweenBuy andMem-
ory, thereby enabling the matcher to align thebuy of memory
inG1 with the get of memoryinG2. The intuition behind this
rule is that the purchase of a computer includes the purchase
of its memory. This, of course, is a very domain specific rule
and achieving broad coverage with such rules is infeasible.

In contrast, our library of transformation rules is based ona
domain-independent upper ontology [3] consisting of about
500 generic entities, events, and roles, and about 75 relations
– each with a well defined semantics. We generated this li-
brary of rules in a systematic manner. First, we identified a
recurring pattern of rules that are useful for semantic match-
ing called “transfers through” [14]. The general form of this
pattern is: C1 r1�! C2 r2�! C3 ) C1 r1�! C3
whereCi is a concept andrj is a relation. Then, we ex-
haustively enumerated all semantically valid instantiations
of this pattern using concepts and relations from our upper
ontology. The result was a comprehensive library of about
200 rules such as:Event1 obje
t�! Entity2 haspart�! Entity3=) Event1 obje
t�! Entity3 (1)Event1 
auses�! Event2 
auses�! Event3=) Event1 
auses�! Event3 (2)

The first rule encodespart descension(i.e. acting on a whole
also acts on its parts), and is the general form of the transfor-
mation rule used in Figure 1. The second rule encodes the
transitivity of causality.

This library of transformations has been used previously to
significantly improve matching in the domains of battle space
planning [18] and chemistry [19]. For a complete list of
these rules, we refer the reader to [17].

In our semantic matcher, a rule is applicable to a represen-
tation if its antecedent subsumes a subgraph of the represen-
tation (i.e. it either matches exactly or matches using tax-
onomic knowledge). Our matcher applies a transformation
rule by joining [16] the rule’s consequent with the subgraph
that matched the rule’s antecedent. See [18] for a complete
description of our semantic matcher.

3. USING SEMANTIC MATCHING TO BUILD
A MODEL OF THE USER’S GOAL

Calo’s dialog system tracks topic shifts in the dialog and
builds a semantic model of the user’s goal. Its KB reasoner
supports this task with two functions that use the semantic
matcher described in Section 2.EstablishModelis invoked
when a new topic is introduced in the dialog.RelateUtter-
anceis invoked to augment an existing goal model with the
logical form of a subsequent utterance. The logical forms
and model of the user’s goal are conceptual graphs.

3.1 Establish ModelEstablishModel (see Figure 2) builds an initial model of
the user’s goal by matching the logical form of an utterance
introducing a new topic with representations in an ontology.
We assume this ontology encodes the following information
for concepts and relations – 1) their nameNm (which is also
their type), 2) their immediate superclassesSp, 3) their im-
mediate subclassesSb, and 4) a representationR (which is
a conceptual graph) of each concept (see middle of Figure 3
for a fragment of this ontology rooted atEvent).
GIVEN: a logical formL and an ontologyO.
RETURN: An initial model of the user’s goal.
LET Max = 0 andM = NIL
FOR eachhNm;Sp; Sb;Ri in O whereNm is a concept DO

IF Nm 2Sb 
on
epts(L) THEN
LET mat
h = SemMat
h(L;R; Transforms;O)
LET s
ore = TSum(mat
h)jLj
IF s
ore > Max THEN

LET Max = s
ore andM = R
RETURNJoin(L;M)
Figure 2: The algorithm for EstablishModel. Builds an
initial model by matching a logical form introducing a
new topic with an ontology.

To reduce the search space,EstablishModel considers only
those concepts that are either referenced in the logical form
or have an immediate subclass that is referenced in the log-
ical form. It then computes a score for each match based
on the sum of the taxonomic distance between the matched
nodes over the total number of nodes in the logical form:TSum(mat
h)jLj
wherejLj is the number of nodes in the logical form andTSum(mat
h) is defined as:TSum(mat
h) = X(ni;nj)2mat
h 1taxdist(ni; nj) + 1
wheretaxdist is the minimum number of steps between two
concepts (or relations) in our ontology. The best match is
joined [16] – i.e. merged – with the logical form to obtain
an initial model of the user’s goal.



We illustrate this function with the following utterances,where
the speaker is Bob:

I want to buy a computer with monitor. I want to
get a large monitor. Order it today.

To establish an initial model of Bob’s goal,EstablishModel
matches the logical form of the first utterance (we’ll callL1)
with an ontology (see Figure 3).

Figure 3: Top: The logical form of the first utterance.
Middle: A fragment of the ontology rooted at Event.
This ontology also shows the representations ofBuy andGet, both of which match L1. Subgraphs that matchL1 are shown in bold along with the match score. Bot-
tom: An initial model of Bob’s goal obtained by joiningL1 with Buy.

To reduce the search space,PurchaseandPlace-Orderare
not considered because neither they nor any of their im-
mediate subclasses are referenced inL1. This leavesGet
andBuywhich are matched withL1. BuymatchesL1 with
a score of 0.493 becausejL1j is 7, and in our ontology,taxdist(Artifa
t; Computer) = 3, taxdist(Entity; Bob)

= 4, andtaxdist is 0 for the other 3 matched nodes.Get
matchesL1 also, but its match score is 0.421. This is be-
causetaxdist(Get;Buy) = 1 and the other matched nodes
have the same taxonomic distance as before. SinceBuyis the
better match, it is joined withL1 to obtain an initial model
of Bob’s goal to buy a computer (as shown in the bottom
of Figure 3). This match also detects additional information
not in the utterance – i.e.Moneyis the instrument of aBuy.

3.2 Relate UtteranceRelateUtteran
e (see Figure 4) elaborates the current goal
model by matching it with the logical form of a subsequent
utterance. If a match does not exist, then there is an indirect
link. To establish this link,RelateUtteran
e elaborates the
current model with a new concept, drawn from the ontology,
that also has features in common with the logical form. We
call this new concept the bridging concept, and it is selected
based on how well it matches both the current model and the
logical form:TSum(mat
h1)� TSum(mat
h2)jRj
wherejRj is the number of nodes in the representation of
the bridging concept,mat
h1 is the set of matched nodes
between the logical form andR, andmat
h2 is the set of
matched nodes betweenR and the current model.

GIVEN: a logical formL, the current model of the
user’s goalM and an ontologyO.

RETURN: An elaborated model of the user’s goal.
LET mat
h = SemMat
h(L;M; Transforms;O)
IF jmat
hj > 0 THEN

RETURNJoin(L;M)
ELSE

LET Max = 0 andBridge = NIL
FOR eachhNm;Sp; Sb;Ri in O whereNm is a concept DO

LET mat
h1 = SemMat
h(L;R; Transforms;O)
LET mat
h2 = SemMat
h(R;M; Transforms;O)
LET s
ore = TSum(mat
h1)�TSum(mat
h2)jRj
IF s
ore > Max THEN

LET Max = s
ore andBridge = R
RETURNJoin(L; Join(Bridge;M))

Figure 4: The algorithm for RelateUtterance. Elaborates
the current model by matching it with the logical form of
a subsequent utterance.

Selecting the bridging concept can become intractable for
large ontologies, but several methods can be used to reduce
the search space. One method is to only consider a repre-
sentation as a possible bridge if it includes concepts also
referenced in both the logical form and the current model.
Another method is to set a minimum match threshold for the
bridging concept, and terminate the search when a represen-
tation meeting this threshold is found. Both methods work
well in practice. We use the first one in our implementation.



We continue our example from section 3.1. Figure 5 shows
the logical form of the second utterance (we’ll callL2) and
the current model of Bob’s goal to purchase a computer (we’ll
call M ). RelateUtteran
e matchesL2 with M , and there
is a match –Get in L2 matchesBuy in M and the agent
of Get (i.e. Entity) matches the agent ofBuy (i.e. *Bob).
Since there are unmatched nodes, transformations are used
to improve this match. A part descension transformation can
be applied toM to add an object relation connectingBuy
to Monitor. This allows theMonitor in L2 to be matched
with theMonitor in M . These are the only nodes that can be
matched using transformations, soM is elaborated to reflect
that: the large monitor that Bob wants to get is part of the
computer he wants to buy(see bottom of Figure 5).

Figure 5: Top: The logical form of the second utterance
(i.e. L2), and the current model of Bob’s goal to buy a
computer (i.e.M ). M is transformed to better matchL2
(matches are in bold). Bottom: The result of elaboratingM with L2.
The logical form of the last utterance (we’ll callL3) does
not match the model resulting from the previous elaboration
(also calledM ), soRelateUtteran
e must establish the in-
direct link between them using a new concept drawn from
the ontology. It cannot useBuyor Get (from Figure 3) be-
cause their representations do not matchL3. The represen-

tation of Purchase, however, matches bothL3 andM (see
top of Figure 6), so it is selected as the bridging concept.
This match establishes: 1) the indirect link betweenBuyand
Place-Order(i.e. Buy is a next-eventof Place-Order), and
2) the Computeris the object to be ordered today. More
importantly, a coherent model of Bob’s goal to purchase a
computer with a large monitor is built through this matching
process (see bottom of Figure 6).

Figure 6: Top: The logical form of the third utteranceL3, the current model of Bob’s goalM , and the bridg-
ing conceptPur
hase. Matches betweenL3, M , and the
bridging concept are shown in Bold. Bottom: The result
of usingPur
hase to establish the indirect link betweenL3 andM .

4. EVALUATION
We evaluate our system on a MUC-like template-filling task
using a corpus of purchase requests, and we compare its per-
formance to that of two similar systems.

4.1 Experimental Setup
In order to evaluate the performance of our system (and those
being compared), we need to isolate it from the other com-
ponents of the greaterCalo system. Hence, we constructed
the following corpus with this goal in mind.



We selected, as our corpus, a log of Purchase REQuisitions
(PREQs) kept by the department of Computer Sciences at
the University of Texas at Austin. Each PREQ is an e-mail
message from faculty or staff specifying items they want to
purchase such as books, supplies, computers, etc. We chose
this corpus because each e-mail is a discourse on a single
topic, so the topic tracking component of theCalosystem is
not involved.

This corpus contains over 13,000 PREQs. From this large
set, we selected only those PREQs concerning the purchase
of computer equipment during the past year. This gave us
193 PREQs, and we randomly selected 75 for this evalua-
tion. These 75 PREQs contain a total of 468 utterances and
4252 words. The average length of each PREQ is 6.24 ut-
terances, and the average length of each utterance is 9.09
words.

To further isolate our system from the greaterCalo system,
we provide it with logical forms of utterances which were
hand-built by three human subjects using an ontology in do-
main of office space (which we’ll call the “office ontology”).
This office ontology was built by extending the same domain-
independent upper ontology [3] from which our transforma-
tions were derived. The three subjects, however, were un-
aware of this library of transformations, the existing struc-
tures in the office ontology, or the intended use of these log-
ical forms. They knew only of the vocabulary in the office
ontology, so this encoding task was a literal translation from
English to logical forms. This setup mirrors the behavior of
Calo’sdialog system and how it interacts with our matcher.

We then asked an independent third party to review the fi-
delity of these encodings to ensure they mirror exactly the
surface forms of their utterances. Those encodings with fi-
delity problems were either corrected by this third party or
discarded.

4.2 Experimental Methodology
We compare our system to two similar systems on the same
task. We chose the Discourse Interpreter (DI) in LaSIE-
II [13] because it performed well in the MUC-7 competi-
tion. This system adds the concepts in each logical form to
the existing discourse model. It then “expands” each con-
cept to bring in additional information from the ontology
and merges those with high similarity, based on the num-
ber of common attributes (i.e. shared nodes) and the tax-
onomic distance between the concepts being merged. We
chose Overlay [1, 2] because it is just like our approach ex-
cept: 1) it does not use transformations (it uses only tax-
onomic knowledge), and 2) it uses a different function to
compute the match score.

The three systems used the same office ontology as their sole
source of background knowledge, and all three systems were
evaluated on the PREQ data set.

We model our evaluation after the MUC template-filling task
[4, 5]. For each PREQ, we had the human subject answer as
many questions as he could based on his background knowl-
edge and understanding of the PREQ. This was done us-
ing an interactive program which begins with generic ques-
tions about purchase – e.g. “what is the object of the pur-
chase?”, “what is the objective of the purchase?”, etc. An-
swers are given as concepts (e.g.Laptop-Computer), and
multiple answers are allowed for each question. The pro-
gram then asks follow-on questions for each answer. For
example, if the subject enteredLaptop-Computer as the
object of the purchase, then the program asks: “what is the
cost of the Laptop-Computer?”, “what are the parts of the
Laptop-Computer?”, etc. This interaction continues untilno
more answers are given. We use these answers as ourGold
Standard(GS).

We then measured how well each system performed on this
same task. First, the systems built a model of each PREQ
from its logical forms. Then these models were used to an-
swer questions about the purchase. Each question was an-
swered by using its internal encoding to extract the answers
from the models. Each question was encoded as a 3-tuple –
i.e. hRef; rel; F illeriwhereRef is the concept in question,rel is the relation the question maps to, andFiller is the an-
swer. For example, “what is the object of the purchase?” is
encoded ashPur
hase; obje
t; ?i, and this is used to extract
concepts related toPur
hase via anobje
t relation.

As our baseline, we used each question’s internal encoding
to extract the answers directly from the logical forms of each
PREQ.

Each system’s answers along with the baseline answers were
compared with the gold standard and scored using the fol-
lowing MUC metrics [4]. A system’s answer wascorrect
if the GS gave the same answer,partially correct if the GS
gave an answer that is a super/subclass of it (e.g. the GS
saidLaptop-Computer and the system saidComputer),
and incorrect if the GS gave a different answer. If the sys-
tem answered a question that the GS left blank, then this
answer was counted asspurious. Questions answered by the
GS but left blank by the system were counted asmissing.

These metrics were then used to calculate Precision, Recall,
and Overgeneration [4]:Pre
ision = #Corre
t+(#Partial�0:5)SysAnswersRe
all = #Corre
t+(#Partial�0:5)GSAnswersOvergeneration = #SpuriousSysAnswers (3)

whereGS AnswersandSys Answersare the total number of
answers given by the gold standard and system respectively.



4.3 Results and Discussion
Table 1 shows each system’s performance along with the
baseline on the MUC metrics, and Figure 7 shows their per-
formance on precision, recall, and overgeneration. Our ap-
proach outperformed the baseline, LaSIE-II’s DI, and Over-
lay on precision, recall, and overgeneration. This difference
was significant at the 0.01 level for the 2-tailed t-test in each
case (df = 148 in each case).

Table 1: How each system performed on the MUC met-
rics.

Criteria Our Over- LaSIE Base-
Approach lay II DI line

Correct 2421 1453 1330 941
Partial 102 329 99 104
Incorrect 65 292 300 116
Spurious 675 894 2686 586
Missing 569 1083 1428 1996
GS Answers 3157 3157 3157 3157
Sys Answers 3263 2968 4415 1747

Figure 7: Each system’s performance on precision, re-
call, and overgeneration averaged over all 75 PREQs.

Our system performed significantly better than the baseline
on precision, recall, and overgeneration. As expected, the
baseline had the worst recall because it does not attempt to
recover any missing information. As a result, only questions
whose answers were explicit in the logical form of an utter-
ance could be answered. This shows that logical forms (even
“perfect” hand-built ones) are insufficient by themselves.

Our system outperformed LaSIE-II’s DI across all dimen-
sions. We found, to our surprise, that the poor performance
of LaSIE-II’s DI was due to the size of the ontology used in
this evaluation – the office ontology contains over a thousand
concepts (and relations) and several thousand axioms. The
ontology used by Gaizauskas et al. in the MUC-6 competi-
tion, for example, was significantly smaller – it contained 79

concepts and 55 relations [9]. Because of the size of the of-
fice ontology, different concepts often have many attributes
in common. This causes a serious problem for LaSIE-II’s
DI when it tries to merge new concepts (introduced by an
utterance) with previous ones based on how many attributes
they share. LaSIE-II’s DI eagerly expands new concepts, so
much irrelevant information is brought in from the ontology
causing many concepts to be merged incorrectly.

Our approach is not affected by this problem for two reasons.
First, our approach brings in additional knowledge from the
ontology only when there is no match between the logical
form of an utterance and an existing model of the user’s goal.
Second, our similarity measure is based on information in
the utterances themselves, so information not relevant to the
discourse will not bias the scoring.

Our system also performed significantly better than Overlay
on precision, recall, and overgeneration. We attribute this
improvement to the only significant difference between our
system and Overlay: our system uses transformation rules
while Overlay uses only taxonomic knowledge. On average,
our approach applied3:9 transformations per PREQ.

These results are encouraging, and they show that flexible
matching is essential for relating logical forms to the KB
to build a model of the user’s goal. This is because logi-
cal forms and the KB can encode similar content but differ
substantially in form. We achieve flexible matching using
transformation rules, but more importantly, useful transfor-
mations do not have to be tailored for the domain at hand.
Instead, they can be derived from a domain-independent up-
per ontology and still be effective at overcoming structural
differences between two representations.

5. CONCLUSION
In this paper, we presented a matcher to bridge the represen-
tational gap between the logical forms generated by a lan-
guage interpreter and semantically related content in a rich
knowledge base. We argued that a semantic matcher with
transformations is needed because logical forms and repre-
sentations in the KB can differ structurally, even though their
intended content is similar.

We evaluated our system on a MUC-like template-filling task
using e-mail messages about computer equipment purchases,
and compared our approach to two similar ones – LaSIE-II
DI and Overlay. We showed that our approach performed
significantly better than both on precision, recall, and over-
generation. We also showed how using the logical forms di-
rectly is insufficient. We also learned that useful transforma-
tions do not have to be ad hoc or domain-specific. They can
be derived from a domain-independent upper ontology and
still be effective at resolving mismatches. Our contribution
is showing how a semantic matcher with a library of domain-
independent transforms can bridge the representational gap
between a language interpreter and a KR&R system.



Our approach can also be applied to other domains with min-
imal effort because it is based on a domain-independent up-
per ontology. All that needs to be done is to extend the upper
ontology to include concepts and representations specific to
the domain of interest. This was what we did to apply our
approach to all three domains in which it has been used.

Several issues still need to be explored. First, we plan to
examine whether domain-specific transformations can aug-
ment domain-independentones to further improve matching.
Next, we plan to study whether this matching technique can
be used for other tasks such as topic identification. Finally,
we plan to study whether the output of this match process
can provide context to the language interpreter to improve
interpretation.
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