CS 337	Sc
Open book and notes.	
Max points $= 50$	

olution to Quiz 3

12/10/03

Time = 50 min

- 1. (String Matching)
 - (a) (Rabin-Karp algorithm) First create a list of 2 digit numbers n where val(n) = 5. The list is 05 12 19 26 33 40 47 54 61 68 75 82 89 96. Then create the desired string as follows: start with any digit x, find a y so that xy is in the list, and repeat this step with x set to y. The result is not unique, because there is sometime more than one choice for y. Starting with 1, I get 1 2 6 8 9 6 1 9.
 - (b) Proof is by induction on i.

• i = 1: We have to show that $c(ab)^n a = (ab)^{n-1}a$, for $n \ge 1$. This follows from: (1) $(ab)^{n-1}a$ is both a prefix and a suffix of $(ab)^n a$, and (2) the only longer proper prefix of $(ab)^n a$ is $(ab)^n$, which is not a suffix.

• i+1: Assume $c^i((ab)^n a) = (ab)^{n-i}a$, where i < n. We show that $c^{i+1}(ab)^n a = (ab)^{n-i-1}a$.

$$\begin{array}{rcl} & c^{i+1}(ab)^n a \\ = & \{ \text{definition of } c^{i+1} \} \\ & c(c^i((ab)^n a)) \\ = & \{ \text{induction hypothesis} \} \\ & c((ab)^{n-i}a) \\ = & \{ \text{from the first proof} \} \\ & (ab)^{n-i-1}a \end{array}$$

- (c) Yes. Suppose v = ab'' and v' = ba''. Then $c(v) = \epsilon$, and u has been set to c(v), i.e., ϵ , before this portion of the code is executed. Because $p[\overline{u}]$ and $p[\overline{v}]$ are both a'', c(v') will be set a''.
- (d) (KMP Algorithm)

l	index	0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11		
	text	a	\mathbf{b}	a	b	a	a	b	b	a	\mathbf{b}	a	b		
0	pattern	a	\mathbf{b}	a	b	a	b								
2	pattern			a	b	a	b	-	-						
4	pattern					a	b	-	-	-	-				
5	pattern						a	b	a	-	-	-			
7	pattern								a	b	-	-	-	-	
8	pattern									a	b	a	b	-	-

It is possible to terminate the algorithm when l = 7, because the text cannot possibly match the pattern.

- 2. (Data Parallel Programming)
 - (a) We show that for $n \ge 1$, rev(f n) = (f n). The required result follows because

$$\begin{array}{rl} f(n+1) \\ = & \{ \text{definition of } f \} \\ & (f \ n) \mid rev(f \ n) \\ = & \{ rev(f \ n) = (f \ n) \} \\ & (f \ n) \mid (f \ n) \end{array}$$

The proof is by induction on n.

• n = 1: We show $rev(f \ 1) = (f \ 1)$. From the definition of f, $(f \ 1) = \langle 0 \ 1 \ 1 \ 0 \rangle$. And from the definition of rev, $rev(f \ 1) = \langle 0 \ 1 \ 1 \ 0 \rangle$. Hence $rev(f \ 1) = (f \ 1)$.

• n + 1: Assume by induction hypothesis that rev(f n) = (f n). Then,

rev(f(n+1)) $\{\text{definition of } f\}$ = $rev((f n) \mid rev(f n))$ {induction hypothesis applied to the second term} = $rev((f n) \mid (f n))$ $\{ \text{definition of } rev \}$ = $rev(f n) \mid rev(f n)$ = {induction hypothesis applied to the first term} $(f n) \mid rev(f n)$ $\{\text{definition of } f\}$ = f(n+1)(b) i. $(u \sim r) \land (v \sim s)$ ii. $gr \ u = u \sim (rr \ u)$, where rr is right-rotate. iii. $gr(u \bowtie v)$ $\{\text{definition of } gr\}$ = $(u \bowtie v) \sim rr(u \bowtie v)$ {definition of rr} = $(u \bowtie v) \sim ((rr \ v) \bowtie u)$ $= \{\text{from (i)}\}$ $\begin{array}{l} (u \sim (rr \; v)) \; \land \; (v \sim u) \\ \text{{rewrite the second term}} \end{array}$ =

{rewrite the second term}
$$(u \sim (rr \ v)) \land (u \sim v)$$