1. (Compresion)
(a) entropy

$$
\begin{aligned}
& =-1 / 2 \log (1 / 2)-1 / 8 \log (1 / 8)-1 / 4 \log (1 / 4)-1 / 8 \log (1 / 8) \\
& =-1 / 2(-1)-1 / 8(-3)-1 / 4(-2)-1 / 8(-3) \\
& =1 / 2+3 / 8+2 / 4+3 / 8 \\
& =1.75
\end{aligned}
$$

(b) Let T have a non-leaf node x whose only son is y; we show that T is not optimal by displaying another tree T^{\prime}, which is also a prefix code, whose weight is strictly lower.
If x is the root of T create T^{\prime} by deleting x and letting y be the root. If x is non-root, change the parent of y to the parent of x, and delete x. In each case, the pathlengths to the descendants of y decrease and other pathlengths do not increase. So, the weight of T^{\prime} is less than that of T.
(c) Let the weight of the optimal trees for S and R be s and r, respectively. We can get a tree for R from the one for S by expanding the leaf z into a non-leaf with children x and y. The weight of the resulting tree is $s+x+y$. This quantity is at least the weight of the optimal tree for R, r. That is,

$$
r \leq s+x+y
$$

2. (Powerlist)
(a) Proof is by induction on i.

- $i=0$: We have to show $u_{1}=u_{0} \bowtie v_{0}$ and $v_{1}=v_{0} \bowtie u_{0}$.

$$
\begin{gathered}
=\begin{array}{c}
u_{1} \\
\left\{\text { definition of } u_{1}\right\} \\
= \\
u_{0} \mid v_{0} \\
\\
\left\{\text { laws of powerlist: } u_{0} \text { and } v_{0} \text { are singletons }\right\} \\
u_{0} \bowtie v_{0}
\end{array}
\end{gathered}
$$

- $i>0$:

$$
u_{i+1}
$$

$=\left\{\right.$ definition of $\left.u_{i+1}\right\}$ $u_{i} \mid v_{i}$
$=\{$ induction on both terms $\}$ $\left(u_{i-1} \bowtie v_{i-1}\right) \mid\left(v_{i-1} \bowtie u_{i-1}\right)$
$=\{$ commutativity $\}$ $\left(u_{i-1} \mid v_{i-1}\right) \bowtie\left(v_{i-1} \mid u_{i-1}\right)$
$=\left\{\right.$ definitions of u_{i} and $\left.v_{i}\right\}$ $u_{i} \bowtie v_{i}$
(b) $\quad p \sqsubseteq\langle x\rangle=(p==\langle x\rangle)$
$p \sqsubseteq r \mid s=(p==r \mid s) \vee(p \sqsubseteq r)$
Another possible definition is
$\langle x\rangle \sqsubseteq\langle y\rangle=(x==y)$
$\langle x\rangle \sqsubseteq r \bowtie s=(\langle x\rangle \sqsubseteq r)$
$p \bowtie q \sqsubseteq r \bowtie s=(p \sqsubseteq r) \wedge(q \sqsubseteq s)$
3. (String Matching)
(a) Suppose $v[0 . . k]$ is the core. From the definition of core,

$$
\begin{aligned}
& v[0 . . k]=v[20-k . .20] . \text { Hence, } \\
& v[i]=v[20-k+i]
\end{aligned}
$$

Letting $i=6$ and $20-k+i=11$, we get $k=15$. That is, if $k=15$, $v[6]=v[11]$. Since $v[6] \neq v[11], v[0 . .15]$ is not the core.
(b) $u \preceq v$

$$
\begin{aligned}
& \Rightarrow \quad\{c(u) \prec u\} \\
& c(u) \prec v
\end{aligned}
$$

$\Rightarrow \quad\{$ definition of core: $w \prec v \equiv w \preceq c(v)\}$

$$
c(u) \preceq c(v)
$$

