Structured Concurrent Programming

Jayadev Misra
Department of Computer Science
University of Texas at Austin
http://orc.csres.utexas.edu

LASER Summer School on Software Engineering
Concurrency: the next frontiers
September 6-12, 2015
Elba Island, Italy

Structured Concurrent Programming

- Structured Sequential Programming: Dijkstra circa 1968 Component Integration in a sequential world.
- Structured Concurrent Programming: Component Integration in a concurrent world.

Traditional approaches to handling Concurrency

- Adding concurrency to serial languages:
- Threads with mutual exclusion using semaphore.
- Transaction.
- Process Networks.

Orc

- Orc is a concurrent language that has serial features.
- Orc is a component integration system.

Components:

- from many vendors
- for many platforms
- written in many languages
- may run concurrently and in real-time

Evolution of Orc

- Web-service Integration
- Component Integration
- Structured Concurrent Programming

Web-service Integration: Internet Scripting

- Contact two airlines simultaneously for price quotes.
- Buy a ticket if the quote is at most $\$ 300$.
- Buy the cheapest ticket if both quotes are above $\$ 300$.
- Buy a ticket if the other airline does not give a timely quote.
- Notify client if neither airline provides a timely quote.

Enhanced Goal: Component Integration

Components could be:

- Web services
- Library modules
- Custom Applications

Components could be for:

- Functional Transformation
- Data Object Creation
- Real-time Computation

Component Integration; contd.

- Combine any kind of component, not just web services
- Small components: add two numbers, print a file ...
- Large components: Linux, MSword, email server, file server ...
- Time-based components: alarm clock, timer
- Cyber-physical components: Actuators, sensors, humans
- Fast and Slow components
- Short-lived and Long-lived components
- Written in any language for any platform

Concurrency

- Component integration: traditionally sequential components, Object integration
- Today: concurrency is ubiquitous
- Magnitude higher in complexity than sequential programming
- No generally accepted method to tame complexity
- May affect security

Orc: Structured Concurrent Programming

- A combinator combines two components to get a component
- Combinators may be applied recursively
- Results in hierarchical/modular program construction
- Combinators may orchestrate components concurrently
- Orc is just about 4 combinators

Power of Orc

- Solve all known synchronization, communication problems
- Code objects, active objects
- Solve all known forms of real-time and periodic computaions
- Solve a limited kind of transactions
- and, all combinations of the above

Some Typical Applications

- Adaptive Workflow (Business process management):

Workflow lasting over months or years
Security, Failure, Long-lived Data

- Extended 911:

Using humans as components
Components join and leave
Real-time response

- Network simulation:

Experiments with differing traffic and failure modes Animation

Some Typical Applications, contd.

- Grid Computations
- Music Composition
- Traffic simulation
- Computation Animation
- Robotics

Some Typical Applications, contd.

- Map-Reduce using a server farm
- Thread management in an operating system
- Mashups (Internet Scripting).
- Concurrent Programming on Android.

Some Very Large Applications: my wish list

- Logistics
- Managing Olympic Games
- Smart City

Current Status

- Strong Theoretical Basis
- An elegant programming language
- as good as functional on functional problems
- can work with mutable store, real-time dependent components, non-determinacy
- concurrency
- hierarchical, modular, recursive
- Robust Implementation
- Run program through a Web browser or locally
- Web site: orc.csres.utexas.edu
- Several papers, Ph.D. thesis
- Several Chapters of a book

Concurrent orchestration in Haskell

John Launchbury and Trevor Elliott
Proceedings of the third ACM Haskell symposium on Haskell

Orc Calculus

- Site: Basic service or component.
- Concurrency combinators for integrating sites.
- Calculus includes nothing other than the combinators.

No notion of data type, thread, process, channel, synchronization, parallelism ...

New concepts (sites) are programmed using existing sites.

- There are no sites in Orc calculus.

Examples of Sites

- $+-* \& \& \|=\ldots$
- Println, Random, Prompt, Email ...
- Mutable Ref, Semaphore, Channel, ...
- Timer
- External Services: Google Search, MySpace, CNN, ...
- Any Java Class instance, Any Orc Program
- Factory sites; Sites that create sites: Semaphore, Channel ...
- Humans

Sites

- A site is called like a procedure with parameters.
- Site returns any number of values.
- The values are published.

Structure of Orc Expression

- Simple: just a site call, $C N N(d)$ Publishes the value returned by the site.
- Composition of two Orc expressions:
do f and g in parallel
for all x from f do g
for some x from g do f
if f halts without publishing do g

Structure of Orc Expression

- Simple: just a site call, $C N N(d)$ Publishes the value returned by the site.
- Composition of two Orc expressions:
do f and g in parallel
for all x from f do g
for some x from g do f
if f halts without publishing do g
$f \mid g$
Symmetric composition

Sequential composition

Pruning
Otherwise

Structure of Orc Expression

- Simple: just a site call, $C N N(d)$ Publishes the value returned by the site.
- Composition of two Orc expressions:
do f and g in parallel for all x from f do g
for some x from g do f
if f halts without publishing do g
$f \mid g$
$f>x>g \quad$ Sequential composition

Structure of Orc Expression

- Simple: just a site call, $C N N(d)$ Publishes the value returned by the site.
- Composition of two Orc expressions:
do f and g in parallel for all x from f do g for some x from g do f
$f \mid g$
Symmetric composition
$f>x>g \quad$ Sequential composition
$f<x<g \quad$ Pruning

Structure of Orc Expression

- Simple: just a site call, $C N N(d)$ Publishes the value returned by the site.
- Composition of two Orc expressions:
do f and g in parallel for all x from f do g for some x from g do f if f halts without publishing do $g \quad f ; g$
$f \mid g$
Symmetric composition
$f>x>g \quad$ Sequential composition
$f<x<g \quad$ Pruning
Otherwise

Symmetric composition: $f \mid g$

- Evaluate f and g independently.
- Publish all values from both.
- No direct communication or interaction between f and g. They can communicate only through sites.

Example: $C N N(d) \mid B B C(d)$

Calls both $C N N$ and $B B C$ simultaneously. Publishes values returned by both sites. (0,1 or 2 values)

Sequential composition: $f>x>g$

For all values published by f do g. Publish only the values from g.

```
CNN(d) >x> Email(address, x)
- Call CNN(d).
- Bind returned value (if any) to x. Don't publish x.
- Call Email(address, x).
- Publish the value, if any, returned by Email.
```

- $(C N N(d) \mid B B C(d))>x>\operatorname{Email}(a d d r e s s, x)$
- May call Email twice.
- Publishes up to two values from Email.

Notation: $f \gg g$ for $f>x>g$, if x is unused in g. Right Associative: $f>x>g>y>h$ is $f>x>(g>y>h)$

Sequential composition: $f>x>g$

For all values published by f do g.
Publish only the values from g.

- $\operatorname{CNN}(d)>x>\operatorname{Email}($ address, $x)$
- Call $C N N(d)$.
- Bind returned value (if any) to x. Don't publish x.
- Call Email(address, x).
- Publish the value, if any, returned by Email.
- $(\operatorname{CNN}(d) \mid \operatorname{BBC}(d))>x>\operatorname{Email}($ address,$x)$
- May call Email twice.
- Publishes up to two values from Email.

Notation: $f \gg g$ for $f>x>g, \quad$ if x is unused in g. Right Acsociative: $f>x>g>y>h$ is $f>x>(g>y>h)$

Sequential composition: $f>x>g$

For all values published by f do g.
Publish only the values from g.

- $C N N(d)>x>\operatorname{Email}($ address,$x)$
- Call $\operatorname{CNN}(d)$.
- Bind returned value (if any) to x. Don't publish x.
- Call Email(address, x).
- Publish the value, if any, returned by Email.
- $(\operatorname{CNN}(d) \mid B B C(d))>x>\operatorname{Email}($ address,$x)$
- May call Email twice.
- Publishes up to two values from Email.
\square Right Associative: $f>x>g>y>h$ is $f>x>(g>y>h)$

Sequential composition: $f>x>g$

For all values published by f do g.
Publish only the values from g.

- $\operatorname{CNN}(d)>x>\operatorname{Email}($ address, x)
- Call $C N N(d)$.
- Bind returned value (if any) to x. Don't publish x.
- Call Email(address, x).
- Publish the value, if any, returned by Email.
- $(C N N(d) \mid B B C(d))>x>\operatorname{Email}($ address, $x)$
- May call Email twice.
- Publishes up to two values from Email.

Notation: $f \gg g$ for $f>x>g, \quad$ if x is unused in g.
Right Associative: $f>x>g>y>h$ is $f>x>(g>y>h)$

Schematic of Sequential composition

Figure: Schematic of $f>x>g$

Pruning: $f<x<g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
- Site calls that need x are suspended. Consider $(M() \mid N(x))<x<g$
- When g returns a (first) value:
- Bind the value to x. Don't publish x.
- Kill g.
- Resume suspended calls.
- Values published by f are the values of $(f<x<g)$.

Notation: $f \ll g$ for $f<x<g$, if x is unused in f.
Left Associative: $f<x<g<y<h$ is $(f<x<g)<y<h$

Pruning: $f<x<g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
- Site calls that need x are suspended. Consider $(M() \mid N(x))<x<g$
- When g returns a (first) value:
- Bind the value to x. Don't publish x.
- Kill g.
- Resume suspended calls.
- Values published by f are the values of $(f<x<g)$.

Notation: $f<g$ for $f<x<g$, if x is unused in f. Left Associative: $f<x<g<y<h$ is $(f<x<g)<y<h$

Pruning: $f<x<g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
- Site calls that need x are suspended. Consider $(M() \mid N(x))<x<g$
- When g returns a (first) value:
- Bind the value to x. Don't publish x.
- Kill g.
- Resume suspended calls.
- Values published by f are the values of $(f<x<g)$. Notation: $f \ll g$ for $f<x<g, \quad$ if x is unused in f. Left Ascociative: $f<x<g<y<h$ is $(f<x<g)<y<h$

Pruning: $f<x<g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
- Site calls that need x are suspended. Consider $(M() \mid N(x))<x<g$
- When g returns a (first) value:
- Bind the value to x. Don't publish x.
- Kill g.
- Resume suspended calls.
- Values published by f are the values of $(f<x<g)$.
\square
Notation: $f \ll g$ for $f<x<g$, if x is unused in f.

Pruning: $f<x<g$

For some (one) value published by g do f.

- Evaluate f and g in parallel.
- Site calls that need x are suspended. Consider $(M() \mid N(x))<x<g$
- When g returns a (first) value:
- Bind the value to x. Don't publish x.
- Kill g.
- Resume suspended calls.
- Values published by f are the values of $(f<x<g)$.

Notation: $f \ll g$ for $f<x<g, \quad$ if x is unused in f.
Left Associative: $f<x<g<y<h$ is $(f<x<g)<y<h$

Example of Pruning

$$
\text { Email(address, } x)<x<(C N N(d) \mid B B C(d))
$$

Binds x to the first value from $C N N(d) \mid B B C(d)$. Sends at most one email.

Multiple Pruning happens concurrently

$$
\begin{aligned}
& \operatorname{add}(x, y)<x<f<y<g \quad \text { is } \quad(\operatorname{add}(x, y)<x<f)<y<g \\
& (\operatorname{add}(x, y)<x<f) \text { is computed concurrently with } g \\
& (\operatorname{add}(x, y), f \text { and } g \text { computed concurrently. }
\end{aligned}
$$

Otherwise: $f ; g$

Do f. If f halts without publishing then do g.

- An expression halts if
- its execution can take no more steps, and
- all called sites have either responded, or will never respond.
- A site call may respond with a value, indicate that it will never respond (helpful), or do neither.
- All library sites in Orc are helpful.
- Any expression over helpful sites is helpful.

Otherwise: $f ; g$

Do f. If f halts without publishing then do g.

- An expression halts if
- its execution can take no more steps, and
- all called sites have either responded, or will never respond.
- A site call may respond with a value, indicate that it will never respond (helpful), or do neither.
- All library sites in Orc are helpful.
- Any expression over helpful sites is helpful.

Otherwise: $f ; g$

Do f. If f halts without publishing then do g.

- An expression halts if
- its execution can take no more steps, and
- all called sites have either responded, or will never respond.
- A site call may respond with a value, indicate that it will never respond (helpful), or do neither.
- All library sites in Orc are helpful.
- Any expression over helpful sites is helpful.

Examples of $f ; g$

- 1 ; 2 publishes 1
- Print all publications of h. When h halts, publish "done". Assume h is helpful.

$$
h>x>\operatorname{Println}(x) \gg \text { stop ; "done" }
$$

- 5/0; "Exception leads to Halt"
publishes
"Exception leads to Halt"

Orc program

- Orc program has
- a goal expression,
- a set of definitions.
- The goal expression is executed. Its execution
- calls sites,
- publishes values.

Some Fundamental Sites

All these sites are helpful.

- $\operatorname{Ift}(b), \operatorname{Iff}(b)$: boolean b, Returns a signal if b is true/false; remains silent otherwise. Site is helpful: indicates when it will never respond.
- stop : never responds. Same as Ift(false) or Iff(true).
- signal : returns a signal immediately. Same as Ift (true) or Iff(false).
- Rwait (t) : integer $t, t \geq 0$, returns a signal exactly t time units later.

Use of Fundamental Site: Timeout

- Call site M. Publish its response if it arrives within 10 time units. Otherwise publish 0 .

$$
x<x<(M() \mid R w a i t(10) \gg 0)
$$

Interrupt f

- Evaluation of f can not be directly interrupted.
- Introduce two sites:
- Interrupt.set: to interrupt f
- Interrupt.get: responds only after Interrupt.set has been called.
- Interrupt.set is similar to release on a semaphore; Interrupt.get is similar to acquire on a semaphore.
- Instead of f, evaluate

$$
z<z<(f \mid \text { Interrupt.get }())
$$

Site Definition

$$
\begin{aligned}
& \text { def } \operatorname{MailOnce}(a)= \\
& \quad \operatorname{Email}(a, m)<m<(\operatorname{CNN}(d) \mid B B C(d)) \\
& \text { def } \operatorname{MailLoop}(a, t)= \\
& \text { MailOnce }(a)>\operatorname{Rwait}(t) \gg \operatorname{MailLoop}(a, t) \\
& \text { def metronome }()=\operatorname{signal} \mid(R w a i t(1) \gg \text { metronome }())
\end{aligned}
$$

- A defined site name is called like a procedure. It may publish many values. MailLoop does not publish.

Example of a Definition: Metronome

Publish a signal every unit.

$$
\text { def metronome }()=\underbrace{\text { signal }}_{S} \mid(\underbrace{\text { Rwait }(1) \gg \text { metronome }()}_{R})
$$

Unending string of Random digits

metronome () > Random(10) - one every unit

$$
\begin{aligned}
& \text { def } \quad \text { rand_seq }(d d)=\quad-\text { at a specified rate } \\
& \quad \operatorname{Random}(10) \mid \operatorname{Rwait}(d d) \gg \text { rand_seq }(d d)
\end{aligned}
$$

Simple definitions using Random()

- Return a random boolean.

$$
\text { def } \operatorname{rbool}()=(\operatorname{Random}(2)=0)
$$

- Return a random real number between 0 and 1 .

$$
\text { def frandom }()=\text { Random }(1001) / 1000.0
$$

- Return true with probability p, false with $(1-p)$

$$
\text { def } \operatorname{biasedBool}(p)=(\operatorname{Random}(1000)<: p * 1000)
$$

Example of Site call

- Site Query () returns a value (different ones at different times).
- Site $\operatorname{Accept}(x)$ returns x if x is an acceptable value; it is silent otherwise.
- Call Query every second forever and publish all its acceptable values.

$$
\text { metronome }() \gg \text { Query }()>x>\operatorname{Accept}(x)
$$

Concurrent Site call

- Sites are often called concurrently.
- Each call starts a new instance of site execution.
- If a site accesses shared data, concurrent invocations may interfere.

Example: Publish each of "tick" and "tock" once per second, "tock" after an initial half-second delay.

$$
\left\lvert\, \operatorname{Rwait}(500) \gg \quad \begin{aligned}
& \text { metronome }() \gg " \text { tick" } \\
& \text { metronome }() \gg " \text { tock" }
\end{aligned}\right.
$$

Logical Connectives; 2-valued Logic

And: Publish a signal if both sites do.
Or: Publish a signal if either site does.

$$
\begin{array}{ll}
M() \gg N() & \text { - "and" } \\
b<b<(M() \mid N()) & \text { - "or" } \\
M() ; N() & - \text { "or" with helpful } M
\end{array}
$$

$(M() \gg$ true $;$ false $)>b>\operatorname{lff}(b)-$ "not" with helpful M

Parallel or

Expressions f and g return single booleans. Compute the parallel or.

$$
\begin{aligned}
& \text { val } x=f \\
& \text { val } y=g \\
& \qquad \text { Ift }(x) \gg \text { true } \mid \operatorname{Ift}(y) \gg \text { true } \mid(x| | y)
\end{aligned}
$$

Parallel or; contd.

Compute the parallel or and return just one value:

$$
\begin{aligned}
& \text { val } x=f \\
& \text { val } y=g \\
& \text { val } z=\operatorname{Ift}(x) \gg \text { true } \mid \operatorname{Ift}(y) \gg \text { true } \mid(x \| y) \\
& \qquad z
\end{aligned}
$$

But this continues execution of g if f first returns true.

$$
\begin{aligned}
& \text { val } z= \\
& \qquad \begin{aligned}
\text { val } x & =f \\
\text { val } y & =g \\
\text { Ift }(x) & \gg \text { true } \mid \operatorname{Ift}(y) \gg \text { true } \mid(x| | y)
\end{aligned}
\end{aligned}
$$

z

Airline quotes: Application of Parallel or

- Contact airlines A and B.
- Return any quote if it is below $\$ 300$ as soon as it is available, otherwise return the minimum quote.
- threshold (x) returns x if $x<300$; silent otherwise. $\operatorname{Min}(x, y)$ returns the minimum of x and y.

$$
\begin{aligned}
& \text { val } z= \\
& \quad \text { val } x=A() \\
& \quad \text { val } y=B() \\
& \quad \text { threshold }(x) \mid \text { threshold }(y) \mid \operatorname{Min}(x, y)
\end{aligned}
$$

z

Fork-join parallelism

Call sites M and N in parallel.
Return their values as a tuple after both respond.

$$
\begin{aligned}
& ((u, v) \\
& \quad<u<M()) \\
& \quad<v<N()
\end{aligned}
$$

or, in Orc language

$$
(M(), N())
$$

Simple Parallel Auction

- A list of bidders in a sealed-bid, single-round auction.
- b.ask() requests a bid from bidder b.
- Ask for bids from all bidders, then publish the highest bid.

$$
\begin{aligned}
& \text { def } \operatorname{auction}([])=0 \\
& \operatorname{def} \operatorname{auction}(b: b s)=\max (\operatorname{b.ask}(), \operatorname{auction}(b s))
\end{aligned}
$$

Notes:

- All bidders are called simultaneously.
- If some bidder fails, then the auction will never complete.

Parallel Auction with Timeout

- Take a bid to be 0 if no response is received from the bidder within 8 seconds.

$$
\begin{aligned}
& \text { def } \operatorname{auction}([])=0 \\
& \text { def } \operatorname{auction}(b: b s)= \\
& \quad \max \left(\begin{array}{l}
\operatorname{ask}() \mid(R w a i t(8000) \gg 0), \\
\\
\text { auction }(b s)
\end{array}\right.
\end{aligned}
$$

Identities of \mid, \gg, \ll and ;

(Zero and |) $\quad f \mid$ stop $=f$
(Commutativity of |) $f|g=g| f$
(Associativity of $\mid) \quad(f \mid g)|h=f|(g \mid h)$
(Left zero of \gg) stop $\gg f=$ stop
(Associativity of \gg) if h is x-free

$$
(f>x>g)>y>h=f>x>(g>y>h)
$$

(Right zero of $\ll) \quad f \ll$ stop $=f$
(generalization of right zero)

$$
f \ll g=f \ll(\text { stop } \ll g)=f \mid(\text { stop } \ll g)
$$

(relation between \ll and $<x<$)

$$
f \ll g=f<x<g, \quad \text { if } x \notin \text { free }(f) .
$$

(commutativity) $\quad(f<x<g)<y<h=(f<y<h)<x<g$
if $x \notin$ free $(h), y \notin$ free (g), and x, y are distinct.
(associativity of ;)
$(f ; g) ; h=f ;(g ; h)$

Distributivity Identities

(| over $>x>$; left distributivity)

$$
(f \mid g)>x>h=f>x>h \mid g>x>h
$$

$(\mid$ over $<x<) \quad(f \mid g)<x<h=(f<x<h) \mid g$, if $x \notin$ free (g).
$(>y>$ over $<x<) \quad(f>y>g)<x<h=(f<x<h)>y>g$ if $x \notin$ free (g), and x and y are distinct.
($<x<$ over otherwise) $(f<x<g) ; h=(f ; h)<x<g$, if $x \notin$ free (h).

Identities that don't hold

(Idempotence of \mid) $\quad f \mid f=f$
(Right zero of $\gg) \quad f \gg$ stop $=$ stop
(Left Distributivity of \gg over \mid)

$$
f \gg(g \mid h)=(f \gg g) \mid(f \gg h)
$$

Orc Language

- Data Types: Number, Boolean, String, with Java operators
- Conditional Expression: if E then F else G
- Data structures: Tuple, List, Record
- Pattern Matching; Clausal Definition
- Closure
- Orc combinators everywhere
- Class for active objects

Data types

- Number: 5, - 1, 2.71828, - $2.71 e-5$
- Boolean: true, false
- String: "orc", "ceci n'est pas une |"

$1+2$	evaluates to 3	
$0.4=2.0 / 5$	evaluates to true	
$3-5:>5-3$	evaluates to false	
true \&\& (false $\\|$ true $)$	evaluates to true	
$3 / 0$	is silent - Halts without	
"Try" + "Orc"	evaluates to "TryOrc"	

Variable Binding; Silent expression

$$
\begin{aligned}
& \text { val } x=1+2 \\
& \text { val } y=x+x \\
& \text { val } z=x / 0-- \text { expression is silent } \\
& \text { val } u=\text { if }(0<: 5) \text { then } 0 \text { else } z
\end{aligned}
$$

Conditional Expression

if true then "blue" else "green" - is "blue"
if "fish" then "yes" else "no" - is silent
if false then $4+5$ else 4+true - is silent
if true then $0 / 5$ else $5 / 0 \quad-$ is 0

Tuples

$(1+2,7)$
is $(3,7)$
("true" + "false", true || false, true \&\& false) is ("truefalse", true, false)
(2/2, 2/1, 2/0)
is silent

Lists

$[1,2+3] \quad$ is $\quad[1,5]$
[true \&\& true] is [true]
[] is the empty list
$[5,5+$ true, 5$]$ is silent

List Constructor is a colon :
$3:[5,7]=[3,5,7]$
$3:[]=[3]$

Translating Programs to Orc Calculus

- All programs are translated to Orc calculus.
- $1+2$ becomes $\operatorname{add}(1,2)$ All arithmetic and logical operators, tuples, lists are site calls. if-then-else is translated with calls to Ift, Iff sites.
- $1+(2+3)$ should become $\operatorname{add}(1, \operatorname{add}(2,3))$

But this is not legal Orc! Site calls can not be nested.

Orc Combinators everywhere

Parameters in site calls could be Orc expressions
$(1+2) \mid(2+3)$
$(1 \mid 2)+(2 \mid 3)$

Deflation

- Given expression $C(\ldots, e, .$.$) , single value expected at e$
- translate to $C(\ldots, x, .)<x<$.$e where x$ is fresh

is translated to

- applicable hierarchically.

```
(1 | 2)* (10|100) is translated to
(Times(x,y)<x<(1 | 2))<y<(10| 100), or without parentheses
Times(x,y)<x<(1 | 2) <y< (10| 100)
```

- Implication:

Arguments of site calls are evaluated in parallel. Note: A strict site is called when all arguments have been evaluated.

Deflation

- Given expression $C(\ldots, e, .$.$) , single value expected at e$
- translate to $C(\ldots, x, .)<x<$.$e where x$ is fresh

$$
\begin{aligned}
& \quad v a l z=g \\
& f \\
& \text { is translated to }
\end{aligned}
$$

$$
f<z<g
$$

- applicable hierarchically.

```
(1 | 2)* (10|100) is translated to
(Times(x,y)<x<(1 | 2)) <y< (10| 100), or without parentheses
Times(x,y)<x<(1 | 2) <y< (10| 100)
```

- Implication:

Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.

Deflation

- Given expression $C(\ldots, e, .$.$) , single value expected at e$
- translate to $C(\ldots, x, .)<x<$.$e where x$ is fresh

$$
\begin{aligned}
& \text { val } z=g \\
& f
\end{aligned}
$$

is translated to

$$
f<z<g
$$

- applicable hierarchically.

$$
\begin{aligned}
& (1 \mid 2) *(10 \mid 100) \text { is translated to } \\
& \text { (Times }(x, y)<x<(1 \mid 2))<y<(10 \mid 100) \text {, or without parentheses } \\
& \operatorname{Times}(x, y)<x<(1 \mid 2)<y<(10 \mid 100)
\end{aligned}
$$

- Implication:

Deflation

- Given expression $C(\ldots, e, .$.$) , single value expected at e$
- translate to $C(\ldots, x, .)<x<$.$e where x$ is fresh
- val $z=g$
is translated to

$$
f<z<g
$$

- applicable hierarchically.

$$
\begin{aligned}
& (1 \mid 2) *(10 \mid 100) \text { is translated to } \\
& \text { (Times }(x, y)<x<(1 \mid 2))<y<(10 \mid 100) \text {, or without parentheses } \\
& \text { Times }(x, y)<x<(1 \mid 2)<y<(10 \mid 100)
\end{aligned}
$$

- Implication:

Arguments of site calls are evaluated in parallel.
Note: A strict site is called when all arguments have been evaluated.

Choice

- Non-deterministically choose to execute either f or g,
- \quad if (true | false) then f else g

Implicit Concurrency

- An experiment tosses two dice. Experiment succeeds if and only if sum of the two dice thrown is 7 .
- $\exp (n)$ runs n experiments and reports the number of successes.

$$
\operatorname{def} \operatorname{toss}()=\operatorname{Random}(6)+1
$$

-- toss returns a random number between 1 and 6

$$
\begin{aligned}
\operatorname{def} \exp (0) & =0 \\
\operatorname{def} \exp (n) & =\exp (n-1) \\
& +(\text { if } \operatorname{toss}()+\operatorname{toss}()=7 \text { then } 1 \text { else } 0)
\end{aligned}
$$

Translation of the dice throw program

$$
\begin{aligned}
& \text { def } \operatorname{toss}()=\operatorname{add}(x, 1)<x<\operatorname{Random}(6) \\
& \text { def } \exp (n)= \\
& (\operatorname{Ift}(b) \gg 0 \\
& \mid \operatorname{Iff(}(b) \gg \\
& (\operatorname{add}(x, y) \\
& <x<(\exp (m)<m<\operatorname{sub}(n, 1)) \\
& <y<(\operatorname{Ift}(b b) \gg 1 \mid \operatorname{Iff}(b b) \gg 0) \\
& <\operatorname{bb}<\operatorname{equals}(p, 7) \\
& <p<\operatorname{add}(q, r) \\
& <q<\operatorname{toss}() \\
& <r<\operatorname{toss}() \\
&) \\
&)<b<\operatorname{equals}(n, 0)
\end{aligned}
$$

Note: $2 n$ parallel calls to $\operatorname{toss}()$.

Barrier Synchronization

- Given $M() \gg f \mid N() \gg g$.
- Require: f and g start only after both M and N complete.
- Rendezvous of CSP or CCS; M and N are complementary actions.

$$
(M(), N()) \gg(f \mid g)
$$

Priority

- Publish N 's response asap, but no earlier than 1 unit from now. Apply fork-join between R wait (1) and N.

$$
\operatorname{val}\left(u,_{-}\right)=(N(), R w a i t(1))
$$

- Call M, N together. If M responds within one unit, publish its response. Else, publish the first response.

$$
\text { val } x=M() \mid u
$$

Pattern Matching in val

$$
\begin{array}{lll}
(\mathrm{x}, \mathrm{y})=(2+3,2 * 3) & \text { binds } & \mathrm{x} \text { to } 5 \text { and } \mathrm{y} \text { to } 6 \\
{[\mathrm{a}, \mathrm{~b}]=[" \text { "one", "two" }]} & \text { binds } & \text { a to "one", b to "two" } \\
((\mathrm{a}, \mathrm{~b}), \mathrm{c})=((1, \text { true }),[2, \text { false }]) & \text { binds } & \text { a to 1, b to true, and c to [2, false }] \\
(\mathrm{x},-,-)=(1,(2,2),[3,3,3]) & \text { binds } & \mathrm{x} \text { to } 1 \\
{\left[\left[_, \mathrm{x}\right],\left[_, y\right]\right]=[[1,3],[2,4]]} & \text { binds } & \mathrm{x} \text { to } 3 \text { and y to 4 }
\end{array}
$$

Pattern Matching in Site Definition parameters

A site adds two pairs componentwise; publishes the resulting pair.

$$
\begin{aligned}
& \text { def pairsum }(a, b)= \\
& \qquad a>(x, y)>b>\left(x^{\prime}, y^{\prime}\right)>\left(x+x^{\prime}, y+y^{\prime}\right)
\end{aligned}
$$

or, even better,

$$
\text { def pairsum }\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\left(x+x^{\prime}, y+y^{\prime}\right)
$$

Pattern Matching, clausal definition

$$
\begin{aligned}
& \operatorname{def} \operatorname{sum}([])=0 \\
& \operatorname{def} \operatorname{sum}(x: x s)=x+\operatorname{sum}(x s)
\end{aligned}
$$

Clauses are evaluated in order from top to bottom.

Tree Reconstruction

1. Given a non-empty sequence of natural numbers.
2. Does the sequence represent the depths of terminal nodes in a binary tree, from left to right? Then it is valid.

Example: $[1,3,3,2]$ is valid, $[1,3,2,2]$ is not.

Output the tree structutre if the sequence is valid; Output NonTree() otherwise.

Theorem

- [0] is valid.
- [left $]+x+x+[r i g h t]$,
where $[$ left $]+x$ has no duplicates, is valid iff $[$ left $]+(x-1)+[r i g h t]$ is valid.

Tree Reconstruction; Contd.

$$
\begin{aligned}
& \text { type Tree }=\text { Node }(\text { Tree, Tree })|\operatorname{Leaf}()| \text { NonTree }() \\
& \text { def } t c(,,[])=\text { NonTree }() \\
& \text { def } t c([],[(v, t)])=\text { if }(v=0) \text { then telse NonTree }() \\
& \text { def } t c([], v: \text { right })=t c([v], \text { right }) \\
& \text { def } t c\left((u, t): \text { left },\left(v, t^{\prime}\right): \text { right }\right)= \\
& \text { if } u=v \text { then } t c\left(l e f t,\left(v-1, \text { Node }\left(t, t^{\prime}\right)\right): \text { right }\right) \\
& \text { else tc }\left(\left(v, t^{\prime}\right):(u, t): \text { left, right }\right)
\end{aligned}
$$

Typical test: $t c([],[(3, \operatorname{Leaf}()),(3, \operatorname{Leaf}()),(2, \operatorname{Leaf}()),(2, \operatorname{Leaf}())])$

Tree Reconstruction; contd.

Simplify input preparation:
$t c([],[(3, \operatorname{Leaf}()),(3, \operatorname{Leaf}()),(2, \operatorname{Leaf}()),(2, \operatorname{Leaf}())])$ replaced by checktree ([3, 3, 2, 2])

```
def mklist([]) = []
def mklist(x:xs)=(x,Leaf()):mklist(xs)
def checktree(xs)=tc([],mklist(xs))
checktree([3, 3, 2, 2])
- NonTree()
    checktree([1, 3, 3, 2])
- Node(Leaf(),Node(Node(Leaf(),Leaf()),Leaf()))
    checktree([3, 3, 2, 2, 2])
- Node(Node(Node(Leaf(), Leaf()),Leaf()),Node(Leaf(), Leaf()))
```


Example: Fibonacci numbers

$$
\begin{aligned}
& \text { def } H(0)=(1,1) \\
& \text { def } H(n)=H(n-1)>(x, y)>(y, x+y) \\
& \text { def } \operatorname{Fib}(n)=H(n)>\left(x,{ }_{-}\right)>x
\end{aligned}
$$

\{- Goal expression - \}
Fib(5)

Clausal Definition, Pattern Matching Example: Defining graph connectivity

An Undirected Graph

$$
\begin{aligned}
\text { def } \operatorname{conn}(0) & =[1,2,3,4] \\
\text { def } \operatorname{conn}(1) & =[0,5] \\
\text { def } \operatorname{conn}(2) & =[0,4] \\
\text { def } \operatorname{conn}(3) & =[0,5] \\
\text { def } \operatorname{conn}(4) & =[0,2] \\
\text { def } \operatorname{conn}(5) & =[1,3]
\end{aligned}
$$

$$
\begin{gathered}
\text { def } \operatorname{conn}(i)= \\
i>0>[1,2,3,4] \\
\mid i>1>[0,5] \\
\mid i>2>[0,4] \\
\mid i>3>[0,5] \\
\mid i>4>[0,2] \\
\mid i>5>[1,3]
\end{gathered}
$$

Sites

- Sites are first-class values.

A site may be a parameter in site call.
A site may return a site as a value.

$$
M()>(x, y)>x(y) \quad--x, y \text { are sites }
$$

- Sites may have methods.

$$
\text { Channel }()>\text { ch }>\text { ch.put }(3)
$$

- Translation of method call ch.put(3):

$$
\operatorname{ch}\left(" p u t^{\prime \prime}\right)>x>x(3)
$$

Closure: Sites as values

- val minmax $=(\min , \max)$
- def apply $2((f, g),(x, y))=(f(x, y), g(x, y))$
annly2(minmax $(2,1)) \quad$ nublishes $(1,2)$
- $\operatorname{def} \operatorname{pmap}(f,[])=[]$
def $\operatorname{mman}(f, x: x s)-f(x): \operatorname{pmap}(f, x s)$
$\operatorname{pmap}(\operatorname{lambda}(i)=i * i,[2,3,5])$ publishes [4, 9, 25]
- def repeat $(f)=f() \gg \operatorname{repeat}(f)$ def $\operatorname{pr}()=\operatorname{Println}(3)$
repeat(pr)

Closure: Sites as values

- val minmax $=(\min , \max)$
- def apply $2((f, g),(x, y))=(f(x, y), g(x, y))$ apply2(minmax, $(2,1))$ publishes (1, 2)
- $\operatorname{def} \operatorname{pmap}(f,[])=[]$
def $\operatorname{pman}(f, x: x s)=f(x): \operatorname{pmap}(f, x s)$
$\operatorname{pmap}(\operatorname{lambda}(i)=i * i,[2,3,5])$ publishes [4, 9, 25]
- def repeat $(f)=f() \gg \operatorname{repeat}(f)$ def $\operatorname{pr}()=\operatorname{Println}(3)$
repeat(pr)

Closure: Sites as values

- val minmax $=(\min , \max)$
- def apply $2((f, g),(x, y))=(f(x, y), g(x, y))$ apply2(minmax, $(2,1))$ publishes (1,2)
- $\operatorname{def} \operatorname{pmap}(f,[])=[]$
$\operatorname{def} \operatorname{pmap}(f, x: x s)=f(x): \operatorname{pmap}(f, x s)$
$\operatorname{pmap}(\operatorname{lambda}(i)=i * i,[2,3,5]) \quad$ publishes $[4,9,25]$
-

def repeat $(f)=f() \gg$ repeat (f)
def $\operatorname{pr}()=\operatorname{Println}(3)$
repeat(pr)

Closure: Sites as values

- val minmax $=(\min , \max)$
- def $\operatorname{apply} 2((f, g),(x, y))=(f(x, y), g(x, y))$ apply2(minmax, $(2,1))$
publishes (1,2)
- $\operatorname{def} \operatorname{pmap}(f,[])=[]$
$\operatorname{def} \operatorname{pmap}(f, x: x s)=f(x): \operatorname{pmap}(f, x s)$
$\operatorname{pmap}(\operatorname{lambda}(i)=i * i,[2,3,5]) \quad$ publishes $[4,9,25]$
- def repeat $(f)=f() \gg \operatorname{repeat}(f)$ def $\operatorname{pr}()=\operatorname{Println}(3)$
repeat $(p r)$ prints 3 forever.

val, tuple, closure

def $\operatorname{circle}()=$

$$
\begin{aligned}
& \text { val } p i=3.1416 \\
& \text { def } \operatorname{perim}(r)=2 * p i * r \\
& \text { def } \operatorname{area}(r)=p i * r * * 2
\end{aligned}
$$

(perim, area)

Some Factory Sites

$\operatorname{Ref}(n)$	Mutable reference with initial value n
$\operatorname{Cell}()$	Write-once reference
$\operatorname{Array}(n)$	Array of size n of Refs
$\operatorname{Table}(n, f)$	Array of size n of immutable values of f
Semaphore (n)	Semaphore with initial value n
Channel ()	Unbounded (asynchronous) channel

$\operatorname{Ref}(3)>r>r . w r i t e(5) \gg r$.read () , or $\operatorname{Ref}(3)>r>r:=5 \gg r$?
$\operatorname{Cell}()>r>(r . w r i t e(5) \mid r . r e a d())$, or $\operatorname{Cell}()>r>r:=5 \mid r$?
$\operatorname{Array}(3)>a>a(0):=$ true $\gg a(1)$?
Semaphore (1) $>s>$ s.acquire ()$\gg \operatorname{Println}(0) \gg$ s.release ()
Channel ()$>$ ch $>($ ch.get () \mid ch.put $(3) \gg$ stop $)$

Simple Swap

Convention:

$$
\begin{array}{ll}
a ? & \text { is } \operatorname{a.read}() \\
b:=x & \text { is } b \cdot w r i t e(x)
\end{array}
$$

Take two references as arguments, Exchange their values, and return a signal.

$$
\text { def } \operatorname{swap}(i, j)=(i ?, j ?)>(x, y)>(i:=y, j:=x) \gg \text { signal }
$$

Note: a and b could be identical Refs.

Update linked list

Given is a one-way linked list. Its first item is called first. Now add value v as the first item.

$$
\begin{aligned}
& \operatorname{Ref}()>r> \\
& r:=(v, \text { first }) \gg \\
& \text { first }:=r
\end{aligned}
$$

or,

$$
\begin{aligned}
& \operatorname{Ref}((v, \text { first }))>r> \\
& \text { first }:=r
\end{aligned}
$$

Binary Search Tree; using Ref()

def $\operatorname{search}($ key $)=$ return true or false searchstart $($ key $)>\left({ }_{-},{ }_{-}, q\right)>(q \neq$ null $)$
def $\operatorname{insert}($ key $)=$ true if value was inserted, false if it was there searchstart (key) $>(p, d, q)>$ if $q=$ null
then $\operatorname{Ref}()>r>$

$$
r:=(\text { key, null, null }) \cdots
$$

else ...

Array Permutation

- Randomly permute the elements of an array in place.
- randomize (i) permutes the first i elements of arry a and publishes a signal.

$$
\begin{aligned}
& \text { def permute }(a)= \\
& \qquad \begin{aligned}
\text { def randomize }(0)= & \text { signal } \\
\text { def randomize }(i)= & \operatorname{Random}(i)>j> \\
& \operatorname{swap}(a(i-1), a(j)) \gg \\
& \operatorname{randomize}(i-1)
\end{aligned}
\end{aligned}
$$

randomize(a.length())

Return Array of 0-valued Semaphores

```
def \(\operatorname{semArray}(n)=\)
    val \(a=\operatorname{Array}(n)\)
    def populate \((0)=\) signal
    def populate \((i)=a(i-1):=\) Semaphore \((0) \gg \operatorname{populate}(i-1)\)
    populate (n) > \({ }^{2}\)
```

Usage: semArray(5) $>a>a(1)$?.release ()

Library site: Table

- Table (n, f), where $n>0$ and f a site closure. Creates site g, where $g(i)=f(i), 0 \leq i<n$. An array of site values pre-computed and reused.
- All values of g are computed at instantiation.
- Allows creating arrays of structures.
- Site f may be supplied as: $\operatorname{lambda}(i)=h(i)$

Examples:

- val $g=\operatorname{Table}\left(5, \operatorname{lambda}\left(_\right)=\operatorname{Channel}()\right)$
- val $h=\operatorname{Table}(5, \operatorname{lambda}(i)=2 * i)$
- val $s=\operatorname{Table}\left(5, \operatorname{lambda}\left(_\right)=\right.$Semaphore (0))

Definition Mechanism: Class

- Encapsulate data and objects with methods
- Create new sites; Extend behaviors of existing sites
- Allow concurrent method invocation on objects (monitors)
- Create active objects with time-based behavior

Classes can be translated to Orc calculus using a special site.

Object Creation: Stack

- Define stack with methods push and pop.
- Parameter n gives the maximum stack size.
- Store the stack elements in array store, current stack length in len.
- push on a full stack or pop from an empty stack halts with no effect.

Stack definition

```
def class Stack(n)=
    val store = Table(n,lambda(_) = Ref())
        val len = Ref(0)
        def push(x)=
            Ift(len? <: n)>> store(len?) := x> len := len? + 1
    def pop()=
        Ift(len?:> 0) > len := len? - 1 > store(len?)?
    {- class Goal -} stop
----------- Test
val st = Stack(5)
st.push(3)>>st.push(5) > st.pop() > st.pop()
```


Special case: only one class instance

$$
\text { val }(\text { push }, \text { pop })=\operatorname{Stack}(5)>r>(r . p u s h, r . p o p)
$$

------------ Test

$\operatorname{push}(3) \gg \operatorname{push}(5) \gg \operatorname{pop}() \gg \operatorname{pop}()$

Class Syntax

- Class definition
- Like site definition
- May include parameters
- Clausal definitions allowed.
- All definitions within a class are exported. Such definitions are accessed as dot methods.

Class Semantics: Class is a site with methods

- A class call creates and publishes a site.
- All the rules for site definition apply except:
- Publications of class goal expression are ignored,
- Each method (site) publishes at most once,
- Class calls are strict (site calls are non-strict),
- Class method calls are not terminated prematurely by prune (follows the rule for sites).
- Methods may be invoked concurrently, as in sites.

Special attention to concurrent invocation

$$
\begin{aligned}
& \text { st.push }(3) \gg \text { st.pop }() \gg \text { Rwait }(1000) \gg \text { st.pop }() \\
& \mid \text { st.push }(4) \gg \text { stop }
\end{aligned}
$$

- If method executions were atomic there would be some output.
- This program sometimes produces no output. Method executions may overlap and interfere.

Example: Matrix (with upper and lower indices)

def class Matrix $(($ row, row' $),($ col, col' $))=$
val mat $=\operatorname{Array}\left(\left(\right.\right.$ row $^{\prime}-$ row +1$\left.) *\left(\operatorname{col}^{\prime}-\operatorname{col}+1\right)\right)$
def $\operatorname{access}(i, j)=\operatorname{mat}\left((i-\operatorname{row}) *\left(\operatorname{col}^{\prime}-\operatorname{col}+1\right)+j\right)$
stop
val $A=\operatorname{Matrix}((-2,0),(-1,3)) \cdot$ access
$A(-1,2):=5 \gg A(-1,2):=3 \gg A(-1,2) ?$

Example: Matrix (with upper and lower indices)

def class Matrix $\left(\left(\right.\right.$ row, row $\left.{ }^{\prime}\right),\left(\right.$ col, col $\left.\left.^{\prime}\right)\right)=$
val mat $=\operatorname{Array}\left(\left(\right.\right.$ row $^{\prime}-$ row +1$\left.) *\left(\operatorname{col}^{\prime}-\operatorname{col}+1\right)\right)$
def $\operatorname{access}(i, j)=\operatorname{mat}\left((i-\operatorname{row}) *\left(\operatorname{col}^{\prime}-\operatorname{col}+1\right)+j\right)$
stop
------------------- Test
val $A=\operatorname{Matrix}((-2,0),(-1,3))$.access
$A(-1,2):=5 \gg A(-1,2):=3 \gg A(-1,2) ?$

A Matrix of Classes

def class CMatrix $\left(\left(\right.\right.$ row, row $\left.{ }^{\prime}\right),\left(\right.$ col, col $\left.{ }^{\prime}\right)$, cap $)=$

$$
\begin{aligned}
& \text { val mat }=\operatorname{Table}\left(\left(\text { row }^{\prime}-\text { row }+1\right) *\left(\text { col }^{\prime}-\operatorname{col}+1\right), \text { cap }\right) \\
& \text { def } \operatorname{access}(i, j)=\operatorname{mat}\left((i-\text { row }) *\left(\text { col }^{\prime}-\operatorname{col}+1\right)+j\right) \\
& \text { stop }
\end{aligned}
$$

Test; A matrix of Channels

val $A=$ CMatrix $\left((-2,0),(-1,3)\right.$, lambda $\left(_\right)=$Channel ()$)$.access $A(-1,2) \cdot p u t(3) \gg A(-1,2) \cdot \operatorname{get}()$

A Matrix of Classes

def class CMatrix $\left(\left(\right.\right.$ row, row $\left.^{\prime}\right),\left(\right.$ col, col $\left.{ }^{\prime}\right)$, cap $)=$

$$
\begin{aligned}
& \text { val mat }=\operatorname{Table}\left(\left(\text { row }^{\prime}-\text { row }+1\right) *\left(\operatorname{col}^{\prime}-\operatorname{col}+1\right), \operatorname{cap}\right) \\
& \text { def } \operatorname{access}(i, j)=\operatorname{mat}\left((i-\operatorname{row}) *\left(\operatorname{col}^{\prime}-\operatorname{col}+1\right)+j\right)
\end{aligned}
$$

stop
------------------ Test; A matrix of Channels
val $A=\operatorname{CMatrix}\left((-2,0),(-1,3), \operatorname{lambda}\left(_\right)=\right.$Channel ()$)$.access
$A(-1,2) \cdot p u t(3) \gg A(-1,2) \cdot \operatorname{get}()$

Create a new site: Cell using Semaphore and Ref

$$
\text { def } \operatorname{class} \operatorname{Cell}()=
$$

$$
\text { val } s=\text { Semaphore }(1)
$$

$$
\text { val } r=\operatorname{Ref}()
$$

$$
\text { def } \text { write }(v)=\operatorname{s.acquire~}() \gg r:=v
$$

def $\operatorname{read}()=r ? \quad--\quad r$? blocks until r has been written
stop

New Site: Bounded Channel

- Bounded channel of size n may block for put and get.
- Use semaphore $p=$ number of empty positions.
- Use Channel to hold data items.

Bounded Channel; contd.

$$
\begin{aligned}
& \text { def class BChannel }(n)= \\
& \quad \text { val } b=\text { Channel }() \\
& \text { val } p=\operatorname{Semaphore}(n) \\
& \text { def put }(x)=p . \operatorname{acquire}() \gg b \cdot p u t(x) \\
& \text { def } \operatorname{get}()=b . \operatorname{get}()>x>p . r e l e a s e() \gg x \\
& \text { stop }
\end{aligned}
$$

Extend functionality of a site: add length method to Channel

```
def class Channel'() =
    val ch = Channel()
    val chlen = Counter(0)
    def put(x)=ch.put(x)>> chlen.inc()
    def get () = ch.get ( ) >x>chlen.dec () >>x
    def len() = chlen.value()
```

 stop

Extend functionality of a site: add length method to Channel

```
def class Channel'}()
    val ch = Channel()
    val chlen = Counter(0)
    def put (x) = ch.put (x)>> chlen.inc}(
    def get () = ch.get () >x> chlen.dec ()>>
    def len() = chlen.value()
```

 stop
 ------------------- Test
val $c=$ Channel $^{\prime}()$
c.put $(1000) \gg c . p u t(2000) \gg \operatorname{Println}(c . l e n()) \gg$
c.get ()$>\operatorname{Println}($ c.len ()$) \gg$ stop

Memoization

For site f (with no arguments) cache its value after the first call.
res: stores the cached value.
s : semaphore value is 0 if the site value has been cached.

$$
\begin{aligned}
& \text { val res }=\operatorname{Cell}() \\
& \text { val } s=\operatorname{Semaphore}(1) \\
& \text { def memo }()= \\
& \text { val } z=\text { res? } \mid \text { s.acquire }() \gg \text { res }:=f() \gg \text { stop } \\
& \quad z
\end{aligned}
$$

Note: Concurrent calls handled correctly.

Memoization of Fibonacci

$$
\begin{aligned}
& \text { val } N=100 \\
& \text { val done }=\operatorname{Table}(N+1, \operatorname{lambda}(-)=\operatorname{Cell}()) \\
& \text { val res }=\operatorname{Table}\left(N+1, \operatorname{lambda}\left(_\right)=\operatorname{Cell}()\right) \\
& \text { def } m f i b(0)=0 \\
& \text { def } m f i b(1)=1 \\
& \text { def } m f i b(i)= \\
& \quad \operatorname{res}(i) ? \ll \\
& \quad(\text { done }(i):=\operatorname{signal} \gg \operatorname{res}(i):=m f i b(i-1)+m f i b(i-2))
\end{aligned}
$$

Note: Concurrent calls to $m f i b(i)$, for each i.

Memoize an argument site using Class

```
def class Memo \((f)=\)
    val res \(=\operatorname{Celll}()\)
    val \(s=\) Semaphore(1)
    def \(\operatorname{memo}()=\)
        val \(z=\) res? \(\mid\) s.acquire ()\(\gg\) res \(:=f() \gg\) stop
            \(z\)
```

 stop
 - Usage
val prandom $=\operatorname{Memo}(\operatorname{lambda}()=$ Random $(20))$.memo prandom() | prandom() | prandom()

Memoize an argument site using Class

```
def class \(\operatorname{Memo}(f)=\)
    val res \(=\operatorname{Cell}()\)
    val \(s=\) Semaphore(1)
    def \(\operatorname{memo}()=\)
        val \(z=\) res? \(\mid\) s.acquire ()\(\gg\) res \(:=f() \gg\) stop
            \(z\)
```

 stop
 - Usage
val prandom $=\operatorname{Memo}(\operatorname{lambda}()=$ Random $(20))$. memo
prandom() | prandom() | prandom()

Concurrent access: Client-Server interaction

- Asynchronous protocol for client-server interaction.
- At most one client interacts at a time with the server.
- Client requests service and supplies input data.
- Server reads data, computes and writes out the result.
- Client receives result.

Client-Server interaction API

- req (x) :

Performed by the client to send data to the server. Client receives a response when the operation completes.
The operation may remain blocked forever.

- read ():

For the server to remove the data sent by the client.
The operation is blocked if there is no outstanding request.

- write(v):

Server returns v as the response to the client.
Operation is non-blocking.

Client-Server interaction; Program

def class csi ()$=$

$$
\begin{aligned}
& \text { val sem }=\text { Semaphore }(1) \\
& \text { val }(u, v)=(\text { Channel }(), \text { Channel }())
\end{aligned}
$$

-- sem ensures that only one client interacts at a time
-- client data stored in u, server response in v

$$
\begin{aligned}
& \text { def } \operatorname{req}(x)=\text { sem.acquire }() \gg \\
& \text { u.put }(x) \gg v . g e t()>y> \\
& \text { sem.release () >y }
\end{aligned}
$$

def $\operatorname{read}()=u . g e t()$
def $\operatorname{write}(x)=v \cdot p u t(x)$
stop

Examples

- Combinatorial
- Mutable store manipulation
- Synchronization, Communication

Some Algorithms

- Enumeration and Backtracking
- Using Closures
- List Fold, Map-reduce
- Parsing using Recursive Descent
- Exception Handling
- Process Network
- Quicksort
- Graph Algorithms: Depth-first search, Shortest Path

List map

$$
\begin{aligned}
& \operatorname{def} \operatorname{parmap}\left(_,[]\right)=[] \\
& \operatorname{def} \operatorname{parmap}(f, x: x s)=f(x): \operatorname{parmap}(f, x s)
\end{aligned}
$$

List map (Contd.)

$$
\begin{aligned}
& \operatorname{def} \operatorname{seqmap}(-,[])=[] \\
& \operatorname{def} \operatorname{seqmap}(f, x: x s)=f(x)>y>(y: \operatorname{seqmap}(f, x s))
\end{aligned}
$$

Infinite Set Enumeration

Enumerate all finite binary strings.
A binary string is a list of 0,1 .

$$
\begin{aligned}
& \operatorname{def} \quad \operatorname{bin}()= \\
& \quad[] \\
& \quad \operatorname{bin}()>x s>(0: x s \mid 1: x s)
\end{aligned}
$$

Note: Unguarded recursion.

Subset Sum

Given integer n and list of integers $x s$.
$\operatorname{parsum}(n, x s)$ publishes all sublists of $x s$ that sum to n.
parsum(5,[1,2,1,2]) = [1,2,2], [2,1,2]
parsum (5, $[1,2,1])$ is silent

$$
\begin{aligned}
& \text { def } \operatorname{parsum}(0,[])=[] \\
& \text { def } \operatorname{parsum}(n,[])=\text { stop } \\
& \text { def } \operatorname{parsum}(n, x: x s)= \\
& \quad \operatorname{parsum}(n-x, x s)>y s>x: y s \\
& \quad \operatorname{parsum}(n, x s)
\end{aligned}
$$

Subset Sum (Contd.), Backtracking

Given integer n and list of integers $x s$.
$\operatorname{seq} \operatorname{sum}(n, x s)$ publishes the first sublist of $x s$ that sums to n.
"First" is smallest by index lexicographically.
seqsum (5,[1,2,1,2]) = [1,2,2]
seqsum (5, [1,2,1]) is silent

$$
\begin{aligned}
& \text { def } \operatorname{seqsum}(0,[])=[] \\
& \text { def } \operatorname{seqsum}(n,[])=\operatorname{stop} \\
& \text { def } \operatorname{seqsum}(n, x: x s)= \\
& x: \operatorname{seqsum}(n-x, x s) \\
& ; \operatorname{seqsum}(n, x s)
\end{aligned}
$$

Subset Sum (Contd.), Concurrent Backtracking

Publish the first sublist of $x s$ that sums to n.
Run the searches concurrently.

$$
\begin{aligned}
& \text { def } \operatorname{parseqsum}(0,[])=[] \\
& \text { def } \operatorname{parseqsum}(n,[])=\operatorname{stop} \\
& \text { def } \operatorname{parseqsum}(n, x: x s)= \\
& \quad(p ; q) \\
& \quad<p<x: \operatorname{parseqsum}(n-x, x s) \\
& \quad<q<\operatorname{parseqsum}(n, x s)
\end{aligned}
$$

Note: Neither search in the last clause may succeed.

Mutual Recursion: Finite state transducer

Convert an input string:

- Remove all white spaces in the beginning.
- Reduce all other blocks of white spaces (consecutive white spaces) to a single white space.
---Mary---had-a--little--lamb-
becomes (where - denotes a white space)

Mary-had-a-little-lamb-

A finite State Transducer

A deterministic Finite State Machine.
No concurrency.

Figure: n is a symbol other than white space

A Program

Figure: n is a symbol other than white space

$$
\begin{aligned}
& \operatorname{def} \operatorname{first}([])=[] \\
& \operatorname{def} \operatorname{first}(">: x s)=\operatorname{first}(x s) \\
& \operatorname{def} \operatorname{first}(x: x s)=x: \operatorname{next}(x s) \\
& \operatorname{def} \operatorname{next}([])=[] \\
& \operatorname{def} \operatorname{next}(">: x s)=",: \operatorname{first}(x s) \\
& \operatorname{def} \operatorname{next}(x: x s)=x: \operatorname{next}(x s)
\end{aligned}
$$

Non-deterministic search: String Matching

- Given a pattern string p and a text string t, determine if p occurs in t (as a contiguous substring).
- Run two searches simultaneously:

Is p a prefix of t ?
Is p in the string excluding the first symbol of t ?

- Terminate the search if either is a success.

Helper Sites

- parallelOr: to terminate the search asap.
- prefix $(x s, y s)$ returns true if and only if $x s$ is a prefix of $y s$. (strings are given as lists of symbols).

$$
\begin{aligned}
& \text { def parallelOr }(y, z)= \\
& \quad \text { val } r=\operatorname{Ift}(y) \gg \text { true } \mid \operatorname{Ift}(z) \gg \text { true } \mid y \| z \\
& \quad r \\
& \text { def prefix }([], y s)=\text { true } \\
& \text { def prefix }(x s,[])=\text { false } \\
& \text { def prefix }(x: x s, y: y s)=(x=y) \& \& \operatorname{prefix}(x s, y s)
\end{aligned}
$$

String Matching Program

- stringmatch $(x s, y s)$ returns true if and only if $x s$ is a contiguous substring of $y s$. (strings are given as lists of symbols).
def stringmatch $([], y s)=$ true
def $\operatorname{stringmatch}(x s,[])=$ false
def $\operatorname{stringmatch}(x s, y: y s)=$ parallelOr
(stringmatch $(x s, y s)$, prefix $(x s, y: y s)$
)

Using Closure

A UNITY Program

$$
\begin{aligned}
& x, y=0,0 \\
& x<y \rightarrow x:=x+1 \\
& \mid y:=y+1
\end{aligned}
$$

- Program has: variable declarations
a set of functions
- Variables are initialized as given.
- Program is run by: choosing a function arbitrarily, choosing functions fairly.

Corresponding Orc program

$$
\begin{aligned}
& \text { val }(x, y)=(\operatorname{Ref}(0), \operatorname{Ref}(0)) \\
& \text { def } f 1()=\operatorname{Ift}(x ?<: y ?) \gg x:=x ?+1 \\
& \operatorname{def} f 2()=y:=y ?+1
\end{aligned}
$$

Run the program by:

- choosing a function arbitrarily,
- choosing functions fairly.

Scheduling the UNITY Program

$$
\begin{aligned}
& \text { def unity }(f s)= \\
& \quad \text { val arlen }=\text { length }(f s) \\
& \text { val fnarray }=\operatorname{Array}(\text { arlen })
\end{aligned}
$$

\{- populate() transfers from list f s to array fnarray - \}
def populate (_, []) = signal
def populate $(i, g: g s)=$ fnarray $(i):=g \gg$ populate $(i+1, g s)$
\{ - Execute a random statement and loop.
Randomness guarantees fairness. - \}
$\operatorname{def} \operatorname{exec}()=\operatorname{random}(\operatorname{arlen})>j>\operatorname{fnarray}(j) ?()>\operatorname{exec}()$
\{ - Initiate the work - \}
populate $(0, f s)>\operatorname{exec}()$

Running the example program

$$
\begin{aligned}
& \operatorname{val}(x, y)=(\operatorname{Ref}(0), \operatorname{Ref}(0)) \\
& \operatorname{def} f 1()=\operatorname{Ift}(x ?<: y ?) \gg x:=x ?+1 \\
& \operatorname{def} f 2()=y:=y ?+1
\end{aligned}
$$

$$
\text { unity }([f 1, f 2])
$$

Fold on a non-empty list

fold with binary $f:$ fold $\left(+,\left[x_{0}, x_{1}, \cdots\right]\right)=x_{0}+x_{1} \cdots$

$$
\begin{aligned}
& \operatorname{def} \text { fold }(-,[x])=x \\
& \text { def fold }(f, x: x s)=f(x, \text { fold }(x s))
\end{aligned}
$$

Associative fold on a non-empty list

$$
\begin{aligned}
& \text { def } \operatorname{afold}(f,[x])=x \\
& \text { def } \operatorname{afold}(f, x s)= \\
& \quad \text { def pairfold }([])=[] \\
& \quad \text { def pairfold }([x])=[x] \\
& \quad \text { def pairfold }(x: y: x s)=f(x, y): \operatorname{pairfold}(x s) \\
& \operatorname{afold}(f, \operatorname{pairfold}(x s))
\end{aligned}
$$

map and associative fold: map_afold

Associative commutative fold over a channel

A channel has two methods: put and get.
$\operatorname{chFold}(c, n), n>0$, folds the first n items of channel c and publishes.

$$
\begin{aligned}
& \operatorname{def} \operatorname{chFold}(c, 1)=\operatorname{c.get}() \\
& \operatorname{def} \operatorname{chFold}(c, n)=f(\operatorname{chFold}(c, n / 2), \operatorname{chFold}(c, n-n / 2))
\end{aligned}
$$

Does not combine values computed in different halves, even when they are available quickly.

Associative commutative fold over a channel; contd.

$$
\begin{aligned}
& \text { def } \operatorname{comb}(0)=\text { stop } \\
& \text { def } \operatorname{comb}(1)=f(c . g e t(), c \cdot g e t())>x>c \cdot p u t(x) \gg \text { stop } \\
& \text { def } \operatorname{comb}(k)=\operatorname{comb}(1) \mid \operatorname{comb}(k-1) \\
& \operatorname{comb}(n-1)
\end{aligned}
$$

- If $n>k, \operatorname{comb}(k)$ terminates.
- $\operatorname{comb}(k)$ reduces the channel size by k while keeping the fold value the same.
- $\operatorname{comb}(k)$ does not publish.
- So, $\operatorname{comb}(n-1)$ leaves the channel with the fold value and halts.

map-reduce

- Given is a list of tasks.
- A processor from a processor pool is assigned to process a task. Each task may be processed independently, yielding a result.
- If a processor does not respond within time T, a new processor is assigned to the task.
- After all the results have been computed, the results are reduced by calling reduce.

Implementation

- processlist processes a list of tasks concurrently. process (t) processes a single task t. process (t) publishes a result; processlist a list of results.
- Site process first acquires a processor. It assigns the task to the processor. If the processor responds within time T, it publishes the result. Else, it repeats these steps.
- process (t) may never complete if the processors keep failing.
- The list of published results are reduced by site reduce.

map-reduce

def processlist $([])=[]$
def $\operatorname{processlist}(t: t s)=\operatorname{process}(t): \operatorname{processlist}(t s)$
def $\operatorname{process}(t)=$
val processor $=$ Processorpool ()
val $($ result,$b)=(\operatorname{processor}(t)$, true $) \mid($ Rwait (T), false $)$
if b then result else process (t)
processlist(tasks) $>x>\operatorname{reduce}(x)$

Parsing using Recursive Descent

Consider the grammar:

$$
\begin{aligned}
& \text { expr }::=\text { term } \mid \text { term }+ \text { expr } \\
& \text { term }::=\text { factor } \mid \text { factor } * \text { term } \\
& \text { factor }::=\text { literal } \mid \text { expr }) \\
& \text { literal }::=3 \mid 5
\end{aligned}
$$

Parsing strategy

For each non-terminal, say expr, define expr $(x s)$: If $x s=x+y$ where x is an expr, publish y. def $\operatorname{isexpr}(x s)=\operatorname{expr}(x s)>[]>$ true ; false - whole $x s$ is expr To avoid multiple publications (in ambiguous grammars), def $\operatorname{isexpr}(x s)=$ val res $=\operatorname{expr}\left(x_{s}\right)>[]>$ true ; false isexpr - ((3*3))+(3+3)

[^0]
Parsing strategy

For each non-terminal, say expr, define expr $(x s)$: If $x s=x+y$ where x is an expr, publish y.

$$
\text { def } \operatorname{isexpr}(x s)=\operatorname{expr}(x s)>[]>\text { true } ; \text { false - whole } x s \text { is expr }
$$

To avoid multiple publications (in ambiguous grammars),

$$
\begin{aligned}
& \text { def } i \operatorname{sexpr}(x s)= \\
& \quad \text { val } \operatorname{res}=\operatorname{expr}(x s)>[]>\text { true } ; \text { false }
\end{aligned}
$$

res

Parsing strategy

For each non-terminal, say expr, define expr $(x s)$:
If $x s=x+y$ where x is an expr, publish y.

$$
\text { def } \operatorname{isexpr}(x s)=\operatorname{expr}(x s)>[]>\text { true ; false - whole } x s \text { is expr }
$$

To avoid multiple publications (in ambiguous grammars),

$$
\begin{aligned}
& \text { def } \operatorname{isexpr}(x s)= \\
& \quad \text { val res }=\operatorname{expr}(x s)>[]>\text { true } ; \text { false }
\end{aligned}
$$

res
isexpr
(["(","(","3","*","3",")",")","+","(","3","+","3",")"])

- $((3 * 3))+(3+3)$
:: true

Site for each non-terminal

Given: expr $::=$ term \mid term + expr
Rewrite: expr $::=\operatorname{term}(\epsilon \mid+$ expr $)$

def $\operatorname{expr}(x s)=$	$\operatorname{term}(x s)>y s>(y s \mid y s>"+": z s>\operatorname{expr}(z s))$
def $\operatorname{term}(x s)=$	$\operatorname{factor}(x s)>y s>(y s \mid y s>" * ": z s>\operatorname{term}(z s))$
def $\operatorname{factor}(x s)=$	$\quad \operatorname{literal}(x s)$
	$\mid x s>"(": y s>\operatorname{expr}(y s)>") ": z s>z s$
def literal $(n: x s)=$	$n>" 3 ">x s \mid n>" 5 ">x s$
def literal $([])=$	stop

Quicksort

- In situ permutation of an array.
- Array segments are simultaneously sorted.
- Partition of an array segment proceed from left and right simultaneously.
- Combine Concurrency, Recursion, and Mutable Data Structures.

Traditional approaches

- Pure functional programs do not admit in-situ permutation.
- Imperative programs do not highlight concurrency.
- Typical concurrency constructs do not combine well with recursion.

Program Structure

- array a to be sorted.
- A segment is given by a pair of indices (u, v). Elements in the segment are: $a(u) . . a(v-1)$. Segment length is $v-u$ if $v \geq u$.
- segmentsort (u, v) sorts a segment in place and publishes a signal.
- To sort the whole array: segmentsort(0, a.length?)

Program Structure; Contd.

- $\operatorname{part}(p, s, t)$ partitions segment (s, t) with element p. Publishes m where:
left subsegment: $\quad a(i) \leq p$ for all $i, s \leq i \leq m$, and right subsegment: $\quad a(i)>p$, for all $i, m<i<t$.
- Assume $a(s)$? $\leq p$, so the left subsegment is non-empty.

```
def }\operatorname{swap}(i,j)=(i?,j?)>(x,y)>(i:=y,j:=x)>>\mathrm{ signal
def quicksort(a)=
    def segmentsort(u,v)=
    if v-u>1 then
        part(a(u)?,u,v)>m>
        swap(a(u),a(m)) >
        (segmentsort (u,m), segmentsort (m+1,v))>> signal
    else signal
segmentsort(0, a.length?)
```


Partition segment (s, t) with element p, given $a(s) \leq p$

- $\operatorname{lr}(i)$ publishes the index of the leftmost item in the segment that exceeds p; publishes t if no such item.
- $r l(i)$ publishes the index of the rightmost item that is less than or equal to p. Since $a(s) \leq p$, item exists.

$$
\begin{aligned}
& \operatorname{def} \operatorname{lr}(i)=\operatorname{Ift}(i<: t) \gg \operatorname{Ift}(a(i) ? \leq p) \gg \operatorname{lr}(i+1) ; i \\
& \operatorname{def} r l(i)=\operatorname{Ift}(a(i) ?:>p) \gg r l(i-1) ; i
\end{aligned}
$$

Goal Expression of $\operatorname{part}(p, s, t)$:

$$
\begin{aligned}
& (\operatorname{lr}(s+1), r l(t-1))>\left(s^{\prime}, t^{\prime}\right)> \\
& \left(\text { if }\left(s^{\prime}<t^{\prime}\right) \text { then } \operatorname{swap}\left(a\left(s^{\prime}\right), a\left(t^{\prime}\right)\right) \gg \operatorname{part}\left(p, s^{\prime}, t^{\prime}\right)\right. \\
& \text { else } \left.t^{\prime}\right)
\end{aligned}
$$

Putting the Pieces together: Quicksort

$$
\text { def } \operatorname{swap}(i, j)=(i ?, j ?)>(x, y)>(i:=y, j:=x) \gg \text { signal }
$$

def quicksort $(a)=$

$$
\begin{aligned}
& \text { def } \operatorname{segmentsort}(u, v)= \\
& \operatorname{def} \operatorname{part}(p, s, t)= \\
& \quad \operatorname{def} \operatorname{lr}(i)=\operatorname{Ift}(i<t) \gg \operatorname{Ift}(a(i) ? \leq p) \gg \operatorname{lr}(i+1) ; i \\
& \operatorname{def} \operatorname{rl}(i)=\operatorname{Ift}(a(i) ?:>p) \gg r l(i-1) ; i \\
& \quad(\operatorname{lr}(s+1), r l(t-1))>\left(s^{\prime}, t^{\prime}\right)> \\
& \quad\left(i f\left(s^{\prime}<t^{\prime}\right) \text { then } \operatorname{swap}\left(a\left(s^{\prime}\right), a\left(t^{\prime}\right)\right) \gg \operatorname{part}\left(p, s^{\prime}, t^{\prime}\right)\right. \\
& \left.\quad \text { else } t^{\prime}\right)
\end{aligned}
$$

```
if \(v-u>1\) then
    \(\operatorname{part}(a(u) ?, u, v)>m>\)
    \(\operatorname{swap}(a(u), a(m)) \gg\)
    \((\) segmentsort \((u, m)\), segmentsort \((m+1, v)) \gg\) signal
    else signal
segmentsort(0, a.length?)
```


Remarks and Proof outline

- Concurrency without locks
- segmentsort (m, n) sorts the segment; does not touch items outside the segment.
- Then, segmentsort $(s, m-1)$ and $\operatorname{segmentsort}(m+1, t)$ are non-interfering.
- $\operatorname{part}(p, s, t)$ does not modify any value outside this segment. May read values.

Depth-first search of undirected graph Recursion over Mutable Structure

$N: \quad$ Number of nodes in the graph.
conn: $\quad \operatorname{conn}(i)$ the list of neighbors of i
parent: Mutable array of length N parent $(i)=v, v \geq 0$, means v is the parent node of i parent $(i)<0$ means parent of i is yet to be determined

Once i has a parent, it continues to have that parent.
$d f s(i, x s)$: starts a depth-first search from all nodes in $x s$ in order, i has a parent (or $i=N$),
$x s \subseteq \operatorname{conn}(i)$,
All nodes in $\operatorname{conn}(i)-x s$ have parents already.

Depth-first search

$$
\begin{aligned}
& \text { val } N=6 \quad--\mathrm{N} \text { is the number of nodes in the graph } \\
& \text { val parent }=\operatorname{Table}(N, \operatorname{lambda}(-)=\operatorname{Ref}(-1)) \\
& \text { def } d f s(-,[])=\text { signal } \\
& \text { def } d f s(i, x: x s)= \\
& \text { if }(\text { parent }(x) ? \geq 0) \text { then } d f s(i, x s) \\
& \text { else parent }(x):=i \gg d f s(x, \operatorname{conn}(x)) \gg d f s(i, x s) \\
& d f s(N,[0]) \quad \quad-- \text { depth-first search from node } 0
\end{aligned}
$$

Sequential Breadth-First Traversal of a Graph

N nodes in a graph,
root a specified node,
$\operatorname{succ}(x)$ is the list of successors of x,
Publish the parent of each node in Breadth-First Traversal.

$$
\begin{aligned}
& \text { def } \operatorname{bfs}(N, \text { root, succ })= \\
& \quad \text { val parent }=\operatorname{Table}\left(N, \operatorname{lambda}\left(_\right)=\operatorname{Cell}()\right) \\
& -b f s^{\prime} \text { is } b f s \text { on a list of nodes } \\
& \quad \operatorname{def} b f s^{\prime}([])=\text { signal } \\
& \quad \operatorname{def} b f s^{\prime}(x: x s)=b f s^{\prime}(\operatorname{append}(x s, \operatorname{expand}(x))) \\
& \text { parent }(\text { root }):=N \gg b f s^{\prime}([\text { root }]) \gg \text { parent }
\end{aligned}
$$

Site expand

```
def expand \((x)=\)
    - expand \({ }^{\prime}(x, y s), y s\) successors of \(x\) yet to be scanned
    def \(\operatorname{expand}^{\prime}\left(\_,[]\right)=[]\)
    def \(\operatorname{expand}^{\prime}(x, z: z s)=\)
    \(\left(\operatorname{parent}(z):=x>z: \operatorname{expand}^{\prime}(x, z s)\right) ; \operatorname{expand}^{\prime}(x, z s)\)
\(\operatorname{expand}^{\prime}(x, \operatorname{succ}(x))\)
```


Sequential Breadth-First Traversal: Complete Program

$$
\begin{aligned}
& \operatorname{def} \operatorname{bfs}(N, \text { root, succ })= \\
& \text { val parent }=\operatorname{Table}\left(N, \operatorname{lambda}\left(_\right)=\operatorname{Cell}()\right) \\
& \text { def } \operatorname{expand}(x)= \\
& \text { def } \operatorname{expand}^{\prime}(-,[])=[] \\
& \text { def } \text { expand }^{\prime}(x, z: z s)= \\
& \left(\text { parent }(z):=x \gg z: \operatorname{expand}^{\prime}(x, z s)\right) ; \operatorname{expand}^{\prime}(x, z s) \\
& \operatorname{expand}^{\prime}(x, \operatorname{succ}(x)) \quad-\text { Goal of expand } \\
& \text { def } b s^{\prime}([])=\text { signal } \\
& \text { def } b s^{\prime}(x: x s)=b f s^{\prime}(\operatorname{append}(x s, \operatorname{expand}(x))) \\
& \text { parent }(\text { root }):=N \gg b f s^{\prime}([\text { root }]) \gg \text { parent }
\end{aligned}
$$

Concurrent Breadth-First Traversal

```
def bfs(N,root,succ)=
    val parent = Table(N,lambda(_) = Cell())
    def expand (x)=
        if \operatorname{succ}(x)=[] then []
        else map_afold
        (
            lambda(y)=parent (y):=x> [y]; [],
                append,
                succ(x)
            )
    def bfs'([]) = signal
    def bfs'(xs) = bfs'(map_afold(expand,append,xs))
parent(root):=N>bf\mp@subsup{s}{}{\prime}([root])>>\mathrm{ parent}
```


Exception Handling

Client calls site server to request service. The server "may" request authentication information.

```
def \(\operatorname{request}(x)=\)
val exc \(=\) Channel ()\(--\) returns a channel site
server \((x\), exc \()\)
\(\mid \operatorname{exc} . \operatorname{get}()>r>\operatorname{exc} . p u t(\operatorname{auth}(r))>\) stop
```


Synchronization, Communication

Semaphore (n)
BoundedChannel(n) Counter()

Semaphore with initial value n bounded (asynchronous) channel of size n Methods inc (), dec() and onZero()

Semaphore(1) $>s>$ s.acquire () $>r:=5 \gg$ s.release()
BoundedChannel(1) $>$ ch $>($ ch.put(5) \mid ch.put(3))
Counter ()$>$ ctr $>($ ctr.inc ()\gg ctr.onZero () $\mid R w a i t(10) \gg \operatorname{ctr} . \operatorname{dec}())$

Pure Rendezvous

$$
\begin{aligned}
& \text { def class pairSync }()= \\
& \quad \text { val } s=\operatorname{Semaphore}(0) \\
& \quad \text { val } t=\operatorname{Semaphore}(0) \\
& \text { def put }()=\text { s.acquire }() \gg \text { t.release }() \\
& \text { def get }()=\text { s.release }() \gg \text { t.acquire }()
\end{aligned}
$$

stop

Rendezvous

def class zeroChannel ()$=$
val $s=$ Semaphore(0)
val $w=$ BoundedChannel (1)

$$
\begin{aligned}
& \operatorname{def} \operatorname{put}(x)=\text { s.acquire }() \gg w \cdot p u t(x) \\
& \operatorname{def} \operatorname{get}()=\text { s.release }() \gg w \cdot \operatorname{get}()
\end{aligned}
$$

stop

n-party Rendezvous

- n parties participate in a rendezvous.
- Each party (optionally) contributes some data.
- After all parties have contributed:
a given function is applied to transform input list to output list, then i receives the $i^{\text {th }}$ item of output list, and proceeds.
- Access Protocol:
i calls $g o(i, x)$ with i and data x.
Receives its result as the response of the call.

Examples of Data Transformations

- $n=2$: first input data item becomes the second output item. The classical sender-receiver paradigm.
- $n=2$: input data items are swapped. Data exchange; can simulate the classical sender-receiver.
- Arbitrary n : every output item is the first input data item. Broadcast paradigm.
- Arbitrary n : secret sharing.
- Arbitrary $n: i^{\text {th }}$ output is the rank of the $i^{t h}$ input.

Implementation Strategy

- Tables in and out hold the inputs and outputs. Each table entry is BoundedChannel(1).
- $g o(i, x)$ stores x in $i n(i)$ if it is empty. Then waits to receive result from out (i).
- manager receives all n inputs, applies the given function and stores the results in out.

n-party Rendezvous Program

def class Rendezvous $(n, f)=$
val in $=$ Table $($ n,lambda (_) $=$ BoundedChannel $(1))$
val out $=$ Table(n,lambda $\left(_\right)=$BoundedChannel $\left.(1)\right)$
def $\operatorname{go}(i, x)=\operatorname{in}(i) \cdot \operatorname{put}(x) \gg \operatorname{out}(i) \cdot \operatorname{get}()$
def collect $(0)=[]$
def $\operatorname{collect}(i)=\operatorname{in}(n-i) \cdot \operatorname{get}(): \operatorname{collect}(i-1)$
def distribute $\left(_, 0\right)=$ signal
def distribute $(v: v l, i)=\operatorname{out}(n-i) \cdot p u t(v) \gg \operatorname{distribute}(v l, i-1)$
def manager ()$=$
$\operatorname{collect}([], n)>v l>\operatorname{distribute}(f(v l), n) \gg$ manager ()
manager ()

Test

$$
\begin{aligned}
& \text { def rotate }([a, b, c])=[b, c, a] \\
& \text { val rg3 }=\text { Rendezvous(3, rotate).go } \\
& \operatorname{rg3}(0,0) \quad>x>(\text { " } 0 \text { gets " }+x \text {) } \\
& \mid \operatorname{rg3}(1,1) \quad>x>(\text { " } 1 \text { gets " }+x) \\
& \mid \operatorname{rg3}(2,4) \quad>x>(\text { " } 2 \text { gets " }+x) \\
& \mid r g 3(2,2) \quad>x>\left({ }^{2} 2 \text { gets } "+x\right)
\end{aligned}
$$

Test

$$
\operatorname{rg} 3(0,0) \quad>x>(" 0 \text { gets } "+x)
$$

> ---------- Output
> "0 gets 1"
> "1 gets 4"
> " 2 gets 0"

Phase Synchronization

- A set of threads execute a sequence of phases.
- Required: a thread may start a phase only if all threads have finished the previous phase.
- A thread calls nextphase () after each phase, and waits to receive a signal to execute its next phase.

Typical Usage:

def class phaseSync $(n)=\ldots$
val barrier $=$ phaseSync(3).nextphase

Phase Synchronization

- A set of threads execute a sequence of phases.
- Required: a thread may start a phase only if all threads have finished the previous phase.
- A thread calls nextphase () after each phase, and waits to receive a signal to execute its next phase.

Typical Usage:

def class phaseSync $(n)=\ldots$
val barrier $=$ phaseSync(3).nextphase
----------- Test

| $\operatorname{Println}(0.1)$ | $>\operatorname{barrier}()$ |
| ---: | :--- |$>\operatorname{Println}(0.2)>\operatorname{barrier}() \gg \operatorname{Println}(0.3)$

Implementation Strategy

- Employ two semaphores: insem, outsem, initial values 0 .
- Each call to nextphase () increments insem and attempts to acquire outsem.
- A manager attempts to acquire insem n times, then releases outsem n times, then repeats these steps.

Program: Phase Synchronization

```
def class phaseSync(n)=
    val (insem,outsem)}=(\mathrm{ Semaphore (0),Semaphore(0))
```

 def nextphase ()\(=\) insem.release ()\(\gg\) outsem.acquire ()
 def repeat \(\left({ }_{-}, 0\right)=\) signal
 def \(\operatorname{repeat}(f, i)=f() \gg \operatorname{repeat}(i-1, f)\)
 def manager ()\(=\)
 repeat(insem.acquire, \(n\)) >>
 repeat(outsem.release, \(n\)) >
 manager()
 manager ()

Readers-Writers

- Readers and Writers need access to a shared file.
- Any number of readers may read the file simultaneously.
- A writer needs exclusive access, from readers and writers.

Readers-Writers API

- Readers call startread, Writers startwrite to gain access.
- The system (class) returns a signal to grant access.
- Both readers and writers call end () on completion of access.
- start \cdots is blocking, end () non-blocking.

Implementation Strategy

- Each call to start \cdots is queued with the id of the caller.
- A manager loops forever, maintaining the invariant:

There is no active writer (no writer has been granted access).
Number of active readers $=c t r . v a l u e$, where $c t r$ is a counter.

- On each iteration, manager picks the next queue entry. If a reader: grant access and increment ctr. If a writer:
wait until all readers complete (ctr's value $=0$), grant access to writer, wait until the writer completes.

Implementation Strategy; Callback

- The id assigned to a caller is a new semaphore.
- A request is $(b, s): b$ boolean, s semaphore. $b=$ true for reader, $b=$ false for writer, each caller waits on s.acquire()
- The manager grants a request by executing s.release()

Reader-Writer; Call API

```
val req = Channel()
val na = Counter()
def startread() =
    val s=Semaphore(0)
    req.put((true,s))>> s.acquire()
def startwrite() =
    val s=Semaphore(0)
    req.put((false,s)) >> s.acquire()
def end() = na.dec()
```


Reader-Writer; Main Loop

$$
\begin{aligned}
& \text { def manager }()=\operatorname{grant}(\operatorname{req} . \operatorname{get}()) \gg \text { manager }() \\
& \text { def } \operatorname{grant}((\operatorname{true}, s))=\operatorname{na.inc}() \gg \operatorname{s.release}()-\text { Reader } \\
& \text { def } \operatorname{grant}((f a l s e, s))=- \text { Writer } \\
& \quad \text { na.onZero }() \gg \text { na.inc }() \gg \text { s.release }() \gg \text { na.onZero }()
\end{aligned}
$$

Note on Callback

- Let request queue entry be (b, f), where f is a site.
- Manager executes $f()$ for callback.
- For Readers-Writers, f is s.release()

Callback using one semaphore each for Readers and Writers

def class readerWriter 2()$=$

$$
\text { val req }=\text { Channel }()
$$

$$
\text { val na }=\text { Counter }()
$$

$$
\text { val }(r, w)=(\text { Semaphore }(0), \text { Semaphore }(0))
$$

$$
\text { def } \operatorname{startread}()=\text { req.put }(\text { true }) \gg \text { r.acquire }()
$$

$$
\text { def } \operatorname{startwrite~}()=\text { req.put }(\text { false }) \gg \text { w.acquire }()
$$

$$
\text { def endwrite }()=\text { na.dec }()
$$

$$
\text { def } \operatorname{grant}(\operatorname{true})=\text { na.inc }() \gg \text { r.release }()-\text { Reader }
$$

$$
\text { def } \operatorname{grant}(f a l s e)=- \text { Writer }
$$

$$
\text { na.onZero }() \gg \text { na.inc }() \gg \text { w.release }() \gg \text { na.onZero }()
$$

$$
\text { def manager }()=\operatorname{grant}(\operatorname{req} \cdot \operatorname{get}()) \gg \text { manager }()
$$

manager ()

Reader-Writer; dispense with the queue

- The queue currently holds a sequence of booleans, true for each reader, false for each writer.
- New solution: Dispense with the queue; only keep counts.
- Introduce a class that has put, get methods. It internally maintains Ref variables, $n r$ and $n w$. $n r$ is the number of readers, $n w$ writers.
- Simulate fairness, as in a semaphore.

If $n r ?>0, n r$? is eventually decremented.
If $n w ?>0, n w$? is eventually decremented.
Use coin toss to simulate fairness.

Process Networks

- A process network consists of: processes and channels.
- The processes run autonomously, and communicate via the channels.
- A network is a process; thus hierarchical structure. A network may be defined recursively.
- A channel may have intricate communication protocol.
- Network structure may be dynamic, by adding/deleting processes/channels during its execution.

Channels

- For channel c, treat c.put and c.get as site calls.
- In our examples, c.get is blocking and c.put is non-blocking.
- We consider only FIFO channels. Other kinds of channels can be programmed as sites. We show rendezvous-based communication later.

Typical Iterative Process

Forever: Read x from channel c, compute with x, output result on e :

$$
\operatorname{def} p(c, e)=c . g e t()>x>\operatorname{Compute}(x)>y>e . p u t(y) \gg p(c, e)
$$

Figure: Iterative Process

Composing Processes into a Network

Process (network) to read from both c and d and write on e :

$$
\operatorname{def} \operatorname{net}(c, d, e)=p(c, e) \mid p(d, e)
$$

Figure: Network of Iterative Processes

Workload Balancing

Read from c, assign work randomly to one of the processes.

$$
\begin{aligned}
\operatorname{def} \operatorname{bal}\left(c, c^{\prime}, d^{\prime}\right)= & \text { c.get }()>x>\operatorname{random}(2)>t> \\
& \left(\text { if } t=0 \text { then } c^{\prime} . \text { put }(x) \text { else } d^{\prime} . p u t(x)\right) \gg \\
& \operatorname{bal}\left(c, c^{\prime}, d^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { def } \operatorname{workbal}(c, e)= & \text { val } c^{\prime}=\operatorname{Channel}() \\
& \operatorname{val} d^{\prime}=\operatorname{Channel}() \\
& \operatorname{bal}\left(c, c^{\prime}, d^{\prime}\right) \mid \operatorname{net}\left(c^{\prime}, d^{\prime}, e\right)
\end{aligned}
$$

workBal(c,e)

Deterministic Load Balancing

- Retain input order in the output.
- distr alternatively copies input to c^{\prime} and $c^{\prime \prime}$. coll alternatively copies from d^{\prime} and $d^{\prime \prime}$ to output.

Deterministic Load Balancing

def $\operatorname{detbal}($ in, out $)=$
def distributor $\left(c, c^{\prime}, c^{\prime \prime}\right)=$
$c . g e t()>x>c^{\prime} . \operatorname{put}(x) \gg$
$c . \operatorname{get}()>y>c^{\prime \prime} . \operatorname{put}(y) \gg$
distributor $\left(c, c^{\prime}, c^{\prime \prime}\right)$
def collector $\left(d^{\prime}, d^{\prime \prime}, d\right)=$
$d^{\prime} . \operatorname{get}()>x>d \cdot p u t(x) \gg$ $d^{\prime \prime} . \operatorname{get}()>y>d . p u t(y) \gg$
collector $\left(d^{\prime}, d^{\prime \prime}, d\right)$

```
val (in',in')}=(\mathrm{ Channel (),Channel())
val (out',out')}=(\mathrm{ Channel (),Channel())
```

```
    distributor(in, in',}\mp@subsup{\mathrm{ in }}{}{\prime\prime})| collector(out',out'',out
```


Deterministic Load Balancing with 2^{n} servers

Construct the network recursively.

$\operatorname{recBal}(0, \mathrm{c}, \mathrm{d})$

$\operatorname{recBal}(\mathrm{n}, \mathrm{c}, \mathrm{d})$

Recursive Load Balancing Network

def $\operatorname{recbal}(0$, in, out $)=P($ in, out $)$
def $\operatorname{recbal}(n$, in, out $)=$
def distributor $\left(c, c^{\prime}, c^{\prime \prime}\right)=\cdots$
def $\operatorname{collector~}\left(d^{\prime}, d^{\prime \prime}, d\right)=\cdots$
val $\left(\right.$ in $\left.^{\prime}, i{ }^{\prime \prime}\right)=($ Channel (), Channel ()$)$
val $\left(\right.$ out $^{\prime}$, out $\left.^{\prime \prime}\right)=($ Channel (), Channel ()$)$

```
        distributor(in, in',}\mp@subsup{\mathrm{ in }}{}{\prime\prime})| collector(out',out'',out
|recbal(n-1,in',out')| recbal(n - 1, in'",out '')
```


An Iterative Process: Transducer

Compute $f(x)$ for each x in channel in and output to out, in order.

$$
\begin{aligned}
& \text { def } \operatorname{transducer}(\text { in, out }, f)= \\
& \quad \operatorname{in.get}()>x>\text { out.put }(f(x)) \gg \operatorname{transducer}(\text { in }, \text { out }, f n)
\end{aligned}
$$

Pipeline network

Apply function f to each input: $f(x)=h(g(x))$, for some g and h.

$$
\begin{aligned}
& \text { def pipe }(\text { in }, \text { out, } g, h)= \\
& \quad \text { val } c=\operatorname{Channel}() \\
& \text { transducer }(\text { in, } c, g) \mid \text { transducer }(c, \text { out }, h)
\end{aligned}
$$

Recursive Pipeline network

Consider computing factorial of each input.

$$
\operatorname{fac}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=0 \\
x \times \operatorname{fac}(x-1) & \text { if } & x>0
\end{array}\right.
$$

Suppose $x \leq N$, for some given N.

Fac_(N)

Outline of a program

$$
\begin{aligned}
& \text { def } \operatorname{fac}(N, \text { in }, \text { out })= \\
& \text { val }\left(\text { in }^{\prime}, \text { out } \prime^{\prime}\right)=(\text { Channel }(), \text { Channel }()) \\
& \text { front }\left(\text { in }, \text { out }, \text { in }^{\prime}, \text { out }{ }^{\prime}\right) \mid \operatorname{fac}\left(N-1, \text { in }^{\prime},\right. \text { out }
\end{aligned}
$$

Fac_(N)

Implementation of Fac_{0}

- receive input $x, x=0$
- output 1
- loop.

$$
\begin{aligned}
& \operatorname{def} \operatorname{fac}(0, \text { in }, \text { out })= \\
& \quad \text { in.get }() \gg \text { out.put }(1) \gg \operatorname{fac}(0, \text { in }, \text { out })
\end{aligned}
$$

Implementation of front

front has two subprocesses, read and write, doing forever:

- read receives input x from in.
- If $x=0$, output x on b.
- If $x>0$, output x on b, send $x-1$ on $i n^{\prime}$.
- write receives input x from b :
- If $x=0$, output 1 .
- If $x>0$, receive y from out ${ }^{\prime}$, send $x \times y$ on out

Code of front


```
def front() =
    val b=Channel()
    def read() = in.get () >x>b.put (x)>
        if x:>0 then in'.put (x-1) else signal >read()
    def write() = b.get() >x>
    if }x=0\mathrm{ then out.put(1)
    else (out'.get() >y>out.put (x*y)) >>write()
read()| write()
```


Program for $f a c$

$$
\begin{aligned}
& \text { def } \operatorname{fac}(0, \text { in }, \text { out })= \\
& \quad \text { in.get }() \gg \text { out.put }(1) \gg \operatorname{fac}(0, \text { in }, \text { out }) \\
& \text { def } \operatorname{fac}(N, \text { in }, \text { out })= \\
& \operatorname{val}\left(\text { in }^{\prime}, \text { out } t^{\prime}\right)=(\text { Channel }(), \text { Channel }()) \\
& \operatorname{def} \operatorname{front}()=\cdots \\
& \operatorname{front}() \mid \operatorname{fac}\left(N-1, \text { in }^{\prime}, \text { out }^{\prime}\right)
\end{aligned}
$$

Combining Server Farm and Pipeline

Fan (NI)

Exercise: Combining Server Farm and Pipeline

- A dataset is a list of positive numbers. The datasets are available on input channel in. Each list length is no more than N, for some given N.
- Required: compute mean and variance of each dataset. Output the results (as pairs) in order on channel out.
- First, divide the processing among about \sqrt{N} servers.
- Next, structure each server as a recursive pipeline.

Recursive Equations for Mean and Variance

- Use the equations:

$$
\begin{aligned}
& \operatorname{sum}([])=0, \\
& \operatorname{sum}(x: x s)=x+\operatorname{sum}(x s) \\
& \operatorname{length}([])=0, \\
& \operatorname{length}(x: x s)=1+\operatorname{length}(x s) \\
& \text { mean }(x s)=\operatorname{sum}(x s) / \text { length }(x s) \\
& \operatorname{var}([])=0, \\
& \operatorname{var}(x s)=\text { mean }(\text { map }(\text { square }, x s))-\text { mean }(x s) * * 2
\end{aligned}
$$

- Hint: For each list, compute the sum, sum of squares, and length by a recursive pipeline.
Apply a function to compute mean and variance from these data.

Packet Reassembly Using Sequence Numbers

Figure: Packet Reassembler

- Packet with sequence number i is at position p_{i} in the input channel.
- Given: $\left|i-p_{i}\right| \leq k$, for some positive integer k.
- Then $p_{i} \leq i+k \leq p_{i+2 \times k}$. Let $d=2 \times k$.

Packet Reassembly Program

$$
\begin{aligned}
& \text { def reassembly }(\text { read, write, } d)=-\mathrm{d} \text { must be positive } \\
& \qquad \operatorname{val} \operatorname{ch}=\operatorname{Table}\left(d, \operatorname{lambda}\left(_\right)=\operatorname{Channel}()\right) \\
& \qquad \operatorname{def} \operatorname{input}()=\operatorname{read}()>(n, v)>\operatorname{ch}(n \% d) \cdot \operatorname{put}(v) \gg \operatorname{input}() \\
& \operatorname{def} \operatorname{output}(i)=\operatorname{ch}(i) . \operatorname{get}()>v>\operatorname{write}(v) \gg \text { output }((i+1) \% d) \\
& \operatorname{input}() \mid \operatorname{output}(0) \quad-\text { Goal expression }
\end{aligned}
$$

An Example Program: Broadcast

- Digital radio station has a list of subscribed listeners
- Broadcasts a message on dedicated channels to each one
- New listeners can be added

```
def class Broadcast \((\) source \()=\)
    val listeners \(=\operatorname{Ref}([])\)
def addListener \((\) ch \()=\)
    listeners? \(>f s>\) listeners \(:=c h: f s\)
```

\{- The ongoing computation of a broadcast - $\}$
rep $($ source $)>$ item $>$ each $($ listeners? $) ~>\operatorname{sink}>\operatorname{sink} . p u t($ item $)$

Real-time Programming

- Rwait (t) publishes a signal after exactly t time units.
- Rtime() publishes elapsed time since program start.

Instantiations of Multiple Clocks

- Factory site: $\operatorname{Rclock}()$ publishes a clock clk with a initial time value 0 .
- Two methods on clk: wait and time.
- clk.wait (t) : publishes a signal after exactly t units.
- clk.time (): publishes the elapsed time since clk creation.
- Rclock() implemented as a class using Rwait() and Rtime().

A time-based class; Stopwatch

- A stopwatch allows the following operations:
start(): (re)starts and publishes a signal pause(): pauses and publishes current value
- Other operations: reset () and isrunning().

Implementation Strategy

- Each instance of the stopwatch creates a new clock.
- Maintains two Ref variables:
laststart: clock value when the last $\operatorname{start()}$ was executed, timeshown: stopwatch value when the last pause() was executed.
- Initially, both variable values are 0 .

Stopwatch Program

def class Stopwatch ()$=$
val clk $=$ Rclock ()
val $($ timeshown, laststart $)=(\operatorname{Ref}(0), \operatorname{Ref}(0))$
def $\operatorname{start}()=$ laststart $:=$ clk.time ()
def pause ()$=$
timeshown $:=$ timeshown $?+($ clk.time () laststart? $) \gg$ timeshown?
\{- The ongoing computation of stopwatch - $\}$ stop

Stopwatch: Illegal starts and halts

- $\operatorname{start}()$ on a running watch has no effect. Publishes signal.
- pause() on a stopped watch has no effect. Publishes last value.
- isrunning () publishes true if and only if the stopwatch is running.
- Use a Ref variable to record if the stopwatch is running.

Stopwatch: Illegal starts and halts

```
def class Stopwatch() =
    val clk = Clock()
    val (timeshown,laststart)}=(\operatorname{Ref}(0),\operatorname{Ref}(0)
    val running = Ref(false)
    def start() = if running? then signal
        else (running := true > laststart := clk())
    def pause()=
    if running? then
        (timeshown? + (clk () - laststart?) >v>
        timeshown :=v> running := false >v)
    else timeshown?
```

def isrunning ()$=$ running?
stop

Application: Measure running time of a site

```
def class profile(f)=
    val sw = Stopwatch()
    def runningtime() = sw.start ()>>f()>>sw.pause()
    stop
-- Usage
def burntime() = Rwait(100)
profile(burntime).runningtime()
```


Response Time Game

- Show a random digit, v, for 3 secs.
- Then print an unending sequence of random digits.
- The user presses a key when he thinks he sees v.
- Output (true, response time), or (false,_) if v has not appeared. Then end the game.

Response Game: Program

val $s w=$ Stopwatch ()
val $(i d, d d)=(3000,100)-$ initial delay, digit delay
def rand_seq ()$=-$ Publish a random sequence of digits
Random(10) |Rwait(dd) > rand_seq()
def game ()$=$
val $v=\operatorname{Random}(10)-v$ is the seed for one game
val $(b, w)=$
Rwait $($ id $) \gg \operatorname{sw} \cdot \operatorname{reset}() \gg r$ rand_seq ()$>x>\operatorname{Println}(x) \gg$
$\operatorname{Ift}(x=v) \gg$ sw.start ()\gg stop
| Prompt("Press ENTER for SEED " $+v$) >
(sw.isrunning(), sw.pause())
if b then - Goal expression of game()
("Your response time $="+w+$ " milliseconds.")
else ("You jumped the gun.")
game()

Single alarm clock

Let salarm be a single alarm clock.

- At any time at most one alarm can be set.

A new alarm may be set after a previous alarm expires or is cancelled.

- salarm.set (t) returns a signal after time t unless cancelled. The call blocks if alarm is already set or subsequently cancelled.
- salarm.cancel () cancels the alarm and returns signal. Just returns a signal if no alarm has been set. This call is non-blocking.

Implementation Strategy for single alarm clock

- Ref variable aset shows if the alarm has been set.
- Semaphore cancelled is used to signal cancellation.
- Consider a scenario: An alarm is set for 100 ms and cancelled at 50 ms . Later, another alarm is set at 80 ms to go off 40 ms later. The first alarm should not ring at 100 ms (the thread must be pruned).

Implementation of Single alarm clock

def class Alarm ()$=$
val aset $=\operatorname{Ref}($ false $)$
val cancelled $=$ Semaphore (0)
def $\operatorname{cancel}()=$ if (aset?) then cancelled.release () else signal
$\operatorname{def} \operatorname{set}(t)=$
Iff(aset?) > aset $:=$ true \gg
(val $b=R$ wait $(t) \gg$ true \mid cancelled.acquire ()\gg false
$b \gg$ aset $:=$ false $\gg \operatorname{Ift}(b)$
)
stop

Clock with Multiple Alarm Setting

- Set an alarm with an id for a given time.
- Cancel an alarm (by its id) that has been set.
- A set alarm returns a signal unless it gets cancelled.
- An id can be reused.

Multiple Alarm Setting API

- Let malarm be a multi-alarm clock in which n alarms may be simultaneously set.
- malarm.set (i, t) returns a signal after time t unless cancelled. The call blocks if alarm is already set or later cancelled.
- malarm.cancel (i) cancels the alarm with id i and returns signal. Just return a signal if no such id has been set. This call is non-blocking.
- A new alarm with some id can be set after the previous alarm with the same id expires.

Implementation of Multi-alarm clock

```
def class Multialarm(n)=
    val alarmlist = Table(n,lambda(_) = Alarm())
    def set (i,t)=\operatorname{alarmlist}(i).\operatorname{set}(t)
    def cancel(i)=alarmlist(i).cancel()
    stop
```


Testing Multialarm

```
val m= Multialarm(5)
    m.set (1,500) > "first alarm"
    m.set (2, 100) > "second alarm"
| Rwait(400) > m.cancel(1)> "first cancelled"
|.cancel(3) > "No third alarm has been set"
----------- Output
"No third alarm has been set"
"second alarm"
"first cancelled"
```


Using Web services: Spellcheck a list of words

include "net.inc"
def spellCheck $([])=$ stop
def spellCheck(word : words) $=$
GoogleSpellUnofficial(word) >sugg> (word,sugg)
spellCheck(words)
spellCheck(["plese", "thereee","Antiqu"])

Simulation as Concurrent Programming

- A simulation description is a real-time concurrent program.
- The concurrent program includes physical entities and their interactions.
- The concurrent program specifies time intervals for the activities.

Shortest Path Algorithm with Lights and Mirrors

- Source node sends rays of light to each neighbor.
- Edge weight is the time for the ray to traverse the edge.
- When a node receives its first ray, sends rays to all neighbors. Ignores subsequent rays.
- Shortest path length $=$ time for sink to receive its first ray. Shortest path length to node $i=$ time for i to receive its first ray.

Graph structure in $\operatorname{Succ}()$

Figure: Graph Structure
$\operatorname{Succ}(u)$ publishes $(x, 2),(y, 1),(z, 5)$.

Algorithm

```
def eval(u,t)= record value t for }u>
    for every successor v with d= length of (u,v):
    wait for d time units >>
    eval(v,t+d)
Goal :
eval(source, 0) |
read the value recorded for the sink
```

Record path lengths for node u in FIFO channel u.

Algorithm(contd.)

def $\operatorname{eval}(u, t)=\quad$ record value t for $u \gg$
for every successor v with $d=$ length of (u, v) :
wait for d time units \gg
$\operatorname{eval}(v, t+d)$

Goal :
eval(source, 0) |
read the value recorded for the sink

A cell for each node where the shortest path length is stored.
def $\operatorname{eval}(u, t)=\quad u:=t \gg$
$\operatorname{Succ}(u)>(v, d)>$
Rwait(d) >
$\operatorname{eval}(v, t+d)$
\{- Goal:-\} eval(source, 0)| sink ?

Algorithm(contd.)

$$
\begin{aligned}
\operatorname{def} \operatorname{eval}(u, t)=\quad & u:=t \gg \\
& \operatorname{Succ}(u)>(v, d)> \\
& R w a i t(d) \gg \\
& \operatorname{eval}(v, t+d) \\
\{- \text { Goal }:-\} \quad & \operatorname{eval}(\text { source }, 0) \mid \operatorname{sink} ?
\end{aligned}
$$

- Any call to $\operatorname{eval}(u, t)$: Length of a path from source to u is t.
- First call to $\operatorname{eval}(u, t)$: Length of the shortest path from source to u is t.
- eval does not publish.

Drawbacks of this algorithm

- Running time proportional to shortest path length.
- Executions of Succ, put and get should take no time.

Virtual Timer

Methods:

Vwait(t)
Vtime()

Returns a signal after t virtual time units.
Returns the current value of the virtual timer.

Virtual timer Properties

- Virtual timer value is monotonic.
- Vwait (t) consumes exactly t units of virtual time.
- A step is started as soon as possible in virtual time.
- Virtual timer is advanced only if there can be no other activity.

Implementing virtual timer

Data structures:

- n : current value of Vtime (), initially $n=0$.
- q : queue of calls to $\operatorname{Vwait}()$ whose responses are pending.

At run time:

- A call to Vtime () immediately responds with n.
- A call to Vwait (t) is assigned rank $n+t$ and queued.
- Progress: If the program is stuck, then: remove the item with the lowest rank r from q, set $n:=r$, respond with a signal to the corresponding call to Vwait ().

Examples

Rwait (10) | Ltimer (2)

Should logical timer be advanced with passage of real time?

- \quad Rwait (10) >c.put(5)|Ltimer(2)

Does Rwait(10) > c.put(5) consume logical time?

$$
\operatorname{c.get}() \mid \operatorname{Ltimer}(2) \gg c . p u t(5)
$$

What are the values of Ltimer.time() before and after c.get ()?

- \quad stop \mid Ltimer (2)

Can the logical timer be advanced?
Google()|Ltimer(2)
Advance logical timer while waiting for Google() to respond? What if Google() never responds?

Simulation: Bank

- Bank with two tellers and one queue for customers.
- Customers generated by a source process.
- When free, a teller serves the first customer in the queue.
- Service times vary for customers.
- Determine
- Average wait time for a customer.
- Queue length distribution.
- Average idle time for a teller.

Structure of bounded simulation

Run the simulation for simtime. Below, Bank() never publishes .

val $z=\operatorname{Bank}() \mid V$ wait(simtime $)$
$z>\operatorname{Stats}()$

Description of Bank

```
def Bank() = (Customers()|Teller()|Teller())>> stop
def Customers() = Source() >c>enter(c)
def Teller() = next() >c>
        Vwait(c.ServTime) >
        Teller()
def enter(c) = q.put(c)
def next() = q.get()
```


Fast Food Restaurant

- Restaurant with one cashier, two cooking stations and one queue for customers.
- Customers generated by a source process.
- When free, cashier serves the first customer in the queue.
- Cashier service times vary for customers.
- Cashier places the order in another queue for the cooking stations.
- Each order has 3 parts: main entree, side dish, drink
- A cooking station processes parts of an order in parallel.

Goal Expression for Restaurant Simulation

$$
\text { val } z=\operatorname{Restaurant}() \mid \text { Vwait(simtime })
$$

$z \gg \operatorname{Stats}()$

Description of Restaurant

```
def Restaurant() = (Customers() | Cashier() | Cook()| Cook()) > stop
def Customers() = Source() >c>enter(c)
def Cashier() = next() >c>
                                Vwait(c.ringupTime) >>
        orders.put(c.order) >
        Cashier()
def }\operatorname{Cook}()=\mp@code{orders.get ( ) >order }
                prepTime(order.entree) >t>Vwait(t),
                prepTime(order.side) >t>V Vait(t),
                prepTime(order.drink) >t>V Vwait(t)
        ) > Cook()
def enter(c) = q.put(c)
def next() = q.get()
```


Collecting Statistics: waiting time

Change

$$
\begin{array}{ll}
d e f \operatorname{enter}(c) & =q \cdot p u t(c) \\
\operatorname{def} \operatorname{next}() & =q \cdot \operatorname{get}()
\end{array}
$$

to

$$
\begin{aligned}
& \operatorname{def} \operatorname{enter}(c) \quad=\operatorname{Vtime}()>s>q \cdot p u t(c, s) \\
& \operatorname{def} \operatorname{next}() \quad=\quad q \cdot \operatorname{get}()>(c, t)> \\
& \operatorname{Vtime}()>s> \\
& \quad \text { reportWait }(s-t) \gg \\
& c
\end{aligned}
$$

Histogram: Queue length

- Create $N+1$ stopwatches, $s w[0 . . N]$, at the beginning of simulation.
- Final value of $s w[i], 0 \leq i<N$, is the duration for which the queue length has been i.
- $s w[N]$ is the duration for which the queue length is at least N.
- On adding an item to queue of length $i, 0 \leq i<N$, do

$$
s w[i] . \text { stop } \mid s w[i+1] . \text { start }
$$

- After removing an item if the queue length is $i, 0 \leq i<N$, do

$$
\text { sw[i].start } \mid \operatorname{sw}[i+1] \text {.stop }
$$

Simulation Layering

- A simulation is written a set of layers.
- Lowest layer represents the abstraction of the physical system.
- Next layer may collect statistics, by monitoring the layer below it.
- Further layers may produce reports and animations from the statistics.

[^0]: :: true

