
Tree Isomorphism: An Exercise in Functional Programming
Jayadev Misra

9/10/01

1 Problem Description

The problem is to decide if two unordered trees are the same. More precisely,
define a binary relation isomorphic over non-empty trees by the following rules.

1. A tree with a single node (the root) is isomorphic only to a tree with a
single node.

2. Two trees with roots A and B, none of which is a single-node tree, are
isomorphic iff there is a 1-1 correspondence between the subtrees of A and
of B such that the corresponding subtrees are isomorphic.

Shown below are two trees that are isomorphic; corresponding nodes are
labeled with the same label.

p

p0 p1

p00

p10 p11

p110 p111

p12

p

p0
p11

p110 p111

p10 p12

p00

p1

Figure 1: Isomorphic Trees

I describe an algorithm in Haskell to decide if two given trees are isomorphic.

2 An Algorithm

Bag-Representation of a Tree Associate the following representation with
trees. A tree with a single node is represented by the empty bag. A tree that has
subtrees T0, . . . , TN is represented by {t0, . . . , tN}, where ti is the representation
of Ti, 0 ≤ i ≤ N . Two trees are isomorphic provided the bags representing them
are equal. Our algorithm for isomorphism can be used as the basis for deciding
bag equality (and hence, set equality).

List-Representation of a Tree Define type Utree (unordered tree) by

data Utree = Tree[Utree]

That is, a Utree is constructed from a list of Utrees by applying the con-
structor Tree. There is no circularity in this definition; the ground term is
Tree[], which denotes a tree with a single node. Since this definition avoids
case analysis —distinguishing between singleton and non-singleton trees— the
algorithm for isomorphism also avoids case analysis.

1



Example: The first tree given in the problem description is defined by the
following declarations.

leaf = Tree[]
p110 = leaf
p111 = leaf
p00 = leaf
p10 = leaf
p12 = leaf
p11 = Tree[p110,p111]
p0 = Tree[p00]
p1 = Tree[p10,p11,p12]
p = Tree[p0,p1] 2

We define two trees to be equal (not isomorphic) if the corresponding lists
are equal. The following declaration defines equality of trees.

instance Eq Utree where
Tree(p) == Tree(q) = p == q

Isomorphism One way to check for isomorphism is to convert each tree to
a normal form and compare the normal forms for equality. Normal form for a
singleton tree is itself. Otherwise, a normal form is obtained by: (1) converting
each subtree of the root to its normal form and (2) sorting the list of normal
subtrees in ascending order. Specifically, we define the function norm as follows.

norm(Tree(p)) = Tree(sort(map norm p))

Here, map norm p normalizes each element of list p. Function sort, de-
scribed below, sorts the list and Tree forms a Utree.

Now, we can define isomorphism.

iso p q = (norm p) == (norm q)

Sorting In order to sort a list —any list— we must have a total order defined
over its elements. For trees s and t, define s < t if the list corresponding to s
is lexicographically smaller than the list corresponding to t. This is a recursive
definition since the elements of the lists are themselves trees.

I was surprised to see that the Haskell implementation includes lexicographic
ordering over lists. So I define <= over trees simply by

instance Ord Utree where
Tree(p) <= Tree(q) = p <= q

Any sorting algorithm can be used to sort a list of elements over which <= is
defined. I show an insertion sort algorithm below, a relatively inefficient scheme.

2



sort[] = []
sort(a:x) = ins a (sort x)

ins a [] = [a]
ins a (b:x)
| a <= b = a:b:x
| a > b = b:(ins a x)

3 Putting the pieces together

data Utree = Tree[Utree]

instance Eq Utree where
Tree(p) == Tree(q) = p == q

instance Ord Utree where
Tree(p) <= Tree(q) = p <= q

norm(Tree(p)) = Tree(sort(map norm p))

iso p q = (norm p) == (norm q)

sort[] = []
sort(a:x) = ins a (sort x)

ins a [] = [a]
ins a (b:x)
| a <= b = a:b:x
| a > b = b:(ins a x)

4 Proof of the Algorithm

We use the following notational conventions: lowercase letters —x, y, a, b— to
name trees, and uppercase, X and Y , for lists.

Isomorphism We write iso x y as x ∼ y. For lists X and Y , X ≈ Y iff
the lists are of equal length and their corresponding elements are isomorphic.
Next, we define these two relations formally.

(D0) [] ≈ []

(D1) a ∼ b, X ≈ Y
a : X ≈ b : Y

(D2) (Tree X) ∼ (Tree Y ) ≡ (p X) ≈ Y , for some permutation p over lists.

3



We leave it to the reader to show that

(A1) ∼ and ≈ are equivalence relations.

(A2) X ≈ Y
(Tree X) ∼ (Tree Y )

(A3) (Tree X) ∼ Tree(p X), for any permutation p.

Ordering We rewrite the definition of ≤ over trees, where ≤ over lists is
lexicographic ordering.

(A4) (Tree X) ≤ (Tree Y ) ≡ X ≤ Y

Sort The following properties of sort are needed in the proof.

(A5) sort is a permutation over lists.

(A6) (sort X) ≤ (p X), for any permutation p.

The algorithm We write x∗ for norm x, and X∗ for map norm X. The defi-
nition of function norm in the new notation is

(A7) (Tree X)∗ = Tree(sort X∗)

4.1 Theorems

The correctness of our algorithm is given by
Theorem: x ∼ y ≡ x∗ = y∗

The proof is as follows. We show that for any x, x∗ is the smallest value
which is isomorphic to x. That is, x and x∗ are isomorphic (Lemma 1) and for
isomorphic x and y, x∗ ≤ y (Lemma 2). The theorem is proved based on these
two lemmas.

Lemma 1: x ∼ x∗

Proof: we apply induction on the structure of x. Let x = (Tree X). Then, it is
sufficient to show that

〈∀y : y ∈ X : y ∼ y∗〉 ⇒ (Tree X) ∼ (Tree X)∗

The antecedent is X ≈ X∗. So, we prove for all X

X ≈ X∗ ⇒ (Tree X) ∼ (Tree X)∗

4



Tree X
∼ {in (A2) replace Y by X∗; use X ≈ X∗ from the antecedent}

Tree X∗

∼ {apply (A5) and (A3)}
Tree(sort X∗)

= {apply (A7)}
(Tree X)∗

Lemma 2: x ∼ y ⇒ x∗ ≤ y
Proof: Let x = (Tree X) and y = (Tree Y ).

x ∼ y
= {definitions of x and y}

(Tree X) ∼ (Tree Y )
= {D2}

(p X) ≈ Y , for some permutation p
⇒ {induction and the property of lexicographic ordering}

(p X)∗ ≤ Y , for some permutation p
= {(p X)∗ = (p X∗),

because map f (p X) = p (map f X), for any function f}
(p X∗) ≤ Y , for some permutation p

⇒ {(sort X∗) ≤ (p X∗), from (A6)}
(sort X∗) ≤ Y

= {A4}
Tree(sort X∗) ≤ (Tree Y )

= {A7 on the first term}
(Tree X)∗ ≤ (Tree Y )

= {definitions of x and y}
x∗ ≤ y

Corollaries

C1: x ∼ y ⇒ x∗ = y∗

x ∼ y
⇒ {from Lemma 1, y ∼ y∗. ∼ is transitive}

x ∼ y∗

⇒ {Lemma 2: replace x by x and y by y∗}
x∗ ≤ y∗

Switching the roles of x and y, y∗ ≤ x∗. Therefore, x∗ = y∗.

C2: x∗ = y∗ ⇒ x ∼ y

x∗ = y∗

⇒ {from Lemma 1, x ∼ x∗}
x ∼ y∗

⇒ {from Lemma 1, y∗ ∼ y. Also, ∼ is transitive}
x ∼ y

5



Theorem: x ∼ y ≡ x∗ = y∗

Proof: Follows from (C1) and (C2).

Additional Corollaries

C3: x∗ ≤ x

true
⇒ {∼ is reflexive}

x ∼ x
⇒ {Lemma 2}

x∗ ≤ x

C4: (x∗)∗ = x∗

true
⇒ {Lemma 1}

x∗ ∼ x
⇒ {theorem}

(x∗)∗ = x∗

5 Remarks

The origin of the Problem A tree represents an expression where the in-
ternal nodes are the operators and the leaf nodes are the operands. We con-
sider expressions in which each operator is associative and commutative; so its
operands may be listed in arbitrary order. Therefore, subtrees of any node may
be permuted in any manner to arrive at a tree that represents the same expres-
sion. Our algorithm decides if two trees represent the same expression, up to a
reordering of the operands.

If all values in either tree are distinct, there is a simple linear algorithm for
checking isomorphism. In fact, if the children of each node have distinct values
then a top-down recursive algorithm can decide isomorphism. We are concerned
with the case where there may be many repeated values among the children.

A Generalization: Suppose that each internal node has an associated oper-
ator and each leaf an associated operand. Then the rules of isomorphism are
modified as follows.

1. A tree with a single node (the root) is isomorphic only to a tree with a
single node that has the same associated operand.

2. Two trees with roots A and B, none of which is a single-node tree, are
isomorphic iff the associated operators at the roots are identical and there
is a 1-1 correspondence between the subtrees of A and of B such that the
corresponding subtrees are isomorphic.

6



Develop an isomorphism algorithm for this case.
A further generalization is as follows. Designate a subset of operators as

commutative and associative. Only the subtrees of such operators may be re-
ordered. Additionally, some of the operators can be designated idempotent; any
subtree of such an operator may be removed if it is isomorphic to another sub-
tree (of this operator). An operator may be commutative and associative as
well as idempotent. Develop isomorphism algorithm for this case.

Haskell I had earlier written this program in CAML, a derivative of ML. The
Haskell version is shorter and more elegant. First, a sophisticated type system
helped in designing the appropriate data structure. And, the type classes of
Haskell made it particularly easy to define equality and a total order over trees.

Acknowledgment I am grateful to Ham Richards who answered all my ques-
tions about Haskell promptly, cheerfully, and correctly. Perceptive comments
by C.A.R. Hoare have helped improve the presentation. Edsger W. Dijkstra’s
insistence on rigor has led to a simpler (and more rigorous) proof.

7


