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1 Introduction

Programs that accept inputs, compute and produce outputs are specified by describing all possible
inputs and the corresponding outputs. When the possible inputs are finite in number—as is the
case with combinatorial circuits, for instance—the input,output pairs may be explicitly enumerated.
However, for most programs it is convenient to describe input,output by logical propositions such
as a precondition-postcondition pair, or the weakest precondition.

In this paper, we are interested in systems that typically run forever, responding to changes in
some of their input variables by changing their internal states and/or some of their output variables.
Example of such a system is a feedback controller that responds to a sensor reading by adjusting
the valve opening, or a display program that responds to a keystroke by echoing the appropriate
character on the screen. Such systems, called reactive by Amir Pnueli, are ubiquitous in all modern
computer and communication systems. They cannot be specified merely by their input-output
pairs, because input may be provided and output extracted on a continuing basis. Furthermore,
these systems typically exhibit a high level of nondeterminism because the system may respond to
inputs from many sources in an apriori undetermined order: A telephone switch that is connected
to a number of users serves them in a seemingly random order.

We are interested in specifications of such systems for all the traditional reasons: We expect a
specification to be a contract between the user and the implementer; the user may assume nothing
more than what has been specified explicitly and the implementer must satisfy the specification
through his implementation. This allows the user programs to change as long as they all obey the
protocol set forth in the specification; similarly the implementation may change as long as it is
faithful to the specification.

We view specification not merely as a legal contract but additionally as a means (1) to deduce
new properties (of the “module” being specified), (2) to deduce properties of a system in which
the given module is a component, and (3) to implement the module by stepwise refinements of its
specification. Therefore, we require that a specification not merely be formal but also be in a form
that admits of effective manipulation. This requirement rules out specification schemes in which
program fragments (in some high level language) appear as part of specifications; typically, such
program fragments cannot be manipulated effectively.

A specification of a large system will typically be large. Therefore, in the best traditions of
software engineering, we have to structure the specification. Methodologies for program structuring
have evolved over the years; now, we know that a program may be decomposed into modules based
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on control flow or data access or implementation of a set of related issues. We also know that the
interfaces between modules should be narrow and well-defined. It is not clear how a specification
ought to be structured. The structuring need not follow the program decomposition boundaries. For
instance, we may view specification of user programs that access a common resource—say, a printer—
as one module, and the specification that the access should be exclusive—i.e., the specification of
mutual exclusion—as a separate module. However, when the user programs are implemented, the
implementation of mutual exclusion may be intertwined with the code for the use of the printer.

In this paper, we explore a number of issues related to specifications and structuring of specifi-
cations. We specify a “module” by listing its properties; to describe the properties we use UNITY
(Chandy and Misra [1988]). A short introduction to UNITY logic appears in Sec. 2. The logic is
limited in the sense that it can express only some of the safety and progress properties. In particular,
properties of the form, the program may deadlock, are not expressible within UNITY logic. Yet,
the logic has been found useful in a number of application areas—from message communication to
concurrent data access, from fault tolerance to systolic arrays. Sec. 3 contains specification of a finite
state system—a vending machine; this specification is contrasted with an event-based specification.
In Sec. 4, we show how to specify the problem of detecting termination of a message communicating
system; this requires specification of the underlying message communications system as well as the
requirements for termination detection. The specification problem for concurrent data objects is
treated in Sec. 5; a simple example—a bag in which producers store items and from which con-
sumers remove items—illustrates how objects, in general, may be succinctly specified. We discuss
several aspects of specification structuring in Sec. 6. The material in Sec. 5 is mostly from Misra
[1990].

2 A Brief Introduction to UNITY

A UNITY program consists of (1) declarations of variables, (2) a description of their initial values
and (3) a finite set of statements. We shall not describe the program syntax except briefly in Sec.
5.10 of this paper because it is unnecessary for understanding this paper. However an operational
description of the execution of a program is helpful in understanding the logical operators introduced
later in this section.

An initial state of a program is a state in which all variables have their specified initial values
(there can be several possible initial states if the initial values of some variables are not specified).
In a step of program execution an arbitrary statement is selected and executed. Execution of every
statement terminates in every program state. (This assumption is met in our model by restricting
the statements to assignment statements only, and function calls, if any, must be guaranteed to
terminate.) A program execution consists of an infinite number of steps in which each statement is
executed infinitely often.

This program model captures many useful notions in programming, such as: synchrony, by allow-
ing several variable values to be modified by a single (atomic) statement; asynchrony, by specifying
little about the order in which the individual statements are executed; processes communicating
through shared variables, by partitioning the statements of the program into subsets and identifying
a process with a subset; processes communicating via messages, by restricting the manner in which
shared variables are accessed and modified, etc. We shall not describe these aspects of the model;
however, it will become apparent from the examples in this paper that process networks can be
described effectively within this model.

2.1 UNITY logic

A fragment of UNITY logic, that is used in this paper, is described in this section.
Three logical operators, unless, ensures, and leads-to, are at the core of UNITY logic. Each of

these is a binary relation on predicates; unless is used to describe the safety properties, and the
other two to describe progress properties of a program.

Notation: Throughout this section p, q, r denote predicates which may name program variables,
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bound variables and free variables (free variables are those that are neither program variables nor
bound variables). 2

2.1.1 unless

For a given program

p unless q

denotes that once predicate p is true it remains true at least as long as q is not true. Formally (using
Hoare’s notation) p unless q may be deduced given that if p ∧ ¬q holds prior to execution of any
statement of the program then p ∨ q holds following the execution of the statement.

〈for all statements s of the program :: {p ∧ ¬q} s {p ∨ q}〉
p unless q

It follows from this inference rule that if p holds and q does not hold in a program state then
in the next state either q holds, or p ∧ ¬q holds; hence, by induction on the number of statement
executions, p ∧ ¬q continues to hold as long as q does not hold. Note that it is possible for p ∧ ¬q
to hold forever. Also note that if ¬p ∨ q holds in a state then p unless q does not tell us anything
about the next state.

Notation: We write 〈∀u :: P.u〉 and 〈∃u :: P.u〉 for universal quantification of u in P.u and
existential quantification of u in P.u, respectively. The dummy u could denote a variable, a statement
in a program, or even a program. Any property having a free variable (i.e., a variable that is neither
bound nor a program variable) is assumed to be universally quantified over all possible values of the
variable. Thus,

u = k unless u > k

where k is free, is a shorthand for

〈∀ k :: u = k unless u > k〉 . 2

Examples

1. Integer variable u does not decrease.
u = k unless u > k

or, u ≥ k unless false

2. A message is received (i.e., predicate rcvd holds) only if it had been sent earlier (i.e.,
predicate sent already holds).

¬rcvd unless sent 2

Example (Defining Auxiliary Variables)

Let u be an integer-valued variable and let v count the number of times u’s value has been
changed during the course of a program execution. The value of v is completely defined by

initially v = 0
u = m ∧ v = n unless u 6= m ∧ v = n + 1

The traditional way to define v, given a program in which u is a variable, is to augment the
program text with the assignment,

v := v + 1

whenever u’s value is changed. Variable v is called an auxiliary variable. Our way of defining v,
without appealing to the program text, is preferable because it provides a direct relationship between
u and v which may be exploited in specifications and proofs. 2
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2.1.2 Stable, Constant, Invariant

Some special cases of unless are of importance. The predicate p unless false, from definition, denotes
that p remains true forever once it becomes true; we write, “p stable” as a shorthand for “p unless
false.” An expression e is constant means e = x is stable, for all possible values x of e; then e never
changes value. If p holds in every initial state and p is stable then p holds in every state during any
execution; we then say that p is invariant.

2.1.3 ensures

For a given program,

p ensures q

implies that p unless q holds for the program and if p holds at any point in the execution of the
program then q holds eventually. The inference rule that allows us to deduce p ensures q is

p unless q ∧ 〈∃ statement s :: {p ∧ ¬q} s {q}〉
p ensures q

It follows from this inference rule that once p is true it remains true at least as long as q is
not true (from p unless q). Furthermore, from the rules of program execution, statement s will be
executed sometime after p becomes true. If q is still false prior to the execution of s then p ∧ ¬q
holds and the execution of s establishes q.

2.1.4 leads-to

For a given program, p leads-to q, abbreviated as p 7→ q, denotes that once p is true, q is or becomes
true. Unlike ensures, p may not remain true until q becomes true. The relation leads-to is defined
inductively by the following rules. The first rule is the basis for the inductive definition of leads-to.
The second rule states that leads-to is a transitive relation. In the third rule, p.m, for different m,
denote a set of predicates. This rule states that if every predicate in a set leads-to q then their
disjunction also leads-to q.

(basis)

p ensures q

p 7→ q

(transitivity)

p 7→ q , q 7→ r

p 7→ r

(disjunction) In the following m ranges over any arbitrary set, and it does not occur free in q.

〈∀ m :: p.m 7→ q〉
〈∃ m :: p.m〉 7→ q

Notes on Inference Rules

We have explained the meaning of each logical operator in terms of program execution. However,
neither the definitions nor our proofs make any mention of program execution. We use only the
inference rules, and a few rules derived from these definitions, in proofs; we believe that our proofs
are succinct because we avoid operational arguments about program executions.
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2.1.5 Derived Rules

The following rules for unless are used in this paper; for their proofs, see Chandy and Misra [1988]
and Misra [1988].

(reflexivity, antireflexivity)

p unless p , p unless ¬p

(consequence weakening)

p unless q , q ⇒ r

p unless r

(general conjunction and general disjunction)

In the following, m is quantified over some arbitrary set.

〈∀ m :: p.m unless q.m〉
〈∀ m :: p.m〉 unless 〈∀ m :: p.m ∨ q.m〉 ∧ 〈∃ m :: q.m〉 {general conjunction}
〈∃ m :: p.m〉 unless 〈∀ m :: ¬p.m ∨ q.m〉 ∧ 〈∃ m :: q.m〉 {general disjunction}

(Corollary: free variable elimination)

In the following, x is a set of program variables and k is free.

p ∧ x = k unless q

p unless q

(Corollary: stable conjunction)

p unless q , r stable
p ∧ r unless q ∧ r

We need the following facts about constants; see Misra [1989b] for proofs.

(constant formation)

Any expression built out of constants and free variables is a constant.

(constant introduction) For any function f over program variables u,

u = k unless u 6= k ∧ f(u) = f(k)
f constant

Corollary 1: For any predicate p over program variables u,

u = k unless u 6= k ∧ p

p stable

We use the following results about leads-to.

(Implication)
p ⇒ q

p 7→ q

The following rule allows us to deduce a progress property from another progress property and
a safety property.

(PSP)

p 7→ q , r unless b

p ∧ r 7→ (q ∧ r) ∨ b
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2.1.6 Substitution Axiom

Substitution axiom allows us to replace an invariant by true and vice versa, in any predicate. Thus,
if I is an invariant and it is required to prove that

p 7→ q ∧ I

it suffices to prove

p 7→ q .

2.2 Program Composition through union

Given two programs F, G, their union, written F G , is obtained by appending their codes
together: the initial conditions of both F, G are satisfied in F G (and hence, we assume that
initial conditions of F,G are not contradictory) and the set of statements of F G is the union of
the statements of F and G.

Programs F, G may be thought of as executing asynchronously in F G . The union operator
is useful for understanding process networks where each process may be viewed as a program and
the entire network is their union.

The following theorem is fundamental for understanding union. It says that an unless property
holds in F G iff it holds in both F and G; an ensures property holds in F G iff the
corresponding unless property holds in both components and the ensures property holds in at least
one component. (When there are multiple programs we write the program name with a property,
such as p unless q in F .)

Union Theorem:

p unless q in F G ≡ p unless q in F ∧ p unless q in G
p ensures q in F G ≡ (p unless q in F ∧ p ensures q in G)

∨ (p ensures q in F ∧ p unless q in G)

Corollary 1:

p unless q in F , p stable in G

p unless q in F G

Corollary 2:

e constant in F , e constant in G

e constant in F G

Corollary 3:

p stable in F , p invariant in G

p invariant in F G

Corollary 4:

p ensures q in F , p stable in G

p ensures q in F G

Note: When several programs are composed, the substitution axiom can be applied only with an
invariant of the composite program. Thus, in proving p unless q in F we cannot appeal to the
substitution axiom using an invariant of F , if F has to be composed with another program.
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2.2.1 Conditional Properties

The properties that we have described so far are of the form,

P in F

This states an unconditional property of F . We will find it useful to consider properties such as,

〈∀ G :: Q in G ⇒ P in F G〉

This says that if Q is a property of a program G then P is a property of F G . Since G is universally
quantified above, the given property is a conditional property of F . Conditional properties are used
to specify the properties of the environment with which F may be composed, and the resulting
properties of the composite program. Such properties will be crucial in specifications of reactive
systems because reactive systems typically assume certain facts about their environments.

2.3 A Specification Format

A specification (of a program) is a list of its properties. The properties are expressed as formula in
UNITY-logic. Properties may name free and bound variables as well as local and global variables
of the program. We declare all these variables explicitly in a specification.

A specification has four parts:

1. The name of the specification and a list of its parameters (along with their types). This is
much like a procedure name and its parameter list. The parameters are the global variables
of the program, i.e., the variables that may be accessed by other programs, or the ones that
are to be replaced by constants to create an instance of this specification.

2. A declaration section in which the free, bound, local and auxiliary variables are defined. Pro-
gram names that appear free in the specification are declared here.

3. A hypothesis section—written as hypo—that states the antecedents of all the conditional
properties. The assumptions about other programs—for instance, the environment of this
program—as well as definitions of auxiliary variables are listed here.

4. A conclusion section—written as conc—that states the consequents of all the conditional
properties, as well as all the unconditional properties. These are the properties that have to
be established by the program given that the properties in the hypothesis section hold.

A specification does not explicitly name the program it specifies; the symbol ‘*’ is used in the
body of the specification to refer to this program.

As an example, consider the following specification.

spec test(y : integer)
declare

free G : program
hypo

y ≤ 0 stable in G
conc

y = 0 7→ y < 0 in ∗ [] G
end {test}

This specification says that if the environment, G, of the given program (referred to by ‘*’) never
changes y from nonpositive to positive then in the combined program (i.e., ∗ [] G) starting in a state
where y = 0 a state will be reached where y < 0. The variable y is, presumably, shared between ∗
and G. A given program satisfies this specification if we can deduce from the program code and the
given hypothesis, hypo, that the conclusion, conc, holds.
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Convention About the Scope of Free Variables

The free variables are quantified universally over both the hypothesis and the conclusion. As an
example, suppose y is a parameter, k is a free variable, both of type integer, and G is a free variable
of type program. The hypo and conc are as follows.

hypo y ≤ k stable in G
conc y = k 7→ y < k in ∗ [] G

We interpret the specification to mean

〈∀ G , k ::
y ≤ k stable in G

⇒ y = k 7→ y < k in ∗ [] G
〉

If it is desired to express the following property

〈∀ G ::
〈∀ k :: y ≤ k stable in G〉

⇒ 〈∀ k :: y = k 7→ y < k in ∗ [] G〉
〉

then k should be declared as a bound variable and the hypo and conc should read as follows.

hypo 〈∀ k :: y ≤ k stable in G〉
conc 〈∀ k :: y = k 7→ y < k in ∗ [] G〉

Convention About Naming Programs with Properties

A property written without a program name would be taken to be a property of program ‘*’.

Locality Rule

A variable local to one program is constant in all other programs. More generally, an expression
that names no parameter, local or auxiliary variable of program F is constant in F .

2.4 Proving That a Program Meets a Specification

We view a specification as a conditional property. To show that a given program implements this
conditional property we use the technique given in Sec. 7.2.3 of Chandy and Misra [1988]. Briefly, we
take the hypo-section as given and then use the program text to deduce the conc-section. However,
since the program and the specification may name different variables it is required to establish a
correspondence between them; the following rules are used.

• The parameters of the program and the specification have to be identical in number and
type, much like the formal and actual parameters of procedures. The program parameters are
replaced by the specification parameters in order to carry out the proof. Equivalently, axioms
of the form x = y can be added where x, y are the corresponding program and specification
parameters.

• A mapping function should be specified to map the local variables of the program to the local
variables of the specification; this is in the spirit of Hoare [1972] where such functions were
introduced to map concrete representations to abstract representations of data. Thus, if b is
a local variable in a specification that is implemented by a pair of local variables, say y, z, of
the program where
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b = y + z
we add b = y + z as an axiom.

• No special treatment is required for auxiliary variables, because these are defined by the
properties in the hypo-section.

• No special treatment for free or bound variables are required.

The same technique applies in proving that a specification T is a refinement of specification S.
Essentially, we have to show that T ⇒ S. Therefore, as before, from the hypo-section of S and T
we deduce the conc-section of S. Variable correspondence has to be established as given above.

3 Specification of a Vending Machine

The following example has been inspired by Hoare [1984].
A vending machine has a coin slot into which a user can put one or two small coins or one large

coin. Two small coins are equal in value to a large coin. The vending machine has two buttons, for
requesting a small or a large chocolate. If the button is pressed after depositing an adequate amount
of money—a small coin for a small chocolate or a large coin for a large chocolate—then the machine
dispenses the appropriate kind of chocolate. If a small chocolate is desired and a large coin (or two
small coins) have been deposited then the machine dispenses the chocolate as well as a small coin.

The behavior of the user and the vending machine can be described by the diagram in Figure
1. Each state is a vertex; edges represent state transition. The label on an edge is the name of the
event that causes the state transition. The initial state—designated by a circle—is at the top.

The diagram of Fig. 1 is a succinct description of a finite state device. The transitions in the
diagram are effected by the user or the machine. The specification is best understood as defining
certain sequences of events to be allowable. Thus,

uds uds url mdl

is an allowable sequence whereas

uds mdl

is not an allowable sequence.

The specification constrains not only the behavior of the machine but also the behavior of user,
such as: The user is not allowed to deposit a small coin and demand a large chocolate; the behavior
of the machine in such a case is undefined.

3.1 A Specification in UNITY

Our approach to specification of the vending machine is to clearly separate the two components of
the system: user and V M (for vending machine). Each of these components can be regarded as a
program. These two programs interact through the following shared variables

ci {coin input} : (⊥, s, l)
b {button} : (⊥, s, l)
d {dispenser} : (⊥, s, l)
co {coin output} : boolean

The variable ci models the coin slot which either holds no coin (⊥), a small coin (s) or a large
coin (l); two small coins are treated as a large coin. The two buttons are modeled by a variable b
whose value is ⊥ when no button has been pressed, s when a small chocolate has been requested
and l when a large chocolate has been requested; the possibility of requesting both chocolates has
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urlurs
mdc

urs

•

uds

uds udl
mdlmds

•

••

•

mdl: machine dispenses large chocolate

mds: machine dispenses small chocolate

mdc: machine dispenses coinuds: user deposits small coin
udl: user deposits large coin
urs: user requests small chocolate
url: user requests large chocolate

Figure 1: A Vending Machine

been ignored. The dispenser for chocolate is modeled by the variable d with values ⊥ (no chocolate
has been dispensed), s (a small chocolate has been dispensed) and l (a large chocolate has been
dispensed). The coin dispenser, co, is set true when a coin is dispensed.

In the following description, we define ⊥< s < l. Only the user program may increase ci. Also,
the user program may change b from ⊥ to s or ⊥ to l; however, the user program may not change b
from s to l or to ⊥. The user program may set d to ⊥ (by removing the chocolate) or co to false (by
removing the dispensed coin); we do not, however, need to specify all these properties of the user in
specifying the vending machine.

First, we investigate the safety properties of the vending machine; how does the machine change
values of the variables ci, b, d, co? Observe that the machine may change these values only if the
button is pressed (i.e., b >⊥) and at least the required amount of money has been deposited (i.e.,
ci ≥ b). In this case the machine will set ci to ⊥, b to ⊥, d to the desired type of chocolate (the
old value of b) and co to true provided the old value of ci exceeded that of b. Formally (using free
variables CI and B)

(ci, b) = (CI,B) unless CI ≥ B >⊥ ∧ (ci, b, d, co) = (⊥,⊥, B, CI > B) in V M (1)

Next, we investigate the progress properties of V M . We require that the vending machine
dispense the appropriate chocolate and the change, provided an adequate amount of money has
been deposited and the proper button pressed, i.e.,

〈∀ F :: (ci, b) = (CI, B) ∧ CI ≥ B >⊥ 7→
(ci, b, d, co) = (⊥,⊥, B, CI > B) in F V M

〉 (2)

Unfortunately, this property is impossible to implement if F operates in an arbitrary manner. For
instance, consider a user that deposits a small coin—setting ci to s—and then requests a small
chocolate—setting b to s. According to (2), it is then guaranteed that eventually ci, b will both
become ⊥. However, the following scenario is possible. Since we have not constrained the user in
any way, the user may remove money from the coin slot, thereby setting ci to ⊥ while b remains
set to s. Under this condition, (1) guarantees that V M will change neither ci nor s (because the
right side of the property, CI ≥ B, is now false). Thus the required progress property cannot be
established by any action of V M .
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This situation is typical in specifications of reactive systems. Some property of the environment—
in this case, the user—has to be assumed before a progress property of the entire system can be
asserted. For this example, we assume that the user can only increase ci, and once the user presses
a button, either s or l, it cannot change the selection. Formally, in the user program F for all k
where k is ⊥, s or l,

ci ≥ k stable in F ,
b = s stable in F ,
b = l stable in F

Under these conditions we require

(ci, b) = (CI,B) ∧ CI ≥ B >⊥ 7→ (ci, b, d, co) = (⊥,⊥, B, CI > B) in F V M

The complete specification for the vending machine is given below.

spec A (ci, b, d : (⊥, s, l), co : boolean)
declare

free CI, B : (⊥, s, l),
bound k : (⊥, s, l),
free F : program

hypo
〈∀ k :: ci ≥ k stable in F 〉

b = s stable in F
b = l stable in F

conc
initially (ci, b, d, co) = (⊥,⊥,⊥, false)
(ci, b) = (CI,B) unless CI ≥ B >⊥ ∧ (ci, b, d, co) = (⊥,⊥, B, CI > B)
(ci, b) = (CI,B) ∧ CI ≥ B >⊥ 7→ (ci, b, d, co) = (⊥,⊥, B, CI > B) in ∗ [] F

end {A}

Observe that the initial condition and the unless property of *, given in conc, have to be
established from the text of * alone, whereas in proving the leads-to property of ∗ [] F , given in
conc, we can make use of the properties of F , given in hypo, as well.

3.2 Implications of the Specification

The specification A of the vending machine describes what the machine is supposed to do in certain
situations for which the diagram of Fig. 1 provides no information. In particular, specification
A allows the user to press a button and then deposit the appropriate coin. Certain undesirable
behaviors of the user will now be treated as type violations—for instance, user depositing too many
coins may cause ci to assume a value outside its type—rather than as a violation of the specification.
In any case, the specification of the vending machine restricts the user behavior only minimally.

It is interesting to prove that specification A meets our intuition; for instance, we may want to
show that if ci = s and b = s then a small chocolate will be dispensed, i.e.

(ci, b) = (s, s) 7→ d = s in F V M

provided F meets the given constraints in hypo and V M satisfies specification A.
From the progress property in the specification, by instantiating both CI and B to s, we get

(ci, b) = (s, s) ∧ s ≥ s >⊥ 7→ (ci, b, d, co) = (⊥,⊥, s, CI > B) in F V M

Since s ≥ s >⊥, we simplify the lhs to (ci, b) = (s, s). We weaken the rhs, using the implication
rule, to d = s. This gives us, as desired,
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(ci, b) = (s, s) 7→ d = s in F V M

It is also easy to see that program V M never increases ci, i.e.

ci ≤ CI stable in V M

To prove this property, we use Corollary 1 of Sec. 2.1.5: for variables u, predicate p over u and free
variables k,

u = k unless u 6= k ∧ p

p stable

From the unless property in conc of specifcation A, weakening the consequence

(ci, b) = (CI,B) unless (ci, b) 6= (CI,B) ∧ ci ≤ CI

Therefore, ci ≤ CI stable in V M . Similarly, b ≤ B stable in V M—i.e., the machine never presses
the button—can be established.

4 Specification of Termination Detection in a Ring

A message communicating system consists of a set of processes connected by directed channels.
Each channel is directed from exactly one process to another; the messages in the channel are the
ones sent by the former process to the latter which are, as yet, undelivered. A process is in one of
two states: idle (i.e., quiescent) or nonidle. An idle process sends no message, and it remains idle
as long as it receives no message. A nonidle process may become idle (autonomously). A message
is received along a channel only if it had been sent along that channel. The system is terminated
when all processes are idle and all channels are empty (i.e., have no messages in them) because all
processes will stay idle—since the first process to become nonidle has to first receive a message—and
all channels will remain empty—since idle processes send no message. It is required to develop an
algorithm by which processes can determine that the system is terminated.

One of the more difficult aspects of this problem is to specify it precisely: What is given, what
is to be designed, and what properties should the design satisfy. We specify the problem in this
section. We do not propose algorithms for this problem; the reader may consult Misra [1989a] or
Chandy and Misra [1990] for algorithms.

In this paper, we limit ourselves to a system in which the processes are connected in a unidirec-
tional ring; the general case, described and solved in Chandy and Misra [1990], is almost analogous
though more notation is needed in that case. Our purpose here is primarily to acquaint the reader
with UNITY-style specification, problem decomposition and proofs, and only secondarily with the
problem of termination detection.

4.1 Specification of the Underlying Message Communication System

Let there be N processes arranged in a unidirectional ring, the successor of the ith process has index
i′. The following variables are defined—for all i (in this problem i is quantified over all indices in
the given ring):

s.i, the number of messages sent by i (to i′)
r.i, the number of messages received by i (from its predecessor)
q.i, a boolean variable that is true if and only if process i is idle

There is no notion of a process in UNITY. Hence we regard the entire process network as a
program, D, that manipulates the variables given above, for all i. The following properties of D
have been described earlier: the number of messages sent by a process is at least the number received
by its successor, and both these numbers are nonnegative (D1, given below); the number of messages
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sent and received by a process are nondecreasing (D2); a process remains idle as long as it receives
no message (D3); and an idle process has to become nonidle first in order to send a message (D4). In
the following specification s, r, q are defined to be arrays which could be indexed by process indices.

spec ring (s, r : array[process] of nat, q : array [process] of boolean)
declare

free i : process,
free m,n : nat

conc
{D1} s.i ≥ r.i′ ≥ 0 invariant
{D2} r.i ≥ m stable

s.i ≥ n stable
{D3} q.i ∧ r.i = m unless r.i > m
{D4} q.i ∧ s.i = n unless ¬q.i ∧ s.i = n

end {ring}

Assume that the given program, D, meets the specification ring, i.e., the properties, D1 −D4,
are the only properties of D that we will assume. There are several aspects of the specification that
are worth noting. First, we do not assume that the channels are FIFO, i.e., messages sent along a
channel may be delivered in a different order from the sending order. Second, there is no guarantee
that a message will be delivered. Third, several processes may receive and/or send messages in one
step; however a process may not receive a message, become nonidle and send a message all in one
step (from D4, a process can send a message in a step provided it is nonidle at the beginning of the
step). The goal of the specification is to make the minimum number of assumptions about D that
is required in order to detect its termination.

Note: D3, D4 may be replaced by their conjunction

q.i ∧ r.i = m ∧ s.i = n unless r.i > m ∧ s.i = n.

It can be shown that the above property is equivalent to D3 and D4. 2

4.2 Definition of Termination

We have informally described termination as “all processes are idle and all channels are empty (i.e.,
for each channel, the number of messages sent equals the number received).” We will show that
none of the variables can change once the termination condition holds.

Let,

T ≡ 〈∀ i :: q.i ∧ s.i = r.i′〉

Observe that proving T to be stable only establishes that no q.i will change (become false) once T
holds; however, it is possible for r.i, s.i to change while preserving s.i = r.i′, for all i. Hence, we
prove below that T ∧ 〈∀ i :: r.i = m.i〉 is stable where m.i’s are free variables.

D5. T ∧ 〈∀ i :: r.i = m.i〉 is stable in D.

Proof of D5: The result is proven by taking the conjunction of D3, D4 and then applying the
general conjunction rule over all i. In the following, all properties are of D.

q.i ∧ r.i = m.i ∧ s.i = m.i′ unless r.i > m.i ∧ s.i = m.i′

, replacing m,n by m.i,m.i′ in D3, D4 and then taking their conjunction
〈∀ i :: q.i ∧ r.i = m.i ∧ s.i = m.i′〉 unless

〈∀ i :: (q.i ∧ r.i = m.i ∧ s.i = m.i′) ∨ (r.i > m.i ∧ s.i = m.i′)〉 ∧
〈∃ i :: r.i > m.i ∧ s.i = m.i′〉
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, taking general conjunction of the above over all i (1)

The left side of (1)
≡ 〈∀ i :: q.i ∧ s.i = r.i′〉 ∧ 〈∀ i :: r.i = m.i〉
≡ T ∧ 〈∀ i :: r.i = m.i〉

The first conjunct in the right side of (1) ⇒ 〈∀ i :: s.i = m.i′〉
The second conjunct in the right side of (1) ⇒ 〈∃ i :: r.i > m.i〉
Hence the right side of (1)
⇒ 〈∀ i :: s.i = m.i′〉 ∧ 〈∃ i :: r.i > m.i〉
⇒ 〈∃ i :: r.i′ > m.i′ ∧ m.i′ = s.i〉

, replacing 〈∃ i :: r.i > m.i〉 by 〈∃ i :: r.i′ > m.i′〉
≡ false

, using the substitution axiom and s.i ≥ r.i′ from (D1) 2

Note: In using the substitution axiom in the last step of proof of D5, we have anticipated that
s, r will not be changed by the environment of D and hence s.i ≥ r.i′ is an invariant of the entire
program (i.e., D and its environment). 2

D6. T is stable in D.

Proof of D6: Eliminate the free variables m.i (using the corollary from Sec. 2.1.5) from D5. 2

4.3 Specification of Termination Detection

Our goal is to design a program R that detects termination of D. More precisely, let V T be a
variable that only R can change. We have to design R such that

V T ⇒ T invariant in R D
and T 7→ V T in R D

The first property says that if V T is true then D is terminated. The second property guarantees
that V T will be set true eventually if T becomes true. More formally, the following specification
(of R) states that it can access s, r, q but not modify them, and, if the specification ring is met by
program D then the occurrence of T (in D) will be detected by V T (in R [] D). (The symbol, T , is
an abbreviation for a boolean expression, as defined in Section 4.2.)

spec detect (s, r : array [process] of nat,
q : array [process] of boolean,

V T : boolean)
declare

free D : program
hypo

ring in D
conc

s, r, q constant
V T ⇒ T in ∗ [] D
T 7→ V T in ∗ [] D

end {detect}

This type of specification of a program to be designed (in this case, R) is quite common: We are
given a specification of an environment in which the program is to operate (in this case D), a list of
properties of the program to be designed and the properties of the overall system.
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5 Specifications of Concurrent Objects

An object and its associated operations may be specified in many ways. One way is to give an
abstract representation of the object data structure (viz., representing a queue by a sequence) and
the effects of various operations on this abstract representation (Hailpern [1982], Hayes [1987],
Lamport [1989]). Another way (Guttag [1977]) is to leave the representation aspects unspecified
but to give a set of equations that relate the effects of various operations (the equations define a
congruence relation in a term algebra). In many such specification schemes it is assumed that (1)
each operation on an object is deterministic (i.e., applying the operation to a given state of the object
results in a unique next state and/or unique values being returned), (2) an operation once started
always terminates in every state of the object, and (3) operations are not applied concurrently. In
many cases of interest arising in applications such as operating systems, process control systems and
concurrent databases, these assumptions are rarely met. For instance, a “queue object” acts as an
intermediary between a producer and a consumer, temporarily storing the data items output by the
producer and later delivering them to the consumer. The queue object is required to (1) deliver
data in the same order to the consumer as they were received from the producer, (2) receive data
from the producer provided its internal queue spaces are nonfull, and (3) upon demand, send data
to the consumer provided its internal queue spaces are nonempty. Requests from the producer and
the consumer may be processed concurrently: The producer is delayed until there is some space in
the queue and the consumer is delayed until there is some data item in the queue. Observe that a
request from the producer, to add a data item to the queue, may not terminate if the queue remains
full forever, and similarly, a request from the consumer may not terminate if the queue remains
empty forever.

In this section, we propose a specification scheme for concurrent objects that allows effective ma-
nipulations of specifications and admits nondeterministic, nonterminating and concurrent operations
on objects. Our approach is to view a concurrent object as an asynchronous communicating process.
Such a process can be specified by describing its initial state, how each communication—send or
receive—alters the state, and the conditions under which a communication action is guaranteed to
take place. On the other hand, since the internal state can be determined from the sequence of
communications (provided the process is deterministic), the process can also be specified in terms
of the sequence of communications in which it engages. The point to note is that the internal state
and the sequence of communications can be viewed as auxiliary variables which may be altered as a
result of communications. Our specification scheme allows us to define auxiliary variables and state
properties using these variables. We advocate using any auxiliary variable that allows a simple and
manipulable specification, leaving open the question whether it is preferable to use “observable”
input-output sequences or “unobservable” internal states.

The main example treated in this paper is a bounded bag (or multiset). Sec. 5.1 contains
a methodology of specification; Sections 5.2 and 5.3 contain, respectively, an informal description
and a formal specification of this object. We demonstrate the usefulness of the specification by
showing (in Sec. 5.5) that concatenations of two bags results in a bag of the appropriate size. The
specification in Sec. 5.3 is based on an auxiliary variable that encodes the internal state. We provide
an alternative specification in Sec. 5.7 that uses the sequences of input/output as auxiliary variables;
we show that this specification is a refinement of the earlier one. Sec. 5.8 contains specifications for
a “queue” and a “stack.” We show that a queue implements a bag and a stack implements a bag,
showing in each case that the specification of the former implies the specification of the latter. Sec.
5.9 contains a refinement of the bag specifications of Sec. 5.3, and Sec. 5.10 gives an implementation
of the specification of Sec. 5.9.

Most proofs are given in complete detail to emphasize that such proofs need not be excessively
long or tedious, as is often the case with formal proofs. A preliminary version of this work appears
in Misra [1990]. The specifications and the proofs have been considerably simplified in the current
version.
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Figure 2: A Program B and its environment F

5.1 Specification Methodology

We treat a concurrent object as an asynchronous communicating process. A process and its environ-
ment communicate over channels that can typically hold several items of data. To simplify matters,
we dispense with channels; we assume that communications are through certain shared variables
each of which can hold at most one item of data. The access protocol to the shared variables is
as follows: An “input shared variable” of the object can be written only by the environment and
read by the object, an “output shared variable” of the object can be written only by the object and
read by the environment. Typically, we introduce a shared variable corresponding to each operation
on the object (if an operation also delivers a result, we may require two shared variables—one to
request the operation and the other to store the result).

In Figure 2, B implements a bag that is shared by a group of producers and consumers. Producers
add items to the bag by successively storing them in r; consumers remove successive items from w.
Program F is the environment of B, representing the producers and the consumers. There might
be multiple producers and consumers or even a single process that is both the producer and the
consumer; the exact number is irrelevant for the specification. The values that can be written into
r, w are, again, irrelevant for specification. However we do postulate a special value, φ, which is
written into a variable to denote that it is “empty,” i.e., it contains no useful data. The protocol
for reading and writing is as follows. Program F writes into r only if r = φ; program B reads a
value from r only if r 6= φ and then it may set r to φ. Program B stores a value in w only if w is
φ; program F reads from w and it may set w to φ to indicate that it is ready to consume the next
piece of data.

Note: A more realistic model would assume that each producer and each consumer has a separate
variable through which it communicates with B; i.e., the ith producer writes into a variable ri and
the jth consumer reads from wj . Figure 3 shows the pattern of communication in this case. Here C
stands for a “collector” program that copies some ri into r (never ignoring any ri forever), and D is
a “distributor” program that copies w to some empty wj (again in a fair manner).

The specification of the bag program in this case consists of the specifications of B, C and D.
The specifications of C, D are quite straightforward; that is why we concentrate on the specification
of B alone. 2

To formalize the access protocol, we introduce an ordering relation, ≺, over the data values and
φ as follows: φ is “smaller than” all non-φ values, i.e.,

X ≺ Y ≡ X = φ ∧ Y 6= φ

Then it follows that

X ¹ Y ≡ X = φ ∨ X = Y

Property P1, below, states that B removes only non-φ data from r and it may set r to φ. Property
P2 states that B writes only non-φ values into w provided w is φ. In the following, R, W are free
variables (of type data; we assume that φ is a value of type data).
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P1. r ¹ R stable in B
P2. W ¹ w stable in B

The access protocol specification as given by P1 and P2 is identical for all concurrent objects.
The initial conditions can usually be specified for output shared variables; for this example

P0. initially w = φ in B

Next, we specify the safety properties—the effect of reading inputs or how the outputs are
related to the current state—and progress properties—the conditions under which inputs are read
and outputs are written. These properties are specific to each object. They are explored next for
bags.

5.2 Internal State as an Auxiliary Variable (An Informal Specification)

In the following specification we introduce an auxiliary variable, b, that represents the bag of data
items internally stored by B. Variable b is local to B. Properties P0, P1, P2 have been described
before. The size of b does not exceed N , a given positive integer (Property P3). Property P4 states
that any item read from r is added to b or stored in w (and r is then set to φ) and any item removed
from b is stored in w (w was φ previous to this step); hence the union of bags r, b, w remains constant.
Property P5 states that independent of the environment if the bag is nonfull (|b| < N) an item, if
there is any, will be removed from r and analogously, if the bag is nonempty (|b| > 0) w is or will
become non-φ.

Notation: All bags in this paper are finite. We treat r, w as bags of size at most 1. Union of bags
u, v is written as u + v; the bag u− v is the bag obtained by removing all common items of u and v
from u. The value φ is treated as an empty bag.

5.3 Specification of a Concurrent Bag of Size N,N > 0

spec P (r, w : data, N : positive constant)
declare

local b : bag of data,
free R,W : data,
free F : program
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conc
{P0} initially b + w = φ
{P1} r ¹ R stable
{P2} W ¹ w stable
{P3} |b| ≤ N invariant
{P4} r + b + w constant
{P5} {P5.1} |b| < N 7→ r = φ in ∗ [] F

{P5.2} |b| > 0 7→ w 6= φ in ∗ [] F
end {P}

Program B satisfies specification P if it is possible to “construct” b from the local variables of B
such that the constraints P0–P5 are met. The program may not actually have a variable named b;
it is merely required that the value of b be computable from the values of the local variables of B.

Since b is a local variable of B, it is not accessed by the environment F . Using locality rule,
|b| ≤ N stable in F . Since |b| ≤ N is invariant in B, using Corollary 3 of Sec. 2.2,

P6. 〈∀ F :: |b| ≤ N invariant in B F 〉

Observe that P5 is a property of program B; it says that if B is composed with any program F
then certain properties hold in the composite program, B F . In particular, P5 does not require
F to obey the appropriate protocols in accessing r, w. A different bag specification is given in Sec.
5.7 where F is assumed to access r, w appropriately.

5.4 Deducing Properties from the Specification

Suppose program B satisfies specification P . We deduce one safety and one progress property.

P7. w = φ unless |b| < N ∨ r = φ in B

In the following proof all properties are in B.

|r + b + w| ≤ N + 1 constant
, constant formation rule applied to P4

|r + b + w| ≤ N + 1 stable
, a constant predicate is stable

w = φ unless w 6= φ
, antireflexivity (see Sec. 2.1.5)

w = φ ∧ |r + b + w| ≤ N + 1 unless w 6= φ ∧ |r + b + w| ≤ N + 1
, stable conjunction (Sec. 2.1.5) applied to the above two

w = φ ∧ |r + b| ≤ N + 1 unless |r + b| ≤ N
, rewriting the lhs and weakening the consequence (Sec. 2.1.5)

w = φ unless |r + b| ≤ N
, substitution axiom applied to the lhs with invariant |r + b| ≤ N + 1 (see P6)

w = φ unless |b| < N ∨ r = φ
, consequence weakening (Sec. 2.1.5) 2

P8. If w = φ stable in F then
w = φ 7→ |b| < N ∨ r = φ in B F

In the following proof all properties are in B F unless otherwise stated.

w = φ stable in F , given
w = φ unless |b| < N ∨ r = φ in B , from P7
w = φ unless |b| < N ∨ r = φ in B F , Corollary 1 of Sec. 2.2
|b| > 0 7→ w 6= φ , from P5.2
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Figure 4: Concatenation of bags B1, B2

|b| > 0 ∧ w = φ 7→ |b| < N ∨ r = φ , PSP on the above two
|b| ≤ 0 ∧ w = φ 7→ |b| < N , implication rule and using N > 0.
w = φ 7→ |b| < N ∨ r = φ , disjunction on the above two

5.5 Bag Concatenation

Let B1 implement a bag of size M,M > 0, with input, output varibles, r and v, respectively, and
B2 implement a bag of size N,N > 0, with input, output variables v and w, respectively. We show
that B = B1 B2 implements a bag of size M + N + 1 with input, output variables r and w,
respectively. The arrangement is shown pictorially in Fig. 4. Observe that r and w are different
variables (i.e., B1, B2 are not connected cyclically) and hence, r cannot be accessed by B2 nor can
w be accessed by B1.

We first rewrite the properties from the specification of Sec. 5.3 for B1, B2. In the following,
R, V, W are free variables.

There exists b1, local to B1, such that There exists b2, local to B2, such that
P0. initially b1 + v = φ in B1 initially b2 + w = φ in B2
P1. r ¹ R stable in B1 v ¹ V stable in B2
P2. V ¹ v stable in B1 W ¹ w stable in B2
P3. |b1| ≤ M invariant in B1 |b2| ≤ N invariant in B2
P4. r + b1 + v constant in B1 v + b2 + w constant in B2
P5. 〈∀ G :: 〈∀ H ::

(P5.1) |b1| < M 7→ r = φ in B1 G |b2| < N 7→ v = φ in B2 H
(P5.2) |b1| > 0 7→ v 6= φ in B1 G |b2| > 0 7→ w 6= φ in B2 H

〉 〉

The properties of B, to be proven, are (again from Sec. 5.3)

There exists b, local to B, such that
P0. initially b + w = φ in B
P1. r ¹ R stable in B
P2. W ¹ w stable in B
P3. |b| ≤ M + N + 1 invariant in B
P4. r + b + w constant in B
P5. 〈∀ F ::

(P5.1) |b| < M + N + 1 7→ r = φ in B F
(P5.2) |b| > 0 7→ w 6= φ in B F

〉
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We start the proof by defining b to be b1 + v + b2. To show that b is local to B observe that
b1+v+b2 is constant in the environment F since none of the variables—b1, v or b2—can be accessed
by F .

Proof of P0: All properties in this proof are in B.
initially b1 + v = φ , from P0 of B1
initially b2 + w = φ , from P0 of B2
initially b1 + v + b2 + w = φ , from the above two
initially b + w = φ , definition of b 2

Proof of P1:
r constant in B2 , r cannot be accessed by B2 (locality)
r ¹ R stable in B2 , constant formation; a constant predicate is stable
r ¹ R stable in B1 , from P1 of B1
r ¹ R stable in B1 B2 , from Corollary 1 of Sec. 2.2 2

Proof of P2: Similar to the proof of P1. 2

Proof of P3:
|b1| ≤ M invariant in B1 B2 , from P6 applied to B1 (with F = B2)
|v| ≤ 1 invariant in B1 B2 , definition of v
|b2| ≤ N invariant in B1 B2 , from P6 applied to B2 (with F = B1)
|b1 + v + b2| ≤ M + N + 1 invariant in B1 B2 , from the above three 2

Proof of P4: r + b + w = r + b1 + v + b2 + w
r + b1 + v constant in B1 , from P4 of B1
b2 + w constant in B1 , b2 and w cannot be accessed by B1
r + b1 + v + b2 + w constant in B1 , constant formation rule
r + b1 + v + b2 + w constant in B2 , similarly
r + b1 + v + b2 + w constant in B1 B2 , Corollary 2 of Sec. 2.2 2

Proof of P5: Consider any arbitrary F . Setting G to B2 F in P5 for B1 we get
1. |b1| < M 7→ r = φ in B1 B2 F
2. |b1| > 0 7→ v 6= φ in B1 B2 F

Similarly, setting H to B1 F in P5 for B2 we get
3. |b2| < N 7→ v = φ in B1 B2 F
4. |b2| > 0 7→ w 6= φ in B1 B2 F

We will only show P5.1 for B, i.e.
|b| < M + N + 1 7→ r = φ in B F

We use the following fact that is easily seen from the implication and disjunction rules for leads-to.

q 7→ q′

p ∨ q 7→ p ∨ q′

In the following proof all properties are in B F , i.e., B1 B2 F .

|b| < M + N + 1
⇒ |b1| < M ∨ v = φ ∨ |b2| < N , since b = b1 + v + b2
7→ |b1| < M ∨ v = φ , above fact about 7→ and (3).
7→ |b1| < M ∨ r = φ , above fact about 7→ and P8 for B1 (note, v = φ stable in B2 F )
7→ r = φ , above fact about 7→ and (1).
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5.6 A Note on the Bag Specification

It is interesting to note that the specification of Sec. 5.3 does not apply if N = 0, i.e., the internal
space for storing bag items is empty. In such a case, we would expect program B to move data from
r to w whenever r 6= φ and w = φ. However, the progress condition P5 becomes,

〈∀ F ::
|b| < 0 7→ r = φ in ∗ F
|b| > 0 7→ w 6= φ in ∗ F

〉
Since N = 0, it follows (from P6 and the definition of b) that |b| = 0 is an invariant in ∗ F .

Hence, using the substitution axiom, the antecedent of each progress condition is false. In UNITY,
false 7→ p, for any p. Therefore, for N = 0 the specification provides no guarantees on progress. In
particular, the specification allows a state r 6= φ ∧ w = φ to persist forever. It may seem that the
following strengthening of the progress specification could generalize the specification to N ≥ 0.

|b| < N ∨ w = φ 7→ r = φ in ∗ F
|b| > 0 ∨ r 6= φ 7→ w 6= φ in ∗ F

However since nothing is assumed about F , program F could conceivably change r 6= φ ∧ w = φ
to r 6= φ ∧ w 6= φ (by storing data in w), thus making it impossible for the bag program to
implement the first progress condition (while satisfying P4: r + b + w is constant). Thus, such a
specification cannot be implemented unless we assume something more about the way F behaves,
in particular that it never removes data from r nor stores into w. A specification along this line is
given in the next section.

5.7 Alternative Specification of a Bag

5.7.1 Communication Sequences as Auxiliary Variables

We propose another bag specification in this section. We take as auxiliary variables the bags r̂ and
ŵ, where r̂ is the bag of data items written into r (and similarly ŵ). Such a bag is typically defined
by augmenting the program text appropriately: whenever r is changed r̂ is changed by adding the
new value of r to it. As shown in an example in Sec. 2.1.1 our logic provides a direct way of defining
r̂, ŵ without appealing to the program text. In the following, R, W are free variables (of type data)
and X, Y are free variables that are of type bag of data. Program F is the environment, as before.

A0. initially (r̂,ŵ) = (r, w) in ∗ F
A1. r̂ = X ∧ r = R unless r̂ = X + r ∧ r 6= R in ∗ F
A2. ŵ = Y ∧ w = W unless ŵ = Y + w ∧ w 6= W in ∗ F

To understand the relationship between r̂ and r and (similarly for ŵ and w), note that r̂ remains
unchanged as long as r is unchanged and r̂ is modified by adding the (new) value of r to it whenever
r is changed. Furthermore, in our case, since the values of r will alternate between φ and non-φ,
successive values assumed by r are different. (Note that whenever r is set to φ, r̂ remains unchanged.)

We deduce two simple facts. (Here “⊆” is the subbag relation.)

A3. r ⊆ r̂ invariant in ∗ F
A4. w ⊆ ŵ invariant in ∗ F

We prove A3; proof of A4 is similar.

Proof of A3: All properties in the following proof are in ∗ F .

r̂ = X ∧ r = R unless r̂ = X + r ∧ r 6= R , from A1
(r̂, r) = (X, R) unless (r̂, r) 6= (X, R) ∧ r ⊆ r̂ , consequence weakening
r ⊆ r̂ stable , Corollary 1 of Sec. 2.1.5
Initially r ⊆ r̂ because r = r̂. Hence r ⊆ r̂ invariant.
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5.7.2 Bag Specification

The following specification is for a bag of size N,N ≥ 0. The properties R1,R2 are the same as P1,P2
of Sec. 5.3. In order to overcome the problems described in Sec. 5.6, we make some assumptions
about the environment, F . Specifically, we require F to obey a similar access protocol to w, r as the
ones obeyed by the bag program for access to r, w: Environment F may write into r only if r = φ
and it may change w—to φ—only if w 6= φ. Under these conditions on F , the bag ŵ is a subbag of
r̂− r (property R3.1); these two bags differ in size by no more than N (property R3.2); if r̂, ŵ differ
by no more than N then r is or will be set to φ (property R3.3); if |r̂| exceeds |ŵ| then w is or will
be set to non-φ (property R3.4).

spec R (r, w : data, N : nat constant)
declare

free R,W : data,
auxiliary r̂, ŵ : sequence of data,
free X, Y : sequence of data,
free F : program

hypo
{A0} initially (r̂,ŵ) = (r, w) in ∗ [] F
{A1} r̂ = X ∧ r = R unless r̂ = X + r ∧ r 6= R in ∗ [] F
{A2} ŵ = Y ∧ w = W unless ŵ = Y + w ∧ w 6= W in ∗ [] F
{A3} R ¹ r stable in F

w ¹ W stable in F
conc
{R0} initially w = φ
{R1} r ¹ R stable
{R2} W ¹ w stable
{R3.1} ŵ ⊆ r̂ − r invariant
{R3.2} |r̂ − r − ŵ| ≤ N invariant
{R3.3} |r̂ − ŵ| ≤ N 7→ r = φ in ∗ [] F
{R3.4} |r̂| > |ŵ| 7→ w 6= φ in ∗ [] F

end{R}

We show, in Sec. 5.7.3, that under certain conditions the proposed specification is a refinement of
the specification in Sec. 5.3. Now we deduce a few properties from the given specification. Assuming
hypo,

R4. r̂ − ŵ + w constant in *
R5. r̂ − ŵ − r constant in F .

The proof of R5 is similar to that of R4 by interchanging the roles of r, w. We prove R4.

Proof of R4: All properties in the following proof are in *.

r̂ = X ∧ r = R unless r̂ = X + r ∧ r 6= R , union theorem on A1
r ¹ R stable , from R1
r̂ = X ∧ r = R unless r̂ = X + r ∧ r ≺ R , stable conjunction on the above two
(r̂, r) = (X, R) unless (r̂, r) 6= (X, R) ∧ r̂ = X , consequence weakening
r̂ constant , constant introduction

Similarly, we can show—starting from A2,R2 and applying stable conjunction—that ŵ − w is
constant in *. Using the constant formation rule, r̂− (ŵ−w) is constant in *. Since w ⊆ ŵ (from
A4) and ŵ ⊆ r̂ (from R3.1, which can be assumed since hypo holds), r̂ − (ŵ − w) = r̂ − ŵ + w,
which is then constant in *.
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5.7.3 Proof of Refinement

We show that for N > 0, the specification of Sec. 5.7.2 is a refinement of the specification of Sec.
5.3, provided that hypo holds. In the absence of such a requirement on F , the specification of Sec.
5.7.2 does not prescribe B’s behavior (that is, when B is composed with any arbitrary F ) whereas
the specification of Sec. 5.3 prescribes B’s behavior even when it is composed with an arbitrary F .
Hence, our proof obligation for the refinement is to show that, given

hypo, N > 0 and the properties R0–R3 of Sec. 5.7.2

there exists b, local to B, satisfying properties P0–P5 of Sec. 5.3. We let

b = r̂ − ŵ − r

Observe that b is local to B since b is constant in F (from R5).

Proof of P0: b + w = r̂ − ŵ − r + w
initially (r̂, ŵ) = (r, w). Hence initially b + w = φ. 2

Proofs of P1, P2: directly from R1, R2. 2

Proof of P3:
|r̂ − ŵ − r| ≤ N invariant , from R3.2
|b| ≤ N invariant , using the definition of b 2

Proof of P4: r + b + w = r̂ − ŵ + w
r̂ − ŵ + w constant , from R4 2

Proof of P5.1: All properties in this proof are in ∗ [] F .
|b| < N

⇒ |r̂ − ŵ − r| < N , using the definition of b
⇒ |r̂ − ŵ| ≤ N , |r| ≤ 1
7→ r = φ , from R3.3 2

The proof of P5.2 is similar to that of P5.1.

5.8 Specifications of Concurrent Queue and Concurrent Stack

We consider two other concurrent data objects—queue and stack—in this section. Each has variables
r, w which are accessed similarly as in the case of the bag. Our interest in these specifications is
mainly to show that each of these specifications refines a bag specification, i.e., each implements a
bag (of the appropriate size).

5.8.1 A Specification of a Concurrent Queue

The operation of a concurrent queue is analogous to that of a concurrent bag. The important
difference is that in the former case the items are written into w in the same order in which they
were read from r. We propose a specification analogous to that of Sec. 5.3. In the following “uv”
denotes concatenation of sequences u, v and φ denotes the null sequence. A queue of size N , N > 0,
is defined by a program Q where:

spec queue (r, w : data, N : positive constant)
declare

local q : sequence of data,
free R,W : data,
free F : program
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conc
{Q0} initially q = φ ∧ w = φ
{Q1} r ¹ R stable
{Q2} W ¹ w stable
{Q3} |q| ≤ N invariant
{Q4} rqw constant
{Q5} {Q5.1} |q| < N 7→ r = φ in ∗ [] F

{Q5.2} |q| > 0 7→ w 6= φ in ∗ [] F
end {queue}

5.8.2 Queue Implements Bag

We show that from the specification of Sec. 5.8.1 we can deduce the specification in Sec. 5.3 for an
appropriate b. Denote the bag of items in q by [q]. Let b = [q].

Proofs of P0,P1,P2 are trivial. Property P3 follows from Q3 and P5 from Q5 by noting that

|b| = |[q]| = |q|.

To prove P4—that r + b + w constant in *—we observe (below all properties are in *)

rqw constant , from Q4
[rqw] constant , constant introduction
[r] + [q] + [w] constant , [rqw] = [r] + [q] + [w]
r + b + w constant , [r] = r, [q] = b, [w] = w

5.8.3 A Specification of a Concurrent Stack

The operation of a concurrent stack is distinguished from that of a concurrent bag by the require-
ments that the items read from r be pushed onto a stack (read is permitted only if there is room
in the stack) and the item written into w at any point be the top of the stack which is then re-
moved from the stack. A stack is seldom accessed concurrently because speed differences between the
producer—process that writes into the stack—and the consumer—that reads from the stack—affects
the outcomes of the reads.

We propose a specification, analogous to that of Sec. 5.7.2, for a program S that implements a
stack of size N , N > 0. Let r̄, w̄ denote the sequences of data items written into r, w respectively.
Analogous to the definitions of r̂, ŵ by (A0,A1,A2) we define r̄, w̄ in S F (where F is any arbitrary
environment of S) by (A0′, A1′, A2′) below. As in Sec. 5.8.1, concatenations of sequences are shown
by juxtapositions and φ denotes the null sequence.

(A0′) initially (r̄, w̄) = (r, w) in S F
(A1′) r̄ = X ∧ r = R unless r̄ = Xr ∧ r 6= R in S F
(A2′) w̄ = Y ∧ w = W unless w̄ = Y w ∧ w 6= W in S F

Now, we define a binary relation between sequences X, Y , written as X N Y , expressing that
given X as an input sequence to a stack of size N sequence Y is a possible (complete) output
sequence. For N ≥ 0, it is the strongest relation satisfying

• φ N φ

• X N X ′ , Y (N + 1) Y ′ ⇒ aXY (N + 1) X ′aY ′

where a is any arbitrary data item. The first rule is trivial to see. The second rule states that given
an input string aXY to a stack of size N +1, the item a appears in the output at some point. Prior
to its output, item a is at the bottom of the stack and hence, the stack behaves as if its size is N in
converting some portion of the input, say X, to X ′. Following the output of a, the stack is empty
and hence the remaining input sequence Y is converted to Y ′ using a stack of size N + 1.
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Several interesting properties can be proven about this relation using induction on the length of
X. In particular,

X N Y ⇒ [X] = [Y ]

where [X] is the bag of items in X.
Now we specify a program that implements a concurrent stack of size N , N > 0, with shared

variables r, w as before. Note that S3.1 is the only property that differs substantially from the
corresponding property of the bag in Sec. 5.7.2.

spec stack (r, w : data, N : positive constant)
declare

free R,W : data,
auxiliary r̄, w̄ : sequence of data,
bound z̄ : sequence of data,
free X, Y : sequence of data,
free F : program

hypo
{A0′} initially (r̄, w̄) = (r, w) in ∗ F
{A1′} r̄ = X ∧ r = R unless r̄ = Xr ∧ r 6= R in ∗ F
{A2′} w̄ = Y ∧ w = W unless w̄ = Y w ∧ w 6= W in ∗ F
{A3′} R ¹ r stable in F

w ¹ W stable in F
conc
{S0}initially w = φ
{S1}r ¹ R stable
{S2}W ¹ w stable
{S3}{In S3.1, r̄ − r is the prefix of r̄ excluding r (if r = φ, r̄ − r = r̄).

Also, v is the prefix relation over sequences}
{S3.1} 〈∃ z̄ :: (r̄ − r) N z̄ ∧ w̄ v z̄〉 invariant in ∗ F
{S3.2} |r̄| ≤ |r|+ |w̄|+ N invariant in ∗ F
{S3.3} |r̄| ≤ |w̄|+ N 7→ r = φ in ∗ F
{S3.4} |r̄| > |w̄| 7→ w 6= φ in ∗ F

end {stack}

Stack Implements a Bag

We show that from the specification of a concurrent stack we can deduce the bag specification in
Sec. 5.7.2 for N > 0. Note that r̂ = [r̄], ŵ = [w̄]. It follows that r̂− r = [r̂− r]. Proofs of properties
R0–R3 are entirely straightforward, except for R3.1: ŵ ⊆ r̂ − r.

(r̄ − r) N z̄ ⇒ [r̄ − r] = [z̄]
, property of the binary relation stated earlier

w̄ v z̄ ⇒ [w̄] ⊆ [z̄]
, fact about building a bag from a sequence

(r̄ − r) N z̄ ∧ w̄ v z̄ ⇒ [w̄] ⊆ [r̄ − r]
, from the above two

〈∃ z̄ :: (r̄ − r) N z̄ ∧ w̄ v z̄〉 ⇒ ŵ ⊆ r̂ − r
, from the above using [w̄] = ŵ and [r̄ − r] = r̂ − r.

We leave it as an exercise for the reader to show that a queue of size 1 implements a stack of
size 1, and vice versa.
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5.9 Refinement of the Bag Specification

We refine the specification of Sec. 5.7.2 as a step toward implementing a bag. It can be shown from
that specification that concatenation of two bags of size M,N , where M, N are non-negative, results
in a bag of size M + N + 1; the proof is similar in structure to the proof in Sec. 5.5; also, a similar
proof for a queue appears in Misra [1990]. Hence a bag of size N , N > 0, can be implemented
by concatenating (N + 1) bags of size 0 each. Therefore we restrict our attention to bags of size 0
and propose a refinement. As before, we have properties T0, T1, T2. If a bag has size 0, the only
possible action is to move data items from r to w directly. The effect of this action is to keep r + w
constant (property T3), and such an action is guaranteed to take place provided r 6= φ ∧ w = φ,
thus resulting in w 6= φ (property T4).

spec T (r, w : date)
declare

free R,W : data
conc
{T0} initially w = φ
{T1} r ¹ R stable
{T2} W ¹ w stable
{T3} r + w constant
{T4} r 6= φ ensures w 6= φ

end {T}

5.9.1 Proof of the Refinement

Suppose that program B satisfies specification T . We show that the properties R0–R3 of Sec. 5.7.2,
for N = 0, can be deduced from T0–T4. Proofs of R0,R1,R2 are immediate from T0,T1,T2.

T5: 〈hypo of R ∧ T0 ∧ T3 ⇒ r̂ = ŵ + r invariant in B F 〉

Proof:
r̂ − ŵ + w constant in B , from R4 (derived from hypo of R)
r + w constant in B , from T3
r̂ − ŵ + w − (r + w) constant in B , constant formation
r̂ − ŵ − r constant in B , simplifying the above expression
r̂ − ŵ − r constant in F , from R5 (derived from hypo of R)
r̂ − ŵ − r constant in B F , Corollary 2 of Sec. 2.2

Initially r̂ − ŵ − r = φ in B F , from r̂ = r and ŵ = w = φ (using T0)
Hence r̂ − ŵ − r = φ invariant in B F , i.e., r̂ = ŵ + r invariant in B F . 2

Next we prove the four properties in R3.1–R3.4, from hypo, T1, T2, and r̂ = ŵ + r invariant in
B F .

Proof of R3: Assume hypo of R holds.
R3.1. Proof is immediate given T5. 2

R3.2 Proof is immediate given T5 and that N = 0 2

R3.3 We have to show that |r̂| ≤ |ŵ| 7→ r = φ in B F .
In the following all properties are in B F .
|r̂| ≤ |ŵ| ⇒ r = φ , from T5
|r̂| ≤ |ŵ| 7→ r = φ , using implication rule on the above 2

R3.4 We have to show that |r̂| > |ŵ| 7→ w 6= φ in B F
r = R unless r 6= R in F , antireflexivity of unless
r = R unless r 6= R ∧ r 6= φ in F , stable conjunction with R ¹ r stable (from hypo)
r 6= φ stable in F , Corollary 1 of Sec. 2.1.5
r 6= φ ensures w 6= φ in B , from T4
r 6= φ ensures w 6= φ in B F , using Corollary 4 of Sec. 2.2 on the above two
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r 6= φ 7→ w 6= φ in B F , definition of 7→
|r̂| > |ŵ| 7→ w 6= φ in B F , from T5, |r̂| > |ŵ| ≡ r 6= φ

5.10 An Implementation

The specification of Sec. 5.9 can be implemented by a program whose only statement moves data
from r to w provided w = φ (if r = φ, the movement has no effect):

r, w := φ, r if w = φ

The proof that this fragment has the properties T1–T4 is immediate from the definition of unless
and ensures. The initial condition of this program is w = φ, and hence (T0) is established.

An implementation for a bag of size N , N > 0, uses the union of N + 1 such statements: One
statement each for moving data from a location to an adjacent location (closer to w) provided the
latter is φ. We show how this program may be expressed in the UNITY programming notation.

Rename the variables r and w to be b[0] and b[N + 1], respectively. The internal bag words are
b[1] through b[N ]. In the following program we write 〈 i : 0 < i ≤ N +1 :: t(i)〉 as a shorthand
for t(1) t(2) . . . t(N + 1), where t(1), for instance, is obtained by replacing every occurrence of
i by 1 in t(i). The program specifies the initial values of b[1] through b[N + 1] to be φ (in the part
followed by initially). The statements of the program are given after assign; the generic statement
shown moves b[i− 1] to b[i] provided the latter is φ.

Program bag {of size N , N > 0}
initially 〈 i : 0 < i ≤ N + 1 :: b[i] = φ〉
assign 〈 i : 0 < i ≤ N + 1 :: b[i− 1], b[i] := φ, b[i− 1] if b[i] = φ〉

end {bag}

6 Discussion

Programmers prefer different kinds of specifications for different problems. For problems such as the
vending machine, a specification using finite state automata may be satisfactory because it describes
the action-sequences (or event-sequences) in a concise manner. The specification is so simple that a
decomposition, for the user component and the vending machine component, is hardly required; the
vending machine is expected to operate in an environment with an interface that allows very few
variations. A UNITY-style specification for this problem was also quite simple.

The specification of the messsage communicating system for termination detection shows why
specification boundaries need not coincide with process boundaries; in this case it proved easier to
specify the message communication aspect of the entire system as a module and the termination
detection specification as another module. The actual implementation will, typically, partition the
termination detection algorithm among the processes.

The long example of specifying a bag illustrates most of the ideas, including introduction of
auxiliary variables, in UNITY-specification. A particularly attractive idea is specification refinement
that allows stepwise refinement of the specification ending in an implementation. Also, the possibility
of implementing a data structure by another—such as a bag by a queue—based on their specifications
alone, is a tantalizing new direction of research.

In all our specifications, the environment of the reactive system assumes no special role; it is
merely treated as a program that is composed with the program to be designed. Since composition by
union is commutative, the program and its environment have interchangeable roles. A component
may be structured as a union of two, or more, subcomponents, one of which may serve as an
environment for the other. It seems preferable to dispense with the notion of environment in formal
developments.

We are only beginning to understand how specifications can be composed. For instance, we
composed—by union—the specifications of two bags, one of which acted as a producer for the other
(see Sec. 5.5). And we showed how a large bag can be implemented by a sequence of small bags.
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However, there are many other ways of composition/decomposition that we have not addressed in
the paper. One is, how to layer one specification on another. For instance the specification of 2-party
connection in a telephone switch typically includes the specification of the connection as well as the
specification for billing. We would like to specify these aspects separately even though in the final
implementation code for both may be intertwined.
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