
CS 337 Solution to Test 3 5/15/09

1. (Relational Databases)

(a) SL ./ IT ./ SIP appears in Table 1.

Store Location Item Type Price
Amazon WA Nikon Cool-Pix Camera 240
Amazon WA Dell Inspiron Computer 1200
Fry’s CA Nikon Cool-Pix Camera 250
Fry’s CA Sony Cybershot Camera 310
Fry’s TX Nikon Cool-Pix Camera 250
Fry’s TX Sony Cybershot Camera 310
Best Buy TX HP Laptop Computer 1300
Best Buy TX Sony Cybershot Camera 280
Olde Tire TX Firestone Tire 500

Table 1: SL ./ IT ./ SIP : Stores, Locations, Items, Types, Prices

(b) Define certain predicates.

p is Type = Camera
q is Price < 300
r is Location = TX

The stores in TX that sell a Camera for less than 300 is given by the
following query.

πStore (σp∧q∧r(SL ./ IT ./ SIP))

(c) The stores, locations, items and prices for all computers that are
being sold, is given by the following query.

πStore, Location, Item, Price (σType = Computer (SL ./ IT ./ SIP))

2. (Rabin-Karp String Matching)

(a) I show the hash function values for every 4-bit string, in Table 2.
Note that 1100 mod 3 = 12 mod 3 = 0, and 1100 mod 5 = 2.

0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 1 input
1 2 0 0 0 0 1 1 1 2 1 0 0 0 0 0 1 mod 3
2 4 2 4 3 1 3 0 4 3 1 3 1 2 4 3 2 mod 5

Table 2: Rabin-Karp String Matching

Successful matches are shown here with a bar over the string: 0111001101000110011101.

1

(b) The computation of exclusive-or is very easy: given string axb, where
a and b are bits and x is a bit string, and you have already computed
m, the exclusive-or of ax, you can compute exclusive-or of xb as
m ⊕ a ⊕ b. But it is a very bad idea to use exclusive-or, because
the only possible hash values are 0 and 1; therefore, there will be a
collision around half the time.

3. (KMP String Matching)

(a) Patterns whose prefixes have short cores are preferable because it lets
you move more to the right in the text string in case of a failure in
matching.

(b) We are given that the cores of all prefixes are the empty string. If
the first symbol, a, occurs more than once in s, then there is a prefix
axa, where x is some substring (possibly empty). This prefix has a
non-empty core because a is below axa. So, we conclude that the
first symbol does not occur anywhere else in s. Conversely, if the
first symbol does not occur anywhere else in s, the core is empty for
every prefix, from the definition of core.

(c) A shortest string whose core is “ababa” is “abababa”. Suppose there
is a shorter string with core “ababa”; then it has to be of the form
“ababax”, for some symbol “x”. Since “ababa” is a core of “ababax”,
it is also a suffix; so, “x” = “a”. But “ababa” is not a core of
“ababaa”.

4. (Parallel Recursion)

(a) h〈0 1 2 3 4 5 6 7〉
= {rewriting}

h(〈0 2 4 6〉 ./ 〈1 3 5 7〉)
= {h(p ./ q) = p | q}

〈0 2 4 6〉 | 〈1 3 5 7〉
= {rewriting}

〈0 2 4 6 1 3 5 7〉
(b) The proof of rev(rr(rev(rr u))) = u is by induction on the length of

u. For u = 〈x〉,
rev(rr(rev(rr 〈x〉)))

= {definition of rr}
rev(rr(rev〈x〉))

= {definition of rev}
rev(rr〈x〉)

= {definition of rr}
rev〈x〉

= {definition of rev}
〈x〉

2

For u = p ./ q

rev(rr(rev(rr (p ./ q))))
= {definition of rr}

rev(rr(rev(q ./ (rr p))))
= {definition of rev}

rev(rr((rev(rr p)) ./ (rev q)))
= {definition of rr applied to rr((rev(rr p)) ./ (rev q))}

rev((rev q) ./ rr(rev(rr p)))
= {definition of rev}

rev(rr(rev(rr p))) ./ (rev(rev q))
= {induction on rr(rev(rr p))}

p ./ (rev(rev q))
= {rev(rev q) = q}

p ./ q

(c) In all cases, proof is by induction on i.
i. We show ui+1 = ui ./ vi, and vi+1 = vi ./ ui.

For i = 0, we have to show u1 = u0 ./ v0, and v1 = v0 ./ u0.
Since u0 and v0 are singleton lists, u0 ./ v0 = u0 | v0 = u1. The
proof of v1 = v0 ./ u0 is similar.
For i > 0,

ui+1

= {definition}
ui | vi

= {induction; note that i > 0}
(ui−1 ./ vi−1) | (vi−1 ./ ui−1)

= {commutativity law}
(ui−1 | vi−1) ./ (vi−1 | ui−1)

= {definition; note that i > 0}
ui ./ vi

The proof of vi+1 = vi ./ ui is similar.
ii. We show ui is the bit-wise complement of vi. Write vi for the

complement of vi.
For i = 0, v0 = 〈1〉 = 〈1〉 = 〈0〉 = u0.
For i + 1,

vi+1

= {definition of vi+1}
vi | ui

= {distribute complementation}
vi | ui

= {induction}
ui | vi

= {definition of ui+1}
ui+1

(d) See Figure below for data movement.

3

0 1 2 3 4 5 6 7

3 0 4 6 0 1 6 0

3 3 4 10 6 1 7 6

3 3 7 13 10 11 13 7

3 3 7 13 13 14 20 20

Machine Number

Initial Data

Level 1

Level 2

Level 3

Figure 1: Prefix Sum

4

