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The following problem was communicated to me by Edsger W. Dijkstra in
2000, and he had heard it from another scientist.

An undirected connected finite graph has a natural number vi initially asso-
ciated with each node i. There is a distinguished node, anchor. A non-anchor
node may make a move by setting its value to 1 + the minimum value over
all its neighbors. Using the notation i ∼ j to denote that i is a neighbor of
j and Ni = 1 + min{vj | j ∼ i}, the move is given by the action is vi := Ni.
The anchor node never makes a move. Show that the computation eventually
converges so that no move changes any value.

I show two informal proofs in which the argument is over computation se-
quences. A third proof gives an inductive state-based argument that can be
formalized in a logic such as UNITY.

1 First Proof (from August 30, 2000)

Lemma 1 The value of any node is bounded.
Proof: Let M be the maximum initial value of any node. We show that a node i
at distance k from the anchor has a value at most M +k at any moment. Proof
is by induction on k.

• k = 0: Then i is the anchor and initial value is at most M . It never makes
a move; hence its value is at most M + 0 at all times.

• k + 1: Initially vi ≤M , which satisfies the bound. Node i has a neighbor
at distance k, and, from the induction hypothesis, this neighbor’s value is
at most M + k. Therefore, Vi ≤ M + k + 1, and any move of i assigns it
a value of at most M + k + 1. 2

A move that assigns value n to a node is called a n-move; a move that assigns
a value at or below n is a ≤n-move; similarly >n-move. It follows from Lemma
1 that there is a value B such that every move is a <B-move so that Ni ≤ B
for any i at all times.

Lemma 2 There is a finite number of <n-moves, for any n.
Proof: Proof is by induction on n.
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• n = 0: No move sets a node value to less than 0.

• n + 1, n ≥ 0: From the induction hypothesis, there is a finite number of
<n-moves. Consider the point in the computation, p, at which all such
moves have been made. We claim that any node performs at most one
n-move beyond p. Hence, there is a finite number of <(n+ 1)-moves.

Let the first n-move of y beyond p be at q. The next move of y beyond q,
if there is one, is not an n-move, because consecutive moves of the same
node assign it different values; nor is the move a <n-move because all
such moves have been completed. Therefore, this move assigns y a value
exceeding n. Hence, every neighbor of y has a value at least n at this
point. Subsequently, since there is no <n-move, value of each neighbor
remains at least n. Therefore, all subsequent moves of y assign it values
exceeding n; i.e., they are not n-moves. 2

From Lemma 1, each node value is bounded. That is, there is a value B
such that node values are always below B. Hence each move is a <B-move.
From Lemma 2, there is a finite number of <B-moves. Hence the computation
is finite.

Note The point beyond which no more n-moves can be made can be written
as a state formula, (∀i : i 6= anchor : vi = Ni ∨Ni > n). It can be shown that
this predicate is stable, clearly any move in this state is a >n-move.

2 Second Proof

This proof replaces the Lemma 2 of the previous section by a more direct proof.

Lemma 3 The number of ≤n-moves for any node is finite.
Proof: We prove the result by induction on n.

• n = 0: No node is ever assigned value 0. So, the number of 0-moves for
any node is 0.

• n+1: We claim that between any two (n+1)-moves of any node i there is
some ≤n-move by a neighbor of i. Since i has a finite number of neighbors,
using the inductive hypothesis, the number of ≤n-moves by all neighbors
of i is finite. Hence the number of (n+ 1)-moves of i is finite.

To see the claim, consider a point p and a subsequent point r where i
makes (n+ 1)-moves. Then the value of i is different from n+ 1 at some
intermediate point q, otherwise i would not make a move at r. We show
that some neighbor of i makes a ≤n-move between q and r.

Now i makes a move different from n + 1 at q, so Ni 6= n + 1 at q. If a
neighbor of i then makes a >n-move, Ni 6= n+ 1 is preserved because the
move either overwrites the minimum value of a neighbor so that Ni > n+1
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or it does not alter the minimum value, leaving Ni 6= n+ 1. Therefore, if
the neighbors make only >n-moves from q to r, Ni 6= n + 1 at r. Since i
makes a (n+ 1)-move at r, Ni = n+ 1 at r, contradiction. 2

Theorem 1 The number of moves is finite.
Proof: Each move is a <B-move (Lemma 1), <B-moves for any node is finite
(Lemma 3), and the graph is finite. 2

3 Outline of a formal state-based proof

We show that every move decreases a function value that is well-founded.
Partition the non-anchor nodes into bins where node i is placed in bin Ni;

since 1 ≤ Ni ≤ B there are B bins. Node i is balanced if vi = Ni; it is unbalanced
otherwise.

3.1 Preliminary Results

Henceforth, αj denotes the action vj := Nj .

Proposition 1 For i 6= j, execution of αj does not affect vi.
For i 6∼ j, execution of αj does not affect Ni.

Proposition 2 A balanced node that stays in its own bin after execution of
an action remains balanced.

Proof: Suppose for node i, vi = Ni = m before execution of αj , and it remains
in bin m after the execution. For i = j given that i is balanced, execution of
αi has no effect, thus keeping i balanced. For i 6= j, vi is unchanged, so vi = m
and i stays in bin m so Ni = m; hence vi = Ni.

Proposition 3 On execution of αj , j in bin n, every node in bin m, m ≤ n,
stays at or above m. And a node in a bin above n (m > n) stays above n.

Proof: The proposition follows from the following result. For nodes i and j, not
necessarily distinct, {Ni, Nj = m,n} αj :: vj := Nj {Ni ≥ min(n+ 1,m)}.

For i 6∼ j, αj does not affect Ni, so Ni = m ≥ min(n+ 1,m) is preserved.

For i ∼ j, Ni = min(1 + vj , 1 + min{vk | k ∼ i, k 6= j}). Using the rule of
assignment, we need to show

Ni, Nj = m,n ⇒ min(1 +Nj , 1 + min{vk | k ∼ i, k 6= j}) ≥ min(n+ 1,m).

Ni, Nj = m,n
⇒ {Ni = min(1 + vj , 1 + min{vk | k ∼ i, k 6= j}) and Ni = m}

1 + min{vk | k ∼ i, k 6= j} ≥ m ∧ Nj = n
⇒ {Nj = n⇒ 1 +Nj ≥ n+ 1}
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1 + min{vk | k ∼ i, k 6= j} ≥ m ∧ 1 +Nj ≥ n+ 1
⇒ {arithmetic}

min(1 +Nj , 1 + min{vk | k ∼ i, k 6= j}) ≥ min(n+ 1,m)

3.2 Main Proof

Consider execution of action αj where j is in bin n. Let ui, bi be the number of
unbalanced and balanced nodes, respectively, in bin i before the move and u′i,
b′i the corresponding values after the move. We show that there is a bin m such
that for all i, 1 ≤ i < m, (u′i, b

′
i) = (ui, bi) and (u′m, b

′
m) ≺ (um, bm), where ≺

is the lexicographic order. Therefore, the tuple 〈(u1, b1), · · · (ui, bi), · · · (uB , bB)〉
decreases lexicographically with each move. Since each of ui and bi is bounded
from below, the number of moves is finite.

Proposition 4 For any m at or below n if (ui, bi) = (u′i, b
′
i) for all i, 1 ≤ i < m,

then (u′m, b
′
m) � (um, bm).

Proof: From Proposition 3, no node moves from a bin above m to any bin at
or below m. Given (ui, bi) = (u′i, b

′
i) for all i, 1 ≤ i < m, it follows by induction

on m that no node moves out of any bin below m. Thus, no node moves from
above or below into bin m. From Proposition 2, any balanced node in bin m
that stays in bin m stays balanced. So, u′m ≤ um, and (u′m, b

′
m) � (um, bm). 2

Theorem 2 There is a bin m such that for all i, 1 ≤ i < m, (u′i, b
′
i) = (ui, bi)

and (u′m, b
′
m) ≺ (um, bm).

Proof: Consider two cases.

• Case 1) There is a bin m, m < n, such that (u′m, b
′
m) 6= (um, bm):

Let m be the lowest such bin. Then (u′i, b
′
i) = (ui, bi) for all i, 1 ≤ i < m.

From Proposition 4, (u′m, b
′
m) � (um, bm). Given that (u′m, b

′
m) 6= (um, bm),

(u′m, b
′
m) ≺ (um, bm).

• Case 2) For all bins m, m < n, (u′m, b
′
m) = (um, bm):

From Proposition 4, (u′n, b
′
n) � (un, bn). Node j goes from being unbalanced to

balanced while staying in bin n, so u′n < un. Therefore, (u′n, b
′
n) ≺ (un, bn). 2
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