A proof by Erdos
 Jayadev Misra
 10/1/99

A sequence, S, of numbers where S is longer than n^{2} contains either an ascending or a descending subsequence longer than n.

For each position i in the sequence compute u_{i}, v_{i} where u_{i} is the length of the longest ascending sequence ending at S_{i}; similarly, v_{i} is the length of the longest descending sequence ending at S_{i}.

Claim: For distinct $i, j,\left(u_{i}, v_{i}\right) \neq\left(u_{j}, v_{j}\right)$.
Proof: Let $i<j . S_{i}<S_{j} \Rightarrow u_{i}<u_{j}$, because S_{j} can be appended to any sequence ending at S_{i} to form alonger sequence. Similarly, $S_{i}>S_{j} \Rightarrow v_{i}<v_{j}$.

There are n^{2} distinct pairs of the form u, v where $1 \leq u \leq n, 1 \leq v \leq n$. Therefore, there is at least one position that has an associated pair one of whose components exceeds n.

