1. (String Matching)
(a) (Rabin-Karp algorithm) First create a list of 2 digit numbers n where $\operatorname{val}(n)=5$. The list is 0512192633404754616875828996 . Then create the desired string as follows: start with any digit x, find a y so that $x y$ is in the list, and repeat this step with x set to y. The result is not unique, because there is sometime more than one choice for y. Starting with 1 , I get 12689619 .
(b) Proof is by induction on i.

- $i=1$: We have to show that $c(a b)^{n} a=(a b)^{n-1} a$, for $n \geq 1$. This follows from: (1) $(a b)^{n-1} a$ is both a prefix and a suffix of $(a b)^{n} a$, and (2) the only longer proper prefix of $(a b)^{n} a$ is $(a b)^{n}$, which is not a suffix.
- $i+1$: Assume $c^{i}\left((a b)^{n} a\right)=(a b)^{n-i} a$, where $i<n$. We show that $c^{i+1}(a b)^{n} a=(a b)^{n-i-1} a$.

$$
c^{i+1}(a b)^{n} a
$$

$=\left\{\right.$ definition of $\left.c^{i+1}\right\}$ $c\left(c^{i}\left((a b)^{n} a\right)\right)$
$=\{$ induction hypothesis $\}$ $c\left((a b)^{n-i} a\right)$
$=\{$ from the first proof $\}$

$$
(a b)^{n-i-1} a
$$

(c) Yes. Suppose $v=" a b$ " and $v^{\prime}=" a b a^{\prime \prime}$. Then $c(v)=\epsilon$, and u has been set to $c(v)$, i.e., ϵ, before this portion of the code is executed. Because $p[\bar{u}]$ and $p[\bar{v}]$ are both " a ", $c\left(v^{\prime}\right)$ will be set " a ".
(d) (KMP Algorithm)

l	index	0	1	2	3	4	5	6	7	8	9	10	11	
	text	a	b	a	b	a	a	b	b	a	b	a	b	
0	pattern	a	b	a	b	a	b							
2	pattern			a	b	a	b	-	-					
4	pattern					a	b	-	-	-	-			
5	pattern						a	b	a	-	-	-		
7	pattern								a	b	-	-	-	-
8	pattern								a	b	a	b	-	

It is possible to terminate the algorithm when $l=7$, because the text cannot possibly match the pattern.
2. (Data Parallel Programming)
(a) We show that for $n \geq 1 \operatorname{rev}(f n)=(f n)$. The required result follows because

$$
\begin{array}{cc}
& f(n+1) \\
= & \{\operatorname{definition} \text { of } f\} \\
& (f n) \mid \operatorname{rev}(f n) \\
= & \{\operatorname{rev}(f n)=(f n)\} \\
& (f n) \mid(f n)
\end{array}
$$

The proof is by induction on n.

- $n=1$: We show $\operatorname{rev}(f 1)=(f 1)$. From the definition of f, $(f 1)=\left\langle\begin{array}{lllll}0 & 1 & 1 & 0\end{array}\right.$. And from the definition of $\operatorname{rev}, \operatorname{rev}(f 1)=$ $\langle 0110\rangle$. Hence $\operatorname{rev}(f 1)=(f 1)$.
- $n+1$: Assume by induction hypothesis that $\operatorname{rev}(f n)=(f n)$.

Then,

```
        \(\operatorname{rev}(f(n+1))\)
\(=\{\) definition of \(f\}\)
        \(\operatorname{rev}((f n) \mid \operatorname{rev}(f n))\)
\(=\) \{induction hypothesis applied to the second term \(\}\)
        \(\operatorname{rev}((f n) \mid(f n))\)
\(=\{\) definition of rev \(\}\)
        \(\operatorname{rev}(f n) \mid \operatorname{rev}(f n)\)
\(=\{\) induction hypothesis applied to the first term \(\}\)
        \((f n) \mid \operatorname{rev}(f n)\)
\(=\quad\{\) definition of \(f\}\)
\(f(n+1)\)
```

(b) \quad i. $(u \sim r) \wedge(v \sim s)$
ii. $g r u=u \sim(r r u)$, where $r r$ is right-rotate.
iii.
$g r(u \bowtie v)$
$=\{$ definition of $g r\}$ $(u \bowtie v) \sim \operatorname{rr}(u \bowtie v)$
$=\{$ definition of $r r\}$ $(u \bowtie v) \sim((r r v) \bowtie u)$
$=\{$ from (i) $\}$
$(u \sim(r r v)) \wedge(v \sim u)$
$=$ \{rewrite the second term\} $(u \sim(r r v)) \wedge(u \sim v)$

