Locating the Center of a Set of Points on a Curve
 Jayadev Misra
 6/15/00

1 Problem Description

Given is a finite set of points, A, on a simple closed curve. Henceforth, point refers to an arbitrary point on the curve, and a point in A is called an anchor. For any two points x, y, the distance between them, $d(x, y)$, is the length of the shorter segment (of the curve) joining x, y. The metric of a point with respect to the given anchors is the sum of the distances between the anchors and the point, i.e., for a point p, its metric with respect to $A, M(p, A)$, is $\sum_{y \in A} d(p, y)$. It is required to find a point with the smallest metric; we call such a point a center of the given set of anchors, and we denote its metric by $M(A)$.

First, we solve the problem when the anchors are on a simple open curve; in that case, there is a unique segment of the curve joining any two points. We give a simple characterization of the center in this case. Next, we use the result for open curves to locate the center in a closed curve.

2 Locating the center on an open curve

For an open curve the solution is quite easy: for an odd number of anchors, the middle anchor is the (unique) center; for an even number of anchors any of the middle two anchors, or any point in between, is a center. (Thus, in all cases one of the anchors is a center.) The proof is by induction on the number of anchors.

1. $|A|=0$: center can be any point because $M(\emptyset)=0$.
2. $|A|=1$: center is the unique point in A. Then $M(A)=0$.
3. $|A| \geq 2$: Let q, r be the two extreme points in A. Let $T=A-\{q, r\}$. We note, without proof, that the center lies in the closed interval $[q, r]$. Below, p is quantified over all points in this closed interval.

$$
\begin{aligned}
& M(A) \\
&=\{\text { definition }\} \\
&\left(\text { min } p:: \sum_{y \in A} d(p, y)\right) \\
&=\left\{\operatorname{arithmetic;~for~empty~} T, \sum_{y \in T} d(p, y) \text { is } 0, \text { below }\right\} \\
& \quad\left(\min p:: d(p, q)+d(p, r)+\sum_{y \in T} d(p, y)\right) \\
&=\{p \text { is between } q, r \text { on the curve }\} \\
&\left.\quad \text { (min } p:: d(q, r)+\sum_{y \in T} d(p, y)\right) \\
&=\{\operatorname{arithmetic}\} \\
& d(q, r)+\left(\min p:: \sum_{y \in T} d(p, y)\right) \\
&=\{\text { definition of center }\} \\
& d(q, r)+M(T)
\end{aligned}
$$

From the equation $M(A)=d(q, r)+M(T)$, any center of T that is between the two extreme anchors of A is a center of A. Conversely, a point, p, that is not a center of T will have $M(p, A) \geq d(q, r)+M(p, T)>d(q, r)+$ $M(T)=M(A)$. Therefore, only and all centers of T are centers of A. By the induction hypothesis, center of T is given by: if the number of anchors is odd then the middle point is the center, and for a non-zero even number of anchors any point between the two innermost anchors is a possible center. The middle point of T is the middle point of A in case T has an odd number of anchors, and two innermost anchors of T are the two innermost anchors of A when T has a non-zero even number of anchors.

Calculating the metric of the center We develop the necessary notation and a formula for $M(A)$ that we employ in the solution for the closed curve. Let the anchors in an open curve be successively labelled $0,1, \ldots, t$ by going from one extreme point to another. Define a segment to be the portion of the curve between two adjacent anchors. Let the length of the segment between anchors i and $i+1$ be $s_{i}, 0 \leq i<t$. The distance between anchor i and the center $c, d(i, c)$, is:

$$
\begin{aligned}
& \left(+k: i \leq k<c: s_{k}\right), \text { if } i \leq c \\
& \left(+k: c \leq k<i: s_{k}\right), \text { if } i \geq c
\end{aligned}
$$

Now,

$$
\begin{aligned}
& M(A) \\
&=\quad\{\text { definition of metric }\} \\
&(+i: 0 \leq i \leq t: d(i, c)) \\
&=\quad\{\text { arithmetic }\} \\
& \quad(+i: 0 \leq i<c: d(i, c))+(+i: c \leq i \leq t: d(i, c)) \\
&=\quad\{\text { writing the definition of } d(i, c)\} \\
&\left(+i: 0 \leq i<c:\left(+k: i \leq k<c: s_{k}\right)\right) \\
& \quad+\left(+i: c \leq i \leq t:\left(+k: c \leq k<i: s_{k}\right)\right) \\
&=\quad\{\text { arithmetic }\} \\
&\left.\left.\left(+i: 0 \leq i<c:(i+1) s_{i}\right)\right)+\left(+i: c \leq i \leq t:(t-i) s_{i}\right)\right)
\end{aligned}
$$

Next, we introduce some notations that make it easier to manipulate the terms in the expression above. For a finite list of reals, $B, B=$ $\left\langle b_{0}, b_{1}, b_{2}, \ldots\right\rangle$, let \bar{B} denote the sum of its elements, i.e., $\bar{B}=b_{0}+b_{1}+b_{2}+\ldots$, and $\widehat{B}=b_{0}+2 \times b_{1}+3 \times b_{2}+\ldots$, i.e., \widehat{B} is the weighted sum of the elements. Then, $M(A)=\widehat{L}+\widehat{R}$ where L is the list of segment lengths from the extreme left to the center, i.e, $L=\left\langle s_{0}, s_{1}, \ldots, s_{c-1}\right\rangle$, and R is the list of segment lengths from the extreme right to the center, i.e., $R=\left\langle s_{t-1}, s_{t-2}, \ldots, s_{c}\right\rangle$.
We note a few properties of sum and weighted sum. In the following, B is a list, u is a single real number, $B u$ is the list obtained by appending u
to the end of B, and $u B$ is defined analogously. Let E denote the empty list.

- $\bar{E}=0, \widehat{E}=0$.
- $\overline{B u}=\bar{B}+u, \overline{u B}=u+\bar{B}$
- $\widehat{B u}=\widehat{B}+(|B|+1) \times u$, where $|B|$ is the length of B, and $\widehat{u B}=\overline{u B}+\widehat{B}$

3 Locating the center on a closed curve

Let c be a center on a closed curve; let a be the point exactly half way around the curve from c. Assume, for the moment, that a is not an anchor. Let x be an anchor; the length of the shorter of the two paths from x to c is at most half the length of the curve. Therefore, this path does not include a as an intermediate point, because length of such a path, $d(x, a)+d(a, c)$, exceeds half the length of the curve. Let p, q be the two adjacent anchors that flank a, i.e., a belongs to the closed interval $[p, q]$. This interval is uncovered by any path from an anchor to c because any such path would include a as an intermediate point. Hence, c is the center on the open curve that is obtained from the closed curve after removing the interval $[p, q]$. This shows that one of the anchors is a possible center. A minor modification of this argument can be used to establish this result when point a is an anchor: both paths from a to c are of the same length, and we choose the anti-clockwise path to connect them; then, the segment between a and its clockwise adjacent anchor is uncovered by any path connecting anchors to c.
Our algorithm for center location on a closed curve is as follows. Remove a segment s, locate a center, c_{s}, of the open curve (using the characterization of the previous section) and compute the metric, $M_{s}, M_{s}=M\left(c_{s}\right)$, of this center. Consider all the segments in turn to find the one that results in the smallest value of M_{s}. Computation of M_{s}, for any s, takes linear time (in the size of A); therefore, the straightforward calculation of the center takes quadratic time. We show, however, that given M_{s} it is possible to compute M_{t}, where t is the segment adjacent to s, in constant time. Therefore, all M_{s} can be computed in linear time.
Assume, henceforth, that there are at least 3 anchors. In Figure 1, below, s, t are two adjacent segments; c and g are the centers of the open curves when segment s and t are removed, respectively. From the characterization in the previous section, c, g are adjacent. The length of the segment between c, g is u and between g and the next anchor is v. Let X be the sequence of segment lengths starting at the anchor at the left end of s and ending at g; the last element of X is v. Similarly, Y is the list of segment lengths starting after t and ending at the anchor c. Observe that
if the number of anchors is odd then $|Y|=|X|$, and if it is even we let $|Y|=|X|+1$. Let P be the total length of the curve; then $\overline{s X}+\overline{t Y}+u=P$.

Figure 1: s, t are adjacent segments; c, g corresponding centers

The metric of c, M_{s}, is $\widehat{X u}+\widehat{t Y}$. Similarly, M_{t} is $\widehat{s X}+\widehat{Y u}$. Let diff $=$ $M_{t}-M_{s}$. We calculate diffe $_{s}$ for the case where the number of anchors is odd.

$$
\begin{aligned}
& \text { diffs } \\
& =\{\text { definition }\} \\
& M_{t}-M_{s} \\
& =\left\{\text { rewriting } M_{t}, M_{s}\right\} \\
& \widehat{s X}+\widehat{Y u}-[\widehat{X u}+\widehat{t Y}] \\
& =\{\text { expanding the weighted sums }\} \\
& \overline{s X}+\widehat{X}+\widehat{Y}+(|Y|+1) \times u \\
& -[\widehat{X}+(|X|+1) \times u+\overline{t Y}+\widehat{Y}] \\
& =\{\text { simplifying }\} \\
& \overline{s X}-\overline{t Y}+(|Y|+1) \times u-(|X|+1) \times u \\
& =\{|X|=|Y| \text { since the number of anchors is odd }\} \\
& \overline{s X}-\overline{t Y} \\
& =\{\overline{s X}+\overline{t Y}+u=P \text {; Hence, } \overline{s X}=P-\overline{t Y}-u\} \\
& P-2 \times \overline{t Y}-u
\end{aligned}
$$

A similar analysis shows that in case the number of anchors is even then diffs $=P-2 \times \overline{t Y}$. Given M_{s} we can compute the metric, M_{t}, corresponding to the next segment t, by adding diff to M_{s}. However, the current definition of $d i f f_{s}$ still requires linear amount of computation, for the term $\overline{t Y}$. Therefore, we compute the second difference, diff ${ }_{s}^{\prime}$, which is defined to be diff $_{t}-$ diffs $_{s}$. First, we do the analysis for the case where there are an odd number of anchors.

$$
\begin{aligned}
& \text { diff }{ }_{s}^{\prime} \\
& =\{\text { definition }\} \\
& \text { difft }_{t}-\text { diff }_{s} \\
& =\left\{\text { diff }_{s}=P-2 \times \overline{t Y}-u \text {; similarly, diff }=P-2 \times \overline{Y u}-v\right\} \\
& P-2 \times \overline{Y u}-v-[P-2 \times \overline{t Y}-u] \\
& =\{\text { arithmetic }\} \\
& 2 \times[\overline{t Y}-\overline{Y u}]+u-v \\
& =\{\text { expanding } \overline{t Y} \text { and } \overline{Y u}\} \\
& 2 \times[t+\bar{Y}-\bar{Y}-u]+u-v \\
& =\{\text { simplifying }\} \\
& 2 \times t-u-v
\end{aligned}
$$

A similar calculation for even number of anchors shows that diffs $=2 \times t$. Therefore, diffs can be computed in constant time in all cases, for any segment s.
The over all calculation strategy is as follows. First, M_{s}, diff f_{s} and diffs are computed for some segment s, which can be done in linear time. These quantities are then computed for the next segment t in constant time: M_{t} is $M_{s}+$ diff $_{s}$, diff $_{t}$ is diff + diff $_{s}^{\prime}$, and diffft can be computed in constant time. Therefore, M_{s}, for all s, can be computed in linear time.

Remark If there are exactly 3 anchors in a closed curve then it can be shown that the longest segment should be removed. This strategy does not work for higher number of anchors.

Acknowledgement I am indebted to the Eindhoven Tuesday Afternoon Club (ETAC) for a thorough review, and helpful comments on a first draft of the manuscript.

