1. (Relational Databases)
(a) $S L \bowtie I T \bowtie S I P$ appears in Table 1.

| Store | Location | Item | Type | Price |
| :--- | :--- | :--- | :--- | :--- |
| Amazon | WA | Nikon Cool-Pix | Camera | 240 |
| Amazon | WA | Dell Inspiron | Computer | 1200 |
| Fry's | CA | Nikon Cool-Pix | Camera | 250 |
| Fry's | CA | Sony Cybershot | Camera | 310 |
| Fry's | TX | Nikon Cool-Pix | Camera | 250 |
| Fry's | TX | Sony Cybershot | Camera | 310 |
| Best Buy | TX | HP Laptop | Computer | 1300 |
| Best Buy | TX | Sony Cybershot | Camera | 280 |
| Olde Tire | TX | Firestone | Tire | 500 |

Table 1: $S L \bowtie I T \bowtie S I P$ : Stores, Locations, Items, Types, Prices
(b) Define certain predicates.

$$
\begin{aligned}
& p \text { is Type }=\text { Camera } \\
& q \text { is Price }<300 \\
& r \text { is Location }=\text { TX }
\end{aligned}
$$

The stores in TX that sell a Camera for less than 300 is given by the following query.
$\pi_{\text {Store }}\left(\sigma_{p \wedge q \wedge r}(S L \bowtie I T \bowtie S I P)\right)$
(c) The stores, locations, items and prices for all computers that are being sold, is given by the following query.
$\pi_{\text {Store, Location, Item, Price }}\left(\sigma_{\text {Type }}=\right.$ Computer $\left.(S L \bowtie I T \bowtie S I P)\right)$
2. (Rabin-Karp String Matching)
(a) I show the hash function values for every 4-bit string, in Table 2.

Note that $1100 \bmod 3=12 \bmod 3=0$, and $1100 \bmod 5=2$.

| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | input |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | $\bmod 3$ |
|  |  | 2 | 4 | 2 | 4 | 3 | 1 | 3 | 0 | 4 | 3 | 1 | 3 | 1 | 2 | 4 | 3 | 2 | $\bmod 5$ |  |

Table 2: Rabin-Karp String Matching

Successful matches are shown here with a bar over the string: $01 \overline{11001101000} \overline{1100} 11101$.
(b) The computation of exclusive-or is very easy: given string $a x b$, where $a$ and $b$ are bits and $x$ is a bit string, and you have already computed $m$, the exclusive-or of $a x$, you can compute exclusive-or of $x b$ as $m \oplus a \oplus b$. But it is a very bad idea to use exclusive-or, because the only possible hash values are 0 and 1 ; therefore, there will be a collision around half the time.
3. (KMP String Matching)
(a) Patterns whose prefixes have short cores are preferable because it lets you move more to the right in the text string in case of a failure in matching.
(b) We are given that the cores of all prefixes are the empty string. If the first symbol, $a$, occurs more than once in $s$, then there is a prefix $a x a$, where $x$ is some substring (possibly empty). This prefix has a non-empty core because $a$ is below $a x a$. So, we conclude that the first symbol does not occur anywhere else in $s$. Conversely, if the first symbol does not occur anywhere else in $s$, the core is empty for every prefix, from the definition of core.
(c) A shortest string whose core is "ababa" is "abababa". Suppose there is a shorter string with core "ababa"; then it has to be of the form "ababax", for some symbol "x". Since "ababa" is a core of "ababax", it is also a suffix; so, "x" = "a". But "ababa" is not a core of "ababaa".
4. (Parallel Recursion)
(a)
$h\langle 01234567\rangle$
$=\{$ rewriting $\}$ $h(\langle 0246\rangle \bowtie\langle 1357\rangle)$
$=\{h(p \bowtie q)=p \mid q\}$ $\langle 0246\rangle \mid\langle 1357\rangle$
$=\{$ rewriting $\}$ $\langle 02461357\rangle$
(b) The proof of $\operatorname{rev}(\operatorname{rr}(\operatorname{rev}(\operatorname{rr} u)))=u$ is by induction on the length of $u$. For $u=\langle x\rangle$,

$$
\operatorname{rev}(\operatorname{rr}(\operatorname{rev}(\operatorname{rr}\langle x\rangle)))
$$

$=\quad\{$ definition of $r r\}$ $\operatorname{rev}(\operatorname{rr}(\operatorname{rev}\langle x\rangle))$
$=\{$ definition of rev $\}$ $\operatorname{rev}(\operatorname{rr}\langle x\rangle)$
$=\{$ definition of $r r\}$
$\operatorname{rev}\langle x\rangle$
$=\{$ definition of $r e v\}$ $\langle x\rangle$

For $u=p \bowtie q$
(c) In all cases, proof is by induction on $i$.
i. We show $u_{i+1}=u_{i} \bowtie v_{i}$, and $v_{i+1}=v_{i} \bowtie u_{i}$.

For $i=0$, we have to show $u_{1}=u_{0} \bowtie v_{0}$, and $v_{1}=v_{0} \bowtie u_{0}$. Since $u_{0}$ and $v_{0}$ are singleton lists, $u_{0} \bowtie v_{0}=u_{0} \mid v_{0}=u_{1}$. The proof of $v_{1}=v_{0} \bowtie u_{0}$ is similar.
For $i>0$,

The proof of $v_{i+1}=v_{i} \bowtie u_{i}$ is similar.
ii. We show $u_{i}$ is the bit-wise complement of $v_{i}$. Write $\overline{v_{i}}$ for the complement of $v_{i}$.
For $i=0, \overline{v_{0}}=\overline{\langle 1\rangle}=\langle\overline{1}\rangle=\langle 0\rangle=u_{0}$.

$$
\text { For } i+1 \text {, }
$$

$$
\overline{v_{i+1}}
$$

$$
=\frac{\left\{\text { definition of } v_{i+1}\right\}}{\overline{v_{i} \mid u_{i}}}
$$

$$
=\{\text { distribute complementation }\}
$$

$$
\overline{v_{i}} \mid \overline{u_{i}}
$$

$=\{$ induction $\}$
$u_{i} \mid v_{i}$
$=\left\{\right.$ definition of $\left.u_{i+1}\right\}$
$u_{i+1}$
(d) See Figure below for data movement.

$$
\begin{aligned}
& u_{i+1} \\
& =\{\text { definition }\} \\
& u_{i} \mid v_{i} \\
& =\text { \{induction; note that } i>0\} \\
& \left(u_{i-1} \bowtie v_{i-1}\right) \mid\left(v_{i-1} \bowtie u_{i-1}\right) \\
& =\{\text { commutativity law }\} \\
& \left(u_{i-1} \mid v_{i-1}\right) \bowtie\left(v_{i-1} \mid u_{i-1}\right) \\
& =\{\text { definition; note that } i>0\} \\
& u_{i} \bowtie v_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rev}(r r(\operatorname{rev}(\operatorname{rr}(p \bowtie q)))) \\
& =\quad\{\text { definition of } r r\} \\
& \operatorname{rev}(r r(\operatorname{rev}(q \bowtie(r r p)))) \\
& =\{\text { definition of } r e v\} \\
& \operatorname{rev}(\operatorname{rr}((\operatorname{rev}(r r p)) \bowtie(\operatorname{rev} q))) \\
& =\quad\{\text { definition of } r r \text { applied to } r r((\operatorname{rev}(r r p)) \bowtie(r e v q))\} \\
& \operatorname{rev}((\operatorname{rev} q) \bowtie \operatorname{rr}(\operatorname{rev}(r r p))) \\
& =\{\text { definition of } \mathrm{rev}\} \\
& \operatorname{rev}(\operatorname{rr}(\operatorname{rev}(\operatorname{rr} p))) \bowtie(\operatorname{rev}(\text { rev } q)) \\
& =\quad\{\text { induction on } \operatorname{rr}(\operatorname{rev}(\operatorname{rr} p))\} \\
& p \bowtie(\operatorname{rev}(\operatorname{rev} q)) \\
& =\quad\{\operatorname{rev}(\operatorname{rev} q)=q\} \\
& p \bowtie q
\end{aligned}
$$



Figure 1: Prefix Sum

