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1 Problem Description

Given is a finite set of points, A, on a simple closed curve. Henceforth, point
refers to an arbitrary point on the curve, and a point in A is called an anchor.
For any two points x, y, the distance between them, d(x, y), is the length of the
shorter segment (of the curve) joining x, y. The metric of a point with respect
to the given anchors is the sum of the distances between the anchors and the
point, i.e., for a point p, its metric with respect to A, M(p,A), is

∑
y∈A d(p, y).

It is required to find a point with the smallest metric; we call such a point a
center of the given set of anchors, and we denote its metric by M(A).

First, we solve the problem when the anchors are on a simple open curve;
in that case, there is a unique segment of the curve joining any two points. We
give a simple characterization of the center in this case. Next, we use the result
for open curves to locate the center in a closed curve.

2 Locating the center on an open curve

For an open curve the solution is quite easy: for an odd number of anchors, the
middle anchor is the (unique) center; for an even number of anchors any of the
middle two anchors, or any point in between, is a center. (Thus, in all cases one
of the anchors is a center.) The proof is by induction on the number of anchors.

1. |A| = 0: center can be any point because M(∅) = 0.

2. |A| = 1: center is the unique point in A. Then M(A) = 0.

3. |A| ≥ 2: Let q, r be the two extreme points in A. Let T = A − {q, r}.
We note, without proof, that the center lies in the closed interval [q, r].
Below, p is quantified over all points in this closed interval.

M(A)
= {definition}

(min p ::
∑

y∈A d(p, y))
= {arithmetic; for empty T ,

∑
y∈T d(p, y) is 0, below}

(min p :: d(p, q) + d(p, r) +
∑

y∈T d(p, y))
= {p is between q, r on the curve}

(min p :: d(q, r) +
∑

y∈T d(p, y))
= {arithmetic}

d(q, r) + (min p ::
∑

y∈T d(p, y))
= {definition of center}

d(q, r) + M(T )

1



From the equation M(A) = d(q, r)+M(T ), any center of T that is between
the two extreme anchors of A is a center of A. Conversely, a point, p, that
is not a center of T will have M(p,A) ≥ d(q, r) + M(p, T ) > d(q, r) +
M(T ) = M(A). Therefore, only and all centers of T are centers of A.
By the induction hypothesis, center of T is given by: if the number of
anchors is odd then the middle point is the center, and for a non-zero
even number of anchors any point between the two innermost anchors is
a possible center. The middle point of T is the middle point of A in case
T has an odd number of anchors, and two innermost anchors of T are
the two innermost anchors of A when T has a non-zero even number of
anchors.

Calculating the metric of the center We develop the necessary no-
tation and a formula for M(A) that we employ in the solution for the
closed curve. Let the anchors in an open curve be successively labelled
0, 1, ..., t by going from one extreme point to another. Define a segment to
be the portion of the curve between two adjacent anchors. Let the length
of the segment between anchors i and i + 1 be si, 0 ≤ i < t. The distance
between anchor i and the center c, d(i, c), is:

(+k : i ≤ k < c : sk), if i ≤ c
(+k : c ≤ k < i : sk), if i ≥ c

Now,

M(A)
= {definition of metric}

(+i : 0 ≤ i ≤ t : d(i, c))
= {arithmetic}

(+i : 0 ≤ i < c : d(i, c)) + (+i : c ≤ i ≤ t : d(i, c))
= {writing the definition of d(i, c)}

(+i : 0 ≤ i < c : (+k : i ≤ k < c : sk))
+(+i : c ≤ i ≤ t : (+k : c ≤ k < i : sk))

= {arithmetic}
(+i : 0 ≤ i < c : (i + 1)si)) + (+i : c ≤ i ≤ t : (t− i)si))

Next, we introduce some notations that make it easier to manipulate
the terms in the expression above. For a finite list of reals, B, B =
〈b0, b1, b2, ...〉, let B denote the sum of its elements, i.e., B = b0+b1+b2+...,
and B̂ = b0 + 2 × b1 + 3 × b2 + ..., i.e., B̂ is the weighted sum of the el-
ements. Then, M(A) = L̂ + R̂ where L is the list of segment lengths
from the extreme left to the center, i.e, L = 〈s0, s1, ..., sc−1〉, and R is
the list of segment lengths from the extreme right to the center, i.e.,
R = 〈st−1, st−2, ..., sc〉.
We note a few properties of sum and weighted sum. In the following, B
is a list, u is a single real number, Bu is the list obtained by appending u
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to the end of B, and uB is defined analogously. Let E denote the empty
list.

• E = 0, Ê = 0.

• Bu = B + u, uB = u + B

• B̂u = B̂ + (|B|+ 1)× u, where |B| is the length of B, and
ûB = uB + B̂

3 Locating the center on a closed curve

Let c be a center on a closed curve; let a be the point exactly half way
around the curve from c. Assume, for the moment, that a is not an anchor.
Let x be an anchor; the length of the shorter of the two paths from x to c is
at most half the length of the curve. Therefore, this path does not include
a as an intermediate point, because length of such a path, d(x, a)+d(a, c),
exceeds half the length of the curve. Let p, q be the two adjacent anchors
that flank a, i.e., a belongs to the closed interval [p, q]. This interval is
uncovered by any path from an anchor to c because any such path would
include a as an intermediate point. Hence, c is the center on the open
curve that is obtained from the closed curve after removing the interval
[p, q]. This shows that one of the anchors is a possible center. A minor
modification of this argument can be used to establish this result when
point a is an anchor: both paths from a to c are of the same length, and
we choose the anti-clockwise path to connect them; then, the segment
between a and its clockwise adjacent anchor is uncovered by any path
connecting anchors to c.

Our algorithm for center location on a closed curve is as follows. Remove a
segment s, locate a center, cs, of the open curve (using the characterization
of the previous section) and compute the metric, Ms, Ms = M(cs), of this
center. Consider all the segments in turn to find the one that results in
the smallest value of Ms. Computation of Ms, for any s, takes linear time
(in the size of A); therefore, the straightforward calculation of the center
takes quadratic time. We show, however, that given Ms it is possible
to compute Mt, where t is the segment adjacent to s, in constant time.
Therefore, all Ms can be computed in linear time.

Assume, henceforth, that there are at least 3 anchors. In Figure 1, below,
s, t are two adjacent segments; c and g are the centers of the open curves
when segment s and t are removed, respectively. From the characteriza-
tion in the previous section, c, g are adjacent. The length of the segment
between c, g is u and between g and the next anchor is v. Let X be the
sequence of segment lengths starting at the anchor at the left end of s
and ending at g; the last element of X is v. Similarly, Y is the list of
segment lengths starting after t and ending at the anchor c. Observe that
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if the number of anchors is odd then |Y | = |X|, and if it is even we let
|Y | = |X|+1. Let P be the total length of the curve; then sX+tY +u = P .

s
t

Y

X

v

u

c

g

Figure 1: s, t are adjacent segments; c, g corresponding centers

The metric of c, Ms, is X̂u + t̂Y . Similarly, Mt is ŝX + Ŷ u. Let diffs =
Mt −Ms. We calculate diffs for the case where the number of anchors is
odd.

diffs

= {definition}
Mt −Ms

= {rewriting Mt,Ms}
ŝX + Ŷ u− [X̂u + t̂Y ]

= {expanding the weighted sums}
sX + X̂ + Ŷ + (|Y |+ 1)× u

−[X̂ + (|X|+ 1)× u + tY + Ŷ ]
= {simplifying}

sX − tY + (|Y |+ 1)× u− (|X|+ 1)× u
= {|X| = |Y | since the number of anchors is odd}

sX − tY
= {sX + tY + u = P ; Hence, sX = P − tY − u}

P − 2× tY − u

A similar analysis shows that in case the number of anchors is even then
diffs = P −2×tY . Given Ms we can compute the metric, Mt, correspond-
ing to the next segment t, by adding diffs to Ms. However, the current
definition of diffs still requires linear amount of computation, for the term
tY . Therefore, we compute the second difference, diff ′

s , which is defined
to be difft − diffs . First, we do the analysis for the case where there are
an odd number of anchors.
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diff ′
s

= {definition}
difft − diffs

= {diffs = P − 2× tY − u; similarly, difft = P − 2× Y u− v}
P − 2× Y u− v − [P − 2× tY − u]

= {arithmetic}
2× [tY − Y u] + u− v

= {expanding tY and Y u}
2× [t + Y − Y − u] + u− v

= {simplifying}
2× t− u− v

A similar calculation for even number of anchors shows that diff ′
s = 2× t.

Therefore, diff ′
s can be computed in constant time in all cases, for any

segment s.

The over all calculation strategy is as follows. First, Ms, diffs and diff ′
s

are computed for some segment s, which can be done in linear time. These
quantities are then computed for the next segment t in constant time: Mt

is Ms + diffs , difft is diffs + diff ′
s , and diff ′

t can be computed in constant
time. Therefore, Ms, for all s, can be computed in linear time.

Remark If there are exactly 3 anchors in a closed curve then it can be
shown that the longest segment should be removed. This strategy does
not work for higher number of anchors.
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