
A Foundation of Parallel Programming

Jayadev Misra∗

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
(512) 471-9547

misra@ratliff.cs.utexas.edu

1 Introduction

This monograph introduces a programming theory (called UNITY) that is applicable to the
design of parallel (concurrent/distributed/multi-process) programs. This theory includes
a very simple computational model and a logic that is appropriate for specifying and rea-
soning about such programs. The computational model was first proposed in Chandy [];
a full account of this work appears in Chandy and Misra []. This manuscript contains an
abbreviated version of the theory and a few small examples to illustrate the theory.

In Section 2, we give a brief description of the computational model and a notaion for
writing programs; this material is included in Chapters 1 and 2 of []. In Section 3, we show
how this model addresses some of the issues of programming, and of parallel programming,
in particular. Section 4 contains a description of the logic and some of the inference rules
that are used in this monograph; most of this material, though not all, is in Chapter 3 of [].
The next three sections illustrate some typical applications of the theory. Section 5 contains
a specification and a solution of the “termination detection problem,” a problem of some
interest in implementing message communicating systems. Section 6 contains a simplified
version of a problem dealing with resource allocations. Section 7 gives a specification and
an implementation of a buffer program that is to be interposed between a producer and a
consumer. The final section suggests some research directions.

2 The Computational Model and A Programming No-
tation

A UNITY program consists of a declaration of variables, their initial values, and a set
of statements. In this monograph, the types of variables will be limited to integers and
booleans, and the data structures to fixed size arrays; however, the programming theory is
not based upon any particular data type. Initial values need not be specified for all variables;
variables without a specified initial value have arbitrary values (consistent with their types)
initially. Each statement in a program is an assignment statement that assigns values to
one or more variables.

∗This work was partially supported by ONR Contracts N00014-86-K-0763 and N00014-87-K-0510 and
by a grant from the John Simon Guggenheim Foundation.

1

An execution of a program consists of an infinite number of steps. It begins from any state
satisfying the prescribed initial conditions. In each step of the execution some statement is
selected, nondeterministically, and executed. The only constraint on the nondeterministic
selection of statements is that every statement is selected infinitely often; this is called the
“fairness’ rule.

Now we briefly describe a notation for expressing UNITY programs. This description is
informal; see Chapter 2 of [] for a formal description of the syntax.

A program consists of several sections: declare-section for declarations of variables,
initially-section for prescribing initial values of variables, and assign-section to list the state-
ments. (Another section, called the always-section, is not used in this monograph.) We do
not describe the syntax of the declare-section which is similar to the syntax used for variable
declarations in PASCAL, nor the initially-section whose syntax closely resembles that of the
assign-section.

The statements in an assign-section are separated by the symbol []. The following assign-
section consists of two statements

x := y
[] y := x

The statements of a program may also be defined using quantification; the statements
are obtained by instantiating a generic statement, as in

〈[] i : 0 ≤ i ≤ 2 :: A[i] := B[i]〉
This represents a set of three statements, one for each value of i in the range 0 ≤ i ≤ 2.
The statements obtained by substituting each possible value of i in A[i] := B[i] are,

A[0] := B[0] [] A[1] := B[1] [] A[2] := B[2]

This quantification mechanism is so useful that we employ it in many different contexts.
For instance

〈∧ i : 0 ≤ i ≤ N :: B[i]〉
stands for B[0]∧B[1]∧ . . .∧B[N]. The operation—∧ in this case— is always commutative
and associative, and it follows the opening bracket; the bound variables—i in this case—
come next (they are always of integer type); the boolean expression appearing within “:” and
“::” specifies the possible values of the bound variables (the number of possible values must
be finite); finally, the expression or the syntactic unit that is to be instantiated is given.
The boolean expression defining the range of the bound variables is sometimes omitted
when the range is defined in the accompanying text. (If there are no values of the bound
variables satisfying the boolean expression then the instantiation for statement yields an
empty statement, and for ∧,∨ yield true, false, respectively.)

The individual assignment statements in an assign-section are, in general, multiple as-
signments as in

x, y := y, x

An alternative way of writing the above, to denote that x, y are assigned their values in
parallel, is

x := y ‖ y := x

We may employ quantification within a statement as in

〈‖ i : 0 ≤ i ≤ N :: A[i] := B[i]〉

2

1 2 i N
A[0] A[1] A[2] A[i-1] A[i] A[N-1] A[N]

Figure 1: A Shift Register with N Elements

which assigns elements of array B to the corresponding elements of array A in parallel (i.e.,
in one step).

We also employ conditional expressions for assignments and separate them by ∼ as in,

x := − 1 if y < 0 ∼
0 if y = 0 ∼
1 if y > 0

This denotes that x is assigned either −1, 0 or 1 based on whether y is negative, zero, or
positive.

All statements are deterministic: if two different conditions in a conditional expression
are satisfied then they yield the same value for the assignment. Furthermore, each state-
ment execution terminates in each program state; this is easily guaranteed for assignment
statements in which the function calls, if any, are guaranteed to terminate.

Notation: ∀, ∃ are used synonymously with ∧,∨, respectively. 5

3 Features of the Computational Model

In this section we show (very briefly) how the proposed computational model is adequate
for representing a number of programming constructs and why it is useful for program
refinement and structuring. We will also illustrate these points in reference to the examples
in Sections 5,6 and 7.

3.1 Representations of Programming Constructs

Synchrony

A basic construct in parallel programming is the synchronous execution of two (or more)
actions. The multiple-assignment statement captures synchrony. For instance,

x, y := 3, 5

prescribes that assignments to x and y must be performed in an “atomic” manner. In
UNITY, we deliberately ignore the agent which performs the assignment; thus if x, y are
accessible to one machine then the assignment may be performed relatively simply whereas if
these are local variables of two different machines then some synchronization mechanism may
have to be invoked. Abstracting away from the implementation details has the advantage
that a relatively simple mechanisms—multiple-assignment—may always be employed to
represent synchronous executions.

As an example, consider a simple shift register that is shown schematically in Figure 1.
The shift register has N elements; the input,output lines of the ith element are A[i− 1] and
A[i], respectively, for all i, 1 ≤ i ≤ N . In each step, all elements transfer the data from
their input lines to their output lines. This operation is represented by

〈‖ i : 1 ≤ i ≤ N :: A[i] := A[i− 1]〉
Asynchrony

3

Another basic construct in parallel programming is to sepcify that two (or more) ac-
tions are executed in arbitrary order. The statements of a UNITY program are executed
nondeterministically, and nondeterminism captures the essence of asynchrony. Again, the
machines on which the actions are executed are irrelevant; if the actions are on one machine
the the UNITY program may be implemented in a straightforward fashion and if the actions
are to be executed by multiple machines some form of communication among machines may
have to be employed to ensure appropriate access to shared data. It is best to ignore these
implementation issues during the higher levels of program design.

The following program computes the maximum, m, of an array A, of N integer elements
(A is not declared below).

program maximum

declare m : integer
initially m = −∞
assign 〈[] i : 0 ≤ i < N :: m := max(m,A[i])〉

end {maximum}
The typical sequential program for finding the maximum prescribes an order in which

the elements of the array A are to be scanned. We can execute the above program on
a sequential computer by prescribing an order for statement executions; for instance, we
may prescribe a round-robin schedule in which the statement to be executed following the
ith statement—ith statement is m := max(m,A[i])—is the statement (i + 1) mod N , and
initially the 0th statement is executed.

We can also partition the statements of this program for parallel execution by multiple
processors that have access to a common memory in which m resides. Also, we can im-
plement this program on a message passing architecture; the details are given below. The
point is that a UNITY program offers a variety of options for implementations on different
architectures. The number of implementation options are limited had we started with a
more deterministic program, for instance, in which the order of statement executions was
prescribed.

Synchrony and Asynchrony

The following little program illustrates the use of both synchrony and asynchrony. The
programming task is to sort an array of integers A, A[0..N] in ascending order. The strategy
employed is to pick any pair of adjacent elements and exchange them if they are out of order.
The reader may convince himself that eventually A will be sorted in ascending order (in the
absence of a logic, we cannot even state this fact, let alone prove it).

program sort

assign 〈[] i : 0 ≤ i < N ::
A[i], A[i + 1] := min(A[i], A[i + 1]), max(A[i], A[i + 1])

〉
end {sort}

There are N statements in this program, corresponding to each value of i in the range
0 ≤ i < N , and their execution order is nondeterministic. Each statement execution,
however, requires synchronous assignments of the appropriate values to A[i] and A[i + 1].

Termination

Consider a state of a program in which execution of any statement causes no state change;
we call such a state a fixed point. A program may have no fixed point (i.g., a program that is

4

expected to produce an unending sequence of numbers). However if a program is at a fixed
point, all its future states can be predicted, and hence, an implementation may decide to
halt the execution of the program on a machine (or machines). Reaching of a fixed point is
typically termed “termination” in sequential programming. We view termination as a feature
of an implementation. The study of fixed points is, however, important to demonstrate that
some programs are guaranteed to reach fixed points, and that some programs are guaranteed
never to reach any fixed point (e.g., freedom from deadlock). The detection of a fixed point
during program execution is, in general, a nontrivial task, particularly if the program is
implemented on asynchronous processors; the problem is closely related to termination
detection of Section 5.

Multiprocess Programs

There is no notion of a process in UNITY; however, the variables and the statements
of a UNITY program may be partitioned for execution among a set of processes. Any fair
interleaving of the fair executions of the partitions is an execution of the original program.
Thus any implementation of “interleaved semantics”—i.e., where executions of any two
actions by different processes is equivalent to their execution in some order—also provides an
implementation of a UNITY program as a set of processes. Grain of atomicity in interleaving
depends on the nature of the variables that are shared among the processes, and how they
are accessed and updated; for details see Chapter 4 of [].

As an example consider the program maximum given earlier. Suppose that the N
variables—A[0],A[1] . . . A[N−1]—are partitioned among N processes, the ith process having
A[i] as a local variable. The variable m is in some shared memory that can be accessed by
all processes. The statements are also partitioned among these processes, the ith process
executing

m := max(m,A[i])

The processes may then execute their codes independently as long as their accesses to m
are mutually exclusive.

A strategy for implementing any shared-variable multiprocess program in a message pass-
ing architecture is to circulate a token among all the processes; the token carries the values
of all the shared variables, and only the token holder may examine and/or update the shared
variables. Using this strategy, program maximum may be implemented by introducing a
token that carries the value of m.

A UNITY program can be efficiently implemented on a message passing architecture
provided its variables and statements can be partitioned in such a manner that the shared
variables (i.e., those that appear in statements of two partitions) are of type sequence (rep-
resenting a channel), each shared variable is shared by exactly two partitions (representing
that a channel is directed from exactly one sender to exactly one receiver), and the only
operations on the shared variables are (1) appending to the end of the sequence in one
partition (corresponding to sending a message), and (2) removing the head item of a se-
quence (corresponding to receiving a message) provided the sequence is nonempty. A theory
of message communication appears in Chapter 8 of []. It is not difficult to see that pro-
cesses communicating in other fashions—rendezvous-style communication, broadcast, wait
and signal on a condition, etc.—also have succinct representations within UNITY.

3.2 Program Refinements

A UNITY program is not tied to any particular architecture. It seems feasible therefore
to develop a program in a series of refinement steps; the higher level concerns are about
the problem being solved and the lower level concerns are about the architecture on which

5

the problem is to be solved. It is important to note that all the refinements, except the
very last step, can be carried out entirely within the UNITY notation, from a high level
algorithm description to the very lowest level representation. The very last step of refinement
maps a UNITY program to a particular architecture and/or specifies the order in which
the statements are to be executed. For instance, when mapping a UNITY program to a
sequential machine we must prescribe an order in which the statements are to be executed
and guarantee that this order obeys the fairness rule. The mappings of UNITY programs
to architectures is outside the UNITY theory. We will describe only informally how specific
programs are mapped for efficient executions on specific architectures; see Chapter 4 of []
for a more elaborate discussion.

At present it seems more attractive to refine specifications rather than the program code.
The reason is that proving the correctness of a specification refinement is easier.

3.3 Correctness and Complexity

A traditional sequential program can be analyzed to establish its correctness and also to ob-
tain a measure of its efficiency when executed on a traditional (von Neumann) computer. In
this sense such a program embodies the logical steps of the algorithm as well as information
about how these steps must be orchestrated. (One consequence of this is that correctness
proofs are often difficult for programs which include several “optimization tricks.”) The
issues of correctness and complexity are totally separate in UNITY. The correctness of a
UNITY program (with respect to a given specification) is a well-defined question. How-
ever, the complexity of a UNITY program is not well-defined; it is meaningful only after
a mapping of the program to a specific architecture (and a specific execution schedule) is
prescribed.

3.4 Program Structuring

Processes have a dual role in parallel programming. They are the units of structuring—
i.e., a program may be understood (specified, verified, and developed) process by process.
Additionally, they are the implementation units, i.e., a process (or a set of processes) are
mapped to a physical processor. In many cases the best way to understand or develop a
program does not lead directly to the most efficient implementation. UNITY provides a
framework for separating these two issues. For instance, consider a program H consisting
of two component programs, F and G—the set of statements of H is the union of the
statements of F and G (and other conditions apply to declare- and initially-sections; see
Section 4 for the definition of union). It may be best to understand H in terms of F and
G and then implement H by partitioning its statements in an entirely different manner
into F ′, G′ say. Each of F ′, G′ may contain statements from both F and G. This view of
programming is useful when a computation can be structured as a set of tasks (F, G, for
instance) and each task is executed by a cooperating set of processes (F ′, G′, for instance).
Section 5 contains an example where it is best to understand a computation as an interleaved
execution of two tasks, each task being executed on a fixed set of processors.

4 A Brief Introduction to UNITY Logic

The structure of a UNITY program dictates that we associate properties with a program,
not with points in a program because UNITY programs have no textual program points.
Thus, we write “I is invariant in F” to denote that predicate I holds at all times during
execution of program F . Associating properties with programs has the advantage that
properties of compositions of programs can then be derived somewhat more easily.

6

The kinds of properties that we shall be dealing with can be broadly divided into two
classes: safety and progress. Safety properties establish taht “nothing bad ever happens,”
and progress properties establish that “something good happens eventually.” In addition,
we will introduce a predicate to deal with fixed points of a program.

We introduce three relations—unless, ensures, leads-to—each of which is a binary relation
on a pair of predicates. (Each predicate may name program variables, bound variables, and
free variables as well as constants, functions, and relations.) The safety properties are
written using unless (and the initial conditions); the progress properties are written using
ensures or leads-to.

Safety properties can be established by applying induction on the length of computations.
Progress properties, however, are more difficult to establish, because they often rely critically
on the fairness assumption. For instance, consider a program that has two statements, one
that decreases variable x by 1 and the other that decreases y by 1. We can assert both
x, y will become arbitrarily small in a sufficiently long computation. (This property does
not hold in the absence of a fairness assumption.) The assertion cannot be proven by
applying induction on the length of computations, because there is no “variant” function
that decreases with each step of the computation. We develop a logic in which the fairness
assumption is captured within one relation (ensures) and we define a second relation (leads-
to) inductively, using ensures as the basis of induction.

Convention: A property having free variables is assumed to be universally quantified over
all possible values of the free variables. Thus,

x = k unless x > k

where k is free, stands for

〈∀ k :: x = k unless x > k〉. 5

In the following description, all properties refer to a single program; the program name
is omitted for the sake of brevity.

Notation: We use p, q, r, b (with or without subscripts and primes) to denote predicates.
Symbol s denotes a statement of a program.

We use

{p} s {q}

to denote that if s is executed in a state satisfying p then q holds upon completion of s. We
assume that every statement terminates in every state; this is guaranteed because we limit
ourselves to assignment statements in which only total functions may be used.

unless

For a given program

p unless q

denotes that once predicate p is true it remains true at least as long as q is not true. Formally
(using Hoare’s notation)

p unless q ≡ 〈for all statements s of the program :: {p ∧ ¬q} s {p ∨ q}〉

7

i.e., if p ∧ ¬q holds prior to execution of any statement of the program then p ∨ q holds
following the execution of the statement.

It follows from this definition that if p holds and q does not hold in a program state
then in the next state either q holds, or ∧¬q holds; hence, by induction on the number of
statement executions, p ∧ ¬q continues to hold as long as q does not hold. Note that it is
possible for p ∧ ¬q to hold forever. Also note that if ¬p ∨ q holds in a state then punlessq
does not tell us anything about future states.

Examples:

1. Integer variable x does not decrease.

x = k unless x > k
or x ≥ k unless false

2. A message is received (i.e., predicate rcvd holds) only if it had been went earlier (i.e.,
predicate sent already holds).

¬rcvd unless sent

3. Variable x remains positive as long as y is.

x > 0 unless y ≤ 0

4. x, y change only synchronously.

x = m ∧ y = n unless x 6= m ∧ y 6= n

5. x, y never change synchronously

x = m ∧ y = n unless (x = m ∧ y 6= n) ∨ (x 6= m ∧ y = n) 5

An interesting application of unless is in defining auxiliary (or history) variables. Tra-
ditionally, auxiliary variables are defined by augmenting the code of a given program. A
preferable way is to state a safety property (using unless) that describes the relationship
between the auxiliary and the other variables. As an example let s denote an integer vari-
able and let s̄ be an auxiliary variable whose value is the number of times that s has been
increased. We may define s̄ as follows.

initially s̄ = 0
s̄ = m ∧ s ≤ n unless s̄ = m + 1 ∧ s > n

The above unless property may be read informally as “as long as s does not increase
(s ≤ n) s̄ retains its value; when s increases (s > n, s̄ is increased by 1.”

Stable, Invariant

Two special cases of unless—stable, invariant—are of importance

p is stable ≡ p unless false
p is invariant ≡ (initially p) ∧ (p is stable)

8

¿From the definition, p is stable denotes that for all statements s (of the given program)

{p} s {p}

Thus p remains true once it is true. An invariant is initially true and remains true throughout
any execution of the program.

Derived Rules for unless

The following derived rules are extensively used in proofs. Most of these are stated and
proved in Chapter 3 of [].

• Reflexivity

p unless p

• Antireflexivity

p unless ¬p

• consequence weakening

p unless q , q ⇒ r

p unless q

Corollary:

p ⇒ q

p unless q

• conjunction and disjunction

p unless q , p′ unless q′

p ∧ p′ unless (p ∧ q′) ∨ (p′ ∧ q) ∨ (q ∧ q′) {conjunction} ,
p ∨ p′ unless (¬p ∧ q′) ∨ (¬p′ ∧ q) ∨ (q ∧ q′) {disjunction}

Simpler forms of conjunction and disjunction are often useful; these are obtained from
the above rule by weakening the consequence to q ∨ q′ in both cases:

• (simple conjunction and simple disjunction)

p unless q , p′ unless q′

p ∧ p′ unless q ∨ q′ {simple conjunction}
p ∨ p′ unless q ∨ q′ {simple disjunction}

A corollary of the simple conjunction and disjunction rules is, if I, J are stable (invariant)
then so are I ∧ J, I ∨ J .

The following rule generalizes the conjunction and disjunction rules to an arbitrary
number—perhaps infinite—of unlesses. For proof, see []. In the following, m is quantified
over some arbitrary set.

(general conjunction and general disjunction)

9

〈∀ m :: p.m unless q.m〉
〈∀ m :: p.m〉 unless 〈∀ m :: p.m ∨ q.m〉 ∧ 〈∃ m :: q.m〉 {general conjunction}
〈∃ m :: p.m〉 unless 〈∀ m :: ¬p.m ∨ q.m〉 ∧ 〈∃ m :: q.m〉 {general disjuction}

Corollary: Let M by any total function over program states. Variables m is free in the
following rule.

p ∧ M = m unless (p ∧ M 6= m) ∨ q

p unless q

Corollary (free variable elimination)

Let x be a set of program variables and k be free in the following.

p ∧ x = k unless q

p unless q

ensures

For a given program,

p ensures q

implies that p unless q holds for the program and if p holds at any point in the execution
of the program then q holds eventually. Formally,

p ensures q ≡ p unless q ∧ 〈∃ statement s :: {p ∧ ¬q} s {q}〉 .

It follows from this definition that once p is true it remains true at least as long as q is
not true (from p unless q). Furthermore, from the rules of program execution, statement s
will be executed sometime after p becomes true. If q is still false prior to the execution of s
then p ∧ ¬q holds and the execution of s then establishes q.

Example 1: Consider a program with the following assign-section (where x, y are integer
variables).

x := x = q [] y := y − 1

To show that
x = k ensures x < k

We first prove
x = k unless x < k

i.e., {x = k} x := x− 1 {x = k ∨ x < k} and,
{x = k} y := y − 1 {x = k ∨ x < k}

Then we prove
{x = k} x := x− 1 {x < k} 5

A Note on Quantification

In order to prove x = k ensures x < k we have to show

10

〈∀ k :: 〈∃ s :: {x = k} s{x < k}〉〉
not

〈∃ s :: 〈∀ k :: {x = k} s{x < k}〉〉 5

Derived Rules for ensures

We show two commonly used rules; for a longer list of rules see [].

• Reflexivity

p ensures p

• Consequence Weakening

p ensures q , q ⇒ r

p ensures r

Corollary:

p ⇒ q

p ensures q

leads-to

For a given program p leads − to q, abbreviated as p 7→ q, denotes that once p is true,
q is or becomes true. Unlike ensures, p may not remain true until q becomes true. The
relation leads-to is defined inductively by the following rules. The first rule is the basis
for the inductive definition of leads-to. The second rules states that leads-to is a transitive
relation. In the third rule, p.m, for different m, denote a set of predicates. This rule states
that if every predicate in a set leads-to q then their disjunction also leads-to q.

(basis)

p ensures q

p 7→ q

(transitivity)

p 7→ q , q 7→ r

p 7→ r

(disjunction)

〈∀ m :: p.m 7→ q〉
〈∃ m :: p.m〉 7→ q

Example 2: For the program in Example 1, we show that 〈∀ k :: x ≥ k 7→ x < k〉

〈∀ k, r : r ≥ 0 :: x = k + r 7→ x < k〉 , shown below
〈∀ k :: 〈∀ r : r ≥ 0 :: x = k + r 7→ x < k〉 , rewriting the above
〈∀ k :: 〈∃ r : r ≥ 0 :: x = k + r〉 7→ x < k〉 , disjunction on the above
〈∀ k :: x ≥ k 7→ x < k〉 , rewriting the above

Proof of 〈∀ k, r : r ≥ 0 :: x = k + r 7→ x < k〉
The proof is by induction on r.

11

r = 0 : Proof of 〈∀ k :: x = k 7→ x < k〉
〈∀ k :: x = k ensures x < k〉 , from Example 1
〈∀ k :: x = k 7→ x < k〉 , using the definition of 7→

r > 0 :

〈∀ k :: x = k 7→ x < k〉 , proven above
〈∀ k :: x < k 7→ x < k〉 , property of 7→ (see Section ??)
〈∀ k :: x < k + q 7→ x < k〉 , disjunction on the above two
〈∀ k :: x = k + r 7→ x < k + 1〉 , induction hypothesis
〈∀ k :: x = k + r 7→ x < k〉 , transitivity on the above two 5

Derived Rules for leads-to

As Example 2 shows, proofs can be very long, even for trivial facts, if they are constructed
starting from the definitions. The derived rules for leads-to are particularly effective in
constructing succinct proofs.

• implication

p ⇒ q

p 7→ q

• impossibility

p 7→ false
¬p

• general disjunction: In the following m is quantified over an arbitrary set.

〈∀ m :: p.m 7→ q.m〉
〈∃ m :: p.m〉 7→ 〈∃ m :: q.m〉

• PSP

p 7→ q , r unless b

p ∧ r 7→ (q ∧ r) ∨ b

• Completion: In the following m is quantified over a finite set.

〈∀ m :: p.m 7→ q.m〉 ,
〈∀ m :: q.m unless b〉

〈∀ m :: p.m〉 7→ 〈∀ m :: q.m〉 ∨ b

• Induction: In the following M is a total function mapping program states to a well-
founded set (W,≺).

〈∀ m : m ∈ W :: p ∧ M = m 7→ (p ∧M ≺ m) ∨ q〉
p 7→ q

We now rework Example 2 using these derived rules to obtain a succcinct proof. In
particular, use of explicit induction in the proof is avoided by applying the induction rule.

Note: The mapping function M need be defrined only over the program states satisfying
p ∧ ¬q.

12

x = m ensures x < m , from Example 1
x = m 7→ x < m , from the definition of 7→
x ≥ k unless x < k , antireflexivity of unless
x ≥ k ∧ x = m 7→ (x ≥ k ∧ x < m) ∨ x < k , PSP rule on the above two
x ≥ k 7→ x < k , induction rule (see below) 5

In order to apply the induction rule we postulate a mapping function M defined over
the states that satisfy x ≥ k (i.e., p ∧ ¬q); the mapping function merely has the value of x;
the well-founded set consists of {n|n ≥ k} that is ordered according to the usual ordering
of integers.

Fixed Point

A fixed point of a program is a state that does not change, i.e., execution of a statement
has no effect in this state. Clearly then every statement’s left and right sides are equal in this
state. Using this observation we define a predicate FP for a program which characterizes all
and only fixed points. FP is the conjunction of all predicates that are obtained by equating
the left and the right sides of each statement.

Example 4: We compute fixed points of a few programs whose assign-sections are shown
below.

1. x, y := y, x
FP ≡ (x = y)

2. k := k + 1
FP ≡ k = k + 1

≡ false

3. k := k + 1 if k < N
FP ≡ k < N ⇒ k = k + 1

≡ k ≥ N

4. 〈[] i : 0 ≤ i < N :: m := max(m,A[i])〉
FP

≡ 〈∧ i : 0 ≤ i < N :: m = max(m,A[i])〉
≡ 〈∧ i : 0 ≤ i < N :: m ≥ A[i]〉
≡ m ≥ 〈max i : 0 ≤ i < N :: A[i]〉 5

An important result dealing with fixed points is

Stability at fixed point
For any q,
FP ∧ q is stable

5 A Program Structuring Mechanism: Union

As in other programming theories, it is often convenient to view or design a UNITY program
as a composition of several program components. In this monograph, we consider a partic-
ularly simple kind of program composition: union. The union of programs F,G—denoted
by F [] G—is obtained by appending the appropriate sections of their code. Union is de-
fined only for those programs F, G whose declare- and initial-sections are not contradictory.)
Hence the set of statements of F [] G is the union of the statements in F nd G.

13

Programs F, G may be thought of as executing asynchronously in F [] G. The union
operator is useful in understanding, among others, process networks in which each process
may be viewed as a program and the entire network is their union. We see examples of
union in Sections ? and ?. The following theorem is fundamental for understanding union
(most parts of this theorem appear in Chapter 7 of []).

The Union Theorem:
•

initially p in F

initially p in F [] G

• p unless q in F [] G =
p unless q in F ∧ p unless q in G

• p ensures q in F [] G =
[p ensures q in F ∧ p unless q in G]
∨ [p unless q in F ∧ p ensures q in G]

• FP of F [] G = FP of F ∧ FP of G

Corollaries: From p. 156 of the book 5

Observe that if p names only local variables of F (i.e., variables that cannot be modified
by any other program G), then p is stable in G. So we get

Corollary: from p.157 of the book 5

6 Termination Detection in a Ring

A message communicating system consists of a set of processes connected by direct channels.
Each channel is directed from exactly one process to another; the messages in the channel
are the ones setn by the former process to the latter which are, as yet, undelivered. A process
is in one of two states: idel (i.e., quiescent) or nonidle. An idle process sends no message,
and it remains idle as long as it receives no message. A nonidle process may become idle
(autonomouisly). A message is received along a channel only if it had been sent along that
channel. The system is terminated when all processes are idle and all channels are empty
(i.e., have no messages in them) because all processes will stay idle—the first process to
become nonidle has to first receive a message—and all channels will remain empty—idle
processes send no message. It is required to develop an algorithm by which processes can
determine that the system is terminated.

One of the more difficult aspects of this problem is to specify it precisely: What is given,
what is to be designed and what should the design satisfy. We specify the problem in Section
5.1. We propose an algorithm for this problem in Section 5.2 and prove its correctness. The
specification and verification rely heavily on the derived rules of UNITY logic.

In this monograph, we limit ourselves to a system in which the processes are connected
in a unidirectional ring; the general case is described and solved in []. Our purpose here
is primarily to acquaint the reader with UNITY-style specification, problem decomposition
and proofs, and only secondarily with the problem of termination detection.

6.1 Problem Specification

Let there be N processes arranged in a unidirectional ring, the successor of the ith process
having index i′. The following variables are defined as follows—for all i (in this problem i
is quantified over all indices in a given ring):

14

s.i, the number of messages sent by i (to i′)
r.i, the number of messages received by i
q.i, a boolean variable that is true if and only if process i is idle

There is no notion of a process in UNITY. Hence we regard the entire process network
as a program, D, that manipulates the variables given above, for all i. The following
properties of D have been described earlier: the number of messages sent by a process is at
least the number received by its successor, and both these numbers are nonnegative (D1,
given below); the number of messages sent and received by a process are nondecreasing
(D2); a process remains idle as long as it receives no message (D3); and an idle process has
to become nonidle first in order to send a message (D4). Formally, for all i, we have the
following properties in D.

D1. s.i ≥ r.i′ ≥ 0 is invariant.
D2. r.i ≥ m is stable,

s.i ≥ n is stable
D3. q.i ∧ r.i = m unless r.i > m
D4. q.i ∧ s.i = n unless ¬q.i ∧ s.i = n

The properties, D1 −D4, are the only properties of D that we will assume. There are
several aspects of the specification that are worth noting. First, we do not assume that the
channels are FIFO, i.e., message sent along a channel may be delivered in a different order
from the sending order. Second, there is no guarantee that a message will be delivered.
Third, several processes may receive and/or send messages in one step; however a process
may not receive a message, become nonidle and send a message all in one step (from D4 a
process can send a message in a step provided it is nonidle at the beginning of the step).

Observation 1: Variables s.i, r.i, q.i, for all i, are local to D. Hence, applying locality
corollary of the union theorem (Section 4), we derive that D1 − D4 are also properties of
D [] G, for any G. 5

6.2 Definition of Termination

We have informally described termination as “all processes are idle and all channels are
empty (for each channel, the number of messages sent equals the number received).” We
show that none of the variables can change once the termination condition holds.

Let,

T ≡ 〈∀ i :: q.i ∧ s.i = r.i′〉

Observe that proving T to be stable only establishes that no q.i will change (become false)
once T holds; however, it is possible for r.i, s.i to change while preserving s.i = r.i′, for all
i. Hence, we prove below that T ∧ 〈∀ i :: r.i = m.i〉 is stable where m.i’s are arbitrary
constants.

D5. T ∧ 〈∀ i :: r.i = m.i〉 is stable.

Proof of D5: The result is proven by taking the conjunction of D3, D4 and then taking
the conjunction of the result over all i.

15

q.i ∧ r.i = m.i ∧ s.i = m.i′ unless r.i > m.i ∧ s.i = m.i′

, replacing m,n by m.i,m.i′ in D3, D4 and then taking their conjunction
〈∀ i :: q.i ∧ r.i = m.i ∧ s.i = m.i′〉 unless

〈∀ i :: (q.i ∧ r.i = m.i ∧ s.i = m.i′) ∨ (r.i > m.i ∧ s.i = m.i′)〉 ∧
〈∃ i :: r.i > m.i ∧ s.i = m.i′〉

, taking general conjunction of the above over all i (1)

The left side of (1)
≡ 〈∀ i :: q.i ∧ s.i = r.i′〉 ∧ 〈∀ i :: r.i = m.i〉
≡ T ∧ 〈∀ i :: r.i = m.i〉

The first conjunct in the right side of (1) ⇒ 〈∀ i :: s.i = m.i′〉
The second conjunct in the right side of (1) ⇒ 〈∃ i :: r.i > m.i〉
Hence the right side of (1)
⇒ 〈∀ i :: s.i = m.i′〉 ∧ 〈∃ i :: r.i > m.i〉
⇒ 〈∃ i :: r.i′ > m.i′′ ∧ m.i′ = s.i〉

, replacing 〈∃ i :: r.i > m.i〉 by 〈∃ i :: r.i′ > m.i′〉
≡ false

, using the substitution axiom and s.i ≥ r.i′ from (D1) 5

D6. T is stable

Proof of D6: Eliminating the free variables m.i (using the corresponding corollary from
Sectoin ?) from D5. 5

6.3 An Algorithm for Termination Detection

Detection of T is nontrivial: An asynchronous inspection of the processes and channels may
find every process to be idle and every channel to be empty; yet, T may not hold. An
algorithm that does allow asynchronous inspection to succeed is the following.

Process i records the values of q.i, r.i, s.i in variables vq.i, vr.i, vs.i, respectively at arbi-
trary times. Let V T be a predicate, analogous to T , defined as follows.

V T ≡ 〈∀ i :: vq.i ∧ vs.i = vr.i′〉

We will show that V T ⇒ T , i.e., detecting V T is sufficient to guarantee T . Detection of V T
can be accomplished in a number of ways. A token may visit the processes collecting the
values of vq.i, vs.i, vr.i, from each i, and whenever V T is satisfied by the values carried by
the token, T can be asserted. Another possibility is to employ a central process to which all
processes send their recorded values at arbitrary times, and the central process can compute
V T . The reason V T is easier to compute than T is that the variables in V T are unaffected
by execution program D whereas the variables in G are; direct computation of T would
require us to suspend program D.

We view the recording programs of all processes together as a single program R. The
entire program then is D [] R. Program R is given below. (Declarations of vq.i, vs.i, vr.i are
not shown; they are boolean, integer, integer, respectively.)

Program R
initially 〈[] i :: vq.i, vs.i, vr.i := false, 0, 0〉
assign 〈[] i :: vq.i, vs.i, vr.i := q.i, s.i, r.i〉

end {R}

16

We show that V T holds only if T holds (DR1, given below) and V T holds within finite
time of the holding of T (DR2).

DR1. V T ⇒ T is invariant in D [] R
DR2. T 7→ V T in D [] R

It is important to note that the program D [] R can be viewed in two different ways. It
is the union of two tasks, D and R. Each of these tasks is executed by all processes, i.e.,
D = 〈[] i :: Di〉 where Di is the given program for process i, and R = 〈[] i :: Ri〉 where
Ri is the component of the recording program executed by i. Therefore D [] R may also be
viewed as 〈[] i :: Di [] Ri〉 where Di [] Ri is the program (given and recording) for process
i. The second way of structuring D [] R, around processes, is not convenient for proving
DR1 and DR2. We will, however, decompose D [] R in this manner when we implement
the algorithm on a set of processes. The computational model allows us to choose the most
convenient decomposition for the purpose at hand.

6.4 Proof of the Algorithm

We note the two properties of D [] R. Property DR3 is easily understood; DR4 says that
any process that was idle at the time of its last recording and that has not received any
message since then is still idle and has not sent any message since then.

DR3. s.i ≥ vs.i ≥ 0 is invariant in D [] R,
r.i ≥ vr.i ≥ 0 is invariant in D [] R

DR4. vq.i ∧ (r.i = vr.i) ⇒ q.i ∧ (s.i = vs.i) is invariant in D [] R

These properties can be proven by showing that they are invariant in R, from the text of
R, and stable in D, and then applying corollary of the union theorem. Most of these proofs
are straightforward; we show that the predicate in DR4 is stable in program D.

6.4.1 A Stability Proof in D

Lemma: vq.i ∧ (vr.i = r.i) ⇒ q.i ∧ (vs.i = s.i) is stable in D
Proof: All properties in the following proof are of D.

q.i ∧ r.i = m ∧ s.i = n unless r.i > m
, conjunction of D3, D4 and then weakening the consequence

r.i > m is stable
, D2 with m + 1 substituted for m

(r.i > m) ∨ (q.i ∧ r.i = m ∧ s.i = n) is stable
, disjunction of the above two

¬vq.i is stable
, vq.i is constant in D

vq.i ∧ r.i ≤ m ⇒ q.i ∧ r.i = m ∧ s.i = n is stable
, simple disjunction of the above two and rewriting

vq.i ∧ r.i ≤ vr.i ⇒ q.i ∧ r.i = vr.i ∧ s.i = vw.i is stable
, substituting vr.i, vs.i that are constants in D for m,n, respectively

vq.i ∧ r.i = vr.i ⇒ q.i ∧ r.i = vr.i ∧ s.i = vs.i is stable
, substitution axiom on DR3 yields r.i ≤ vr.i ≡ r.i = vr.i

vq.i ∧ r.i = vr.i ⇒ q.i ∧ s.i = vs.i is stable
, simplifying the last predicate 5

17

6.4.2 Proof of DR1

To prove that

DR1. V T ⇒ T is invariant in D [] R

We show that

V T ⇒ T is stable in D and,
V T ⇒ T is invariant in R

Then, applying corollary of the union theorem, DR1 follows.

Proof of V T ⇒ T is stable in D

¬V T is stable in D , no variable of V T is modified
T is stable in D , from (D6)
V T ⇒ T is stable in D , simple disjunction of the above two and rewriting 5

Proof of V T ⇒ T is invariant in R

In the following proof, all properties are in R.
Initially ¬V T holds because all ¬vq.i, for all i.
To show the stability of V T ⇒ T , we have to show for any arbitrary j that
{V T ⇒ T} vq.j, vs.j, vr.j := q.j, s.j, r.j {V T ⇒ T}

We show the stronger assertion
{true} vq.j, vs.j, vr.j := q.j, s.j, r.j {V T ⇒ T}

or equivalently {since the assignment establishes the postcondition(vq.j, vs.j, vr.j) =
(q.j, s.j, r.j)}
V T ∧ (vq.j, vs.j, vr.j) = (q.j, s.j, r.j) ⇒ T

The proof is as follows. Assume the antecedent of the above.

vr.j′ = vs.j , from V T in the antecedent
vs.j = s.j , from the antecedent
s.j ≥ r.j′ , from D1
r.j′ ≥ vr.j′ , from DR3
vr.j′ = r.j′ , from the above four properties
vq.j′ , from V T
q.j′ ∧ s.j′ = vs.j′ , from vq.j′ ∧ r.j′ = vr.j′ using DR4
(vq.j′, vs.j′, vr.j′) = (q.j′, s.j′, r.j′) , from the above three

Hence we have
V T ∧ (vq.j, vs.j, vr.j) = (q.j, s.j, r.j) ⇒ V T ∧ (vq.j′, vs.j′, vr.j′) =

(q.j′, s.j′, r.j′)

Applying induction,

V T ∧ (vq.j, vs.j, vr.j) = (q.j, s.j, r.j) ⇒ V T ∧ (vq.i, vs.i, vr.i) =
(q.i, s.i, r.i)〉

The consequent of the above implies T . 5

18

F

r B w

Figure 2: A Buffer Program B and its environment F

6.4.3 Proof of DR2

Let u.i ≡ (vq.i, vs.i, vr.i) = (q.i, s.i, r.i)

We show,

T 7→ T ∧ u.i in D [] R (1)
T ∧ u.i is stable in D [] R (2)
T 7→ 〈∀ i :: T ∧ u.i〉 in D [] R , applying the completion rule for leads-to (Section ?)
〈∀ i :: T ∧ u.i〉 ⇒ V T , from definitions of T, u.i, V T
T 7→ V T in D [] R , from the above two

Proof of (1): T 7→ T ∧ u.i in D [] R

T ensures T ∧ u.i in R , from the text of R
T is stable in D , from D5
T ensures T ∧ u.i in D [] R , corollary to the union theorem
T 7→ T ∧ u.i in D [] R , definition of 7→ 5

Proof of (2): T ∧ u.i is stable in D [] R

T ∧ r.i = m.i ∧ r.i′ = m.i′ is stable in D
, eliminating all other m.j from D5

vq.i is stable in D
, vq.i is constant in D

T ∧ (q.i, s.i, r.i) = (vq.i,m.i′,m.i) is stable in D
, conjunction of the above two and rewriting

T ∧ u.i is stable in D
, replacing m.i,m.i′ by vr.i and vs.i that are constants in D

T ∧ u.i is stable in R
, from the text of R

T ∧ u.i is stable in D [] R
, corollary of the union theorem 5

7 Notes on UNITY 02-88

8 The Buffer Program

A buffer program, B, reads data from a variable r and writes data into a variable w. The
program runs asynchronously with another program, called F , which writes into r and reads
from w. The communication structure is shown in Fig. 1.

19

The program F represents both the producer and the consumer. There might be mul-
tiple producers and consumers or even a single process that is both the producer and the
consumer; the exact number is irrelevant for the specification of the buffer. The values that
can be written into r, w are, again, irrelevant for specification. However we do postulate a
special value, ∅, which is written into a variable to denote that it is “empty,” i.e., it contains
no useful data. The protocol for reading and writing is as follows. Program F writes into r
only if r = ∅; only if r 6= ∅, program B reads a value from r and it may set r to ∅. Program
B stores a value in w only if w is ∅; program F reads from w and it may set w to ∅ to
indicate that it is ready to consume the next piece of data.

8.1 Auxiliary Variables

It is convenient to employ the auxiliary variables, r̄ and w̄, which denote, respectively, the
sequence of data items (i.e., non-∅ values) written into r and w. The typical definitions of
r̄, w̄ are given by augmenting the program text; a value d, d 6= ∅, is appended to r̄ whenever d
is stored in r. Fortunately, our logical operators provide a preferable way to define auxiliary
variables.

Notation: All through this paper d, e, f refer to arbitrary data values or ∅, and x, y denote
sequences of these values. The concatenation operator for sequences is “;” . For all x,
(x; ∅) = (∅;x) = x. 5

Definitions of r̄, w̄ are as follows. (The two definitions are completely similar.)

initially (r̄, w̄) = (r, w) in B [] F (A0)
r̄ = x ∧ r = d unless r̄ = x; r ∧ r 6= d in B [] F (A1)
w̄ = y ∧ w = e unless w̄ = y;w ∧ w 6= e in B [] F (A2)

To understand A1, note that if ∅ is stored in r (i.e., data is consumed from r) then r̄
remains unchanged (because x; r = x; ∅ = x). If r is changed to d, d 6= ∅, then r̄ is extended
by d. These properties, A0,A1,A2, may be taken as axioms in a proof of B [] F .

8.2 Specification of a Buffer of Size N

A buffer of size N , N > 1, has N−1 internal words for storage. (The reason for using N−1,
rather than N , is that with this definition concatenations of buffers of size M, N results in
a buffer of size M + N .) For N = 1, the buffer program simply moves data from r to w.

Notation: Define an ordering relation, ≺, among data values as follows:

∅ is “smaller than” all non-∅ values, i.e.,
d ≺ e ≡ d = ∅ ∧ e 6= ∅ 5

The properties P1 and P2, given below, state respectively that program B removes only
non-∅ data from r and it may set r to ∅, and it writes only non-∅ data values in w provided
w = ∅.

initially w = ∅ in B (P0)
r = d unless r ≺ d in B (P1)
w = e unless e ≺ w in B (P2)

Observe that setting d to ∅ in (P1) gives us (because r ≺ ∅ ≡ false),
r = ∅ is stable in B

That is, B never changes r from ∅ to non-∅. Similarly, we may deduce from (P2) that B
never overwrites a non-∅ value in w.

20

The next property, P3, says that (1) the sequence of data items stored in w by B is a
prefix of the sequence supplied to it in r, (2) these two sequences do not differ by more than
N in length, (3) if the two sequences differ by less than N in length (i.e., internal buffer is
nonfull) or w is ∅ then data, if any, would be removed from r, (4) if more items have been
supplied to B than have been produced or r is non-∅ then w is or will be set to a non-∅
value. These properties, however, cannot hold if program F , with which B is composed, is
uncooperative; for instance, if F overwrites a data value in r with another data value then B
can never reproduce the overwritten value in w. Hence these properties—collectively called
the conclusion for B, or B.conc—hold conditioned upon two properties of F—collectively
called the hypothesis for B, or B.hypo—that F writes a value into r only if r is ∅ and F
sets w only to ∅.
Notation: |r̄|, |w̄| denote the lengths of r̄, w̄, respectively. 5

The property (P3) is,

〈∀ F :: B.hypo in F ⇒ B.conc in B [] F 〉 (P3)

where,

B.hypo :: r = d unless d ≺ r,
w = e unless w ≺ e

and,
B.conc :: w̄ ⊆ r̄,

|r̄| ≤ |w̄|+ N ,
|r̄| < |w̄|+ N ∨ w = ∅ 7→ r = ∅,
|r̄| > |w̄| ∨ r 6= ∅ 7→ w 6= ∅

Note that P3 is a property of program B. It says that if B is composed with any program F
that satisfies B.hypo, then B [] F satisfies B.conc. Also observe that B.hypo is symmetric
to (P1,P2), because the protocols for production and consumption by F are symmetric to
those of B, with the roles of r, w interchanged.

This specification makes no commitment about the internal structure of the buffer pro-
gram. For instance, the buffer program may move a data value to the adjacent buffer
space provided the latter is ∅; or, it may move a data value as far as possible toward the
destination. Similarly, little assumption is made about the internal structure of F .

9 Buffer Concatenation

Let B1 be a buffer of size M with input and output words, r, s, respectively, and B2 be
a buffer of size N with input and output words s, w, respectively. We show that B1 [] B2
implements a buffer of size M + N with input and output words r, w, respectively. The
arrangement is shown pictorially in Fig. 2.

9.1 Proof of P0 for B

Trivially, from P0 of B2.

9.2 Proof of P1,P2 for B

We are given

21

r B1 s B2 w

Size M Size N

B = B1 [] B2 has Size M + N

Figure 3: Concatenations of buffers B1, B2

r = d unless r ≺ d in B1 (P1 for B1)
s = f unless f ≺ s in B1 (P2 for B1)

and
s = f unless s ≺ f in B2 (P1 for B2)
w = e unless e ≺ w in B2 (P2 for B2)

We have to show, P1,P2 for B, where B = B1 [] B2:

r = d unless r ≺ d in B1 [] B2 (P1 for B)
w = e unless e ≺ w in B1 [] B2 (P2 for B)

We only show the proof of P1; P2’s proof is nearly identical.

r = d unless r ≺ d in B1 , from P1 of B1
r = d is stable in B2 , r is not accessible to B2
r = d unless r ≺ d in B1 [] B2 , from Corollary 1 to union theorem

9.3 Proof of P3 for B

We are required to prove P3 for B assuming P3 for B1 and B2 (and also using P1,P2 for
both B1, B2). More precisely, we have to show:

[〈∀ G :: B1.hypo in G ⇒ B1.conc in B1 [] G〉
∧〈∀ H :: B2.hypo in H ⇒ B2.conc in B2 [] H〉]

⇒ 〈∀ F :: B.hypo in F ⇒ B.conc in B [] F 〉
Equivalently,

〈∀ F :: [B.hypo in F ∧ 〈∀ G :: B1.hypo in G ⇒ B1.conc in B1 [] G〉
∧ 〈∀ H :: B2.hypo in H⇒ B2.conc in B2 [] H〉]

⇒ B.conc in B [] F (1)
〉

The properties B1.hypo,B1.conc (and similarly B2.hypo,B2.conc) are obtained from
B.hypo, B.conc of Section 3.2 by replacing w by s; these are shown below.

B1.hypo :: r = d unless d ≺ r,
s = f unless s ≺ f ,

B1.conc :: s̄ ⊆ r̄,
|r̄| ≤ |s̄|+ M ,
|r̄| < |s̄|+ M ∨ s = ∅ 7→ r = ∅,
|r̄| > |s̄| ∨ r 6= ∅ 7→ s 6= ∅

22

B2.hypo :: s = f unless f ≺ s,
w = e unless w ≺ e

B2.conc :: w̄ ⊆ s̄,
|s̄| ≤ |w̄|+ N ,
|s̄| < |w̄|+ N ∨ w = ∅ 7→ s = ∅,
|s̄| > |w̄| ∨ s 6= ∅ 7→ w 6= ∅

The structure of the proof is as follows. Consider an arbitrary F and let G = B2 [] F
and H = B1 [] F (because B2 [] F is the environment for B1 and B1 [] F for B2). We show,

B.hypo in F ⇒ B1.hypo in G and, (2)
B.hypo in F ⇒ B2.hypo in H (3)

Hence, from the antecedent of (1), we may then assume B1.conc in B1 [] G and B2.conc in
B2 [] H. ¿From the definitions of B, G, H, we have B1 [] G = B2 [] H = B1 [] B2 [] F = B [] F .
Hence, we have B1.conc in B [] F and B2.conc in B [] F . We will next deduce,

B1.conc in B [] F ∧ B2.conc in B [] F ⇒ B.conc in B [] F (4)

Proof of (2)

The two proofs, corresponding to the two conjuncts in B1.hypo, are shown below.

Proof of r = d unless d ≺ r in G

r = d unless d ≺ r in F , from B.hypo in F
r = d is stable in B2 , r is not accessed in B2
r = d unless d ≺ r in B2 [] F , corollary to union theorem 5

Proof of s = f unless s ≺ f in G

s = f unless s ≺ f in B2 , property P2 of B2
s = f is stable in F , s is not accessed in F
s = f unless s ≺ f in B2 [] F , corollary to union theorem 5

Proof of (3) is similar to proof of (2).

Proof of (4)

The proof has four parts, corresponding to the four conjuncts in B.conc. All properties are
of B [] F .

Proof of w̄ ⊆ r̄

w̄ ⊆ s̄ , from B2.conc
s̄ ⊆ r̄ , from B1.conc
w̄ ⊆ r̄ , from the above two 5

Proof of |r̄| ≤ |w̄|+ M + N

|r̄| ≤ |s̄|+ M , from B1.conc
|s̄| ≤ |w̄|+ N , from B2.conc
|r̄| ≤ |w̄|+ M + N , from the above two 5

Proof of |r̄| < |w̄|+ M + N ∨ w = ∅ 7→ r = ∅

23

|s̄| < |w̄|+ N ∨ w = ∅ 7→ s = ∅
, from B2.conc

s = ∅ 7→ r = ∅
, from B1.conc using implication rule for leads-to

|s̄| < |w̄|+ N ∨ w = ∅ 7→ r = ∅
, transitivity on the above two

|r̄| < |s̄|+ M 7→ r = ∅
, from B1.conc using implication rule for leads-to

|r̄| < |s̄|+ M ∨ |s̄| < |w̄|+ N ∨ w = ∅ 7→ r = ∅
, disjunction on the above two

|r̄| < |w̄|+ M + N ⇒ |r̄| < |s̄|+ M ∨ |s̄| < |w̄|+ N
, seen easily by taking the contrapositive

|r̄| < |w̄|+ M + N ∨ w = ∅ 7→ r = ∅
, from the above two using implication rule for leads-to 5

Proof of |r̄| < |w̄| ∨ r 6= ∅ 7→ w 6= ∅
Similar to the above proof. 5

10 A Refinement of the Specification

As a first step toward implementing a buffer, we propose a more refined (i.e., stronger)
specification of a buffer. Our proof obligation then is to show that this proposed specification
implies the specification given by properties P0,P1,P2,P3, of Section 3.2. In the next section
we show a program that implements this refined specification. Because of the result of
Section 4, any buffer of size N can be implemented by concatenating N buffers of size 1;
hence we limit our refinement to N = 1.

For N = 1, the buffer program has no internal words for data storage (recall that there
are N − 1 internal words for storage). Hence the only strategy for the buffer program is to
move data from r to w when w 6= ∅. This is captured in the following specification.

initially w = ∅ in B (R0)
(r, w) = (d, e) unless r ≺ d ∧ e ≺ w ∧ w = d in B (R1)
w ≺ r ensures r ≺ w in B (R2)

Property R1 says that the pair (r, w) changes only if a non-∅ data value is moved from r
to w when the latter is ∅. The progress property, R2, says that if data can be moved—i.e.,
r 6= ∅ ∧ w = ∅—then it will be moved.

Now we show that the refinement is correct, i.e. (R0,R1,R2) imply (P0,P1,P2,P3), given
in Section 3.2.

10.1 Proofs of P0,P1,P2

Proof of (P0): initially w = ∅ in B

Immediate from R0. 5
Proof of (P1): r = d unless r ≺ d in B

r = d ∧ w = e unless r ≺ d in B
, from R1 by weakening its consequence

r = d unless r ≺ d in B
, eliminating free variable e 5

Proof of (P2): w = e unless e ≺ w in B

24

r = d ∧ w = e unless e ≺ w in B
, from R1 by weakening its consequence

w = e unless e ≺ w in B
, eliminating free variable d 5

10.2 Proof of P3

The property P3 is of the form,

〈∀ F :: B.hypo in F ⇒ B.conc in B [] F 〉
We prove P3 from (R0,R1,R2) by first proving that

〈∀ F :: B.hypo in F ∧ (R0,R1) ⇒ (r̄ = w̄; r in B [] F)〉 (P4)

Then we show that

B.hypo in F ∧ (R2) ∧ (r̄ = w̄; r in B [] F) ⇒ (B.conc in B [] F) (P5)

10.2.1 Proof of P4

To show that r̄ = w̄; r is invariant in B [] F , the proof obligations are,

initially r̄ = w̄; r in B [] F and,
r̄ = w̄; r is stable in B [] F

The initial condition can be seen from,

initially (r̄, w̄) = (r, w) in B [] F , from (A0) of Section 3.1
and, initially w = ∅ in B [] F , from (R0) and the rule for union of B, F

Next we show that r̄ = w̄; r is stable in B [] F .

Proof of r̄ = w̄; r is stable in B [] F

r = d unless d ≺ r in F
, from B.hypo in F

w = e unless w ≺ e in F
, from B.hypo in F

(r, w) = (d, e) unless (d,w) ≺ (r, e) in F
, conjunction of the above two; (d,w) ≺ (r, e) stands for

(d = r ∧ w ≺ e) ∨ (d ≺ r ∧ w = e) ∨ (d ≺ r ∧ w ≺ e)
(r, w) = (d, e) unless r ≺ d ∧ e ≺ w ∧ w = d in B

, from (R1)
(r, w) = (d, e) unless

(d,w) ≺ (r, e) {1.1}
∨ (r ≺ d ∧ e ≺ w ∧ w = d) {1.2}

in B [] F (1)
, weakening the right sides of the above two and applying the union theorem

Next use the properties (A1,A2) of Section 3.1 and form their conjunction to get:

(r̄, w̄) = (x, y) ∧ (r, w) = (d, e) unless
[(r̄, w̄) = (x, y;w) ∧ r = d ∧ w 6= e] {2.1}

∨ [(r̄, w̄) = (x; r, y) ∧ r 6= d ∧ w = e] {2.2}
∨ [(r̄, w̄) = (x; r, y; w) ∧ r 6= d ∧ w 6= e] {2.3}

in B [] F (2)

25

Next form the conjunction of (1) and (2). Observe that every disjunct in the right side
of (1) and (2) imply (r, w) 6= (d, e), and therefore, conjunctions of these with the left sides
of (2) and (1), respectively, result in false.

(r̄, w̄) = (x, y) ∧ (r, w) = (d, e) unless
[(r̄, w̄) = (x, y;w) ∧ r = d ∧ w ≺ e] {3.1, from 1.1 ∧ 2.1}

∨ [(r̄, w̄) = (x; r, y) ∧ d ≺ r ∧ w = e] {3.2, from 1.1 ∧ 2.2}
∨ [(r̄, w̄) = (x; r, y; w) ∧ d ≺ r ∧ w ≺ e] {3.3, from 1.1 ∧ 2.3}
∨ [(r̄, w̄) = (x; r, y; w) ∧ r ≺ d ∧ e ≺ w ∧ w = d] {3.4, from 1.2 ∧ 2.3}

in B [] F (3)

We next set the free variable x to y; d in (3). The terms in the right side may be weakened
to yield

r̄ = w̄; r ∧ (w̄, r, w) = (y, d, e) unless r̄ = w̄; r ∧ (w̄, r, w) 6= (y, d, e) in B [] F
r̄ = w̄; r is stable in B [] F , Corollary 2 of Section 2.1.5 5

10.2.2 Proof of P5

Proof of B.hypo in F ∧ (R2) ∧ (r̄ = w̄; r in B [] F) ⇒ (B.conc in B [] F)
The proof consists of four parts; each part establishes one of the conjuncts in B.conc.

Proof of w̄ ⊆ r̄ in B [] F

Immediate from r̄ = w̄; r in B [] F 5
Proof of |r̄| ≤ |w̄|+ 1 in B [] F

|r̄| = |w̄|+ |r| in B [] F , from r̄ = w̄; r in B [] F
|r̄| ≤ |w̄|+ 1 in B [] F , |r| ≤ 1 5

The remaining two progress properties in B.conc can be established by first proving
w ≺ r 7→ r ≺ w in B [] F (P6)

Proof of (P6): w ≺ r 7→ r ≺ w in B [] F
r = d unless d ≺ r in F

, from B.hypo in F
d 6= ∅ is stable in F

, d is constant in F
r 6= ∅ ∧ r = d is stable in F

, conjunction of the above two
r 6= ∅ is stable in F

, eliminating free variable d (1)
w = e unless w ≺ e in F

, from B.hypo in F
w = ∅ is stable in F

, setting e to ∅ in the above
w ≺ r is stable in F

, conjunction of (1) and the above
w ≺ r ensures r ≺ w in B

, from (R2)
w ≺ r ensures r ≺ w in B [] F

, Corollary 2 of the union theorem on the above two
w ≺ r 7→ r ≺ w in B [] F

, from the definition of 7→ 5

26

In UNITY, a “substitution axiom” allows us to replace a predicate p by another predicate
q (and vice-versa) anywhere in the proof of a given program provided p ≡ q is an invariant
of the program. Since r̄ = w̄; r is an invariant of B [] F , we have

r = ∅ ≡ |r̄| < |w̄|+ 1 in B [] F (P7)

We use the substitution axiom in the following proof to replace r = ∅ by |r̄| < |w̄|+ 1. We
show one progress proof only; the other one is similar. In the following proof, all properties
are of B [] F .

Proof of |r̄| < |w̄|+ 1 ∨ w = ∅ 7→ r = ∅
r 6= ∅ ∧ w = ∅ 7→ r = ∅ , expanding (P6) and using the implication rule
r = ∅ 7→ r = ∅ , implication rule
r = ∅ ∨ w = ∅ 7→ r = ∅ , disjunction of the above two
|r̄| < |w̄|+ 1 ∨ w = ∅ 7→ r = ∅ , using (P7) to replace r = ∅ by |r̄| < |w̄|+ 1 5

11 An Implementation

The specification of Section 5 can be implemented by a program whose only statement
moves data from r to w provided w = ∅ (if r = ∅, the movement has no effect):

r, w := ∅, r if w = ∅
The proof that this fragment has the properties (R1,R2) is immediate from the definition

of unless and ensures. The initial condition of this program is w = ∅, and hence (R0) is
established.

The implementation for buffer of size N , N > 1, is the union of N such statements:
one statement each for moving data from a location to an adjacent location (closer to w)
provided the latter is ∅. We show how this program may be expressed in the UNITY
programming notation.

Rename the variables r and w to be b[0] and b[N], respectively. The internal buffer words
are b[1] through b[N − 1]. In the following program we write 〈[] i : 0 < i ≤ N :: t(i)〉 as a
shorthand for t(1) [] t(2) . . . [] t(N), where t(1), for instance, is obtained by replacing every
occurrence of i by 1 in t(i). The program specifies the initial values of b[1] through b[N]
to be ∅ (in the part followed by initially). The statements of the program are given after
assign; the generic statement shown moves b[i− 1] to b[i] provided the latter is ∅.

Program buffer {of N words, N ≥ 1}
initially 〈[] i : 0 < i ≤ N :: b[i] = ∅〉
assign 〈[] i : 0 < i ≤ N :: b[i− 1], b[i] := ∅, b[i− 1] if b[i] = ∅〉

end {buffer}

27

