An Exercise in Program Explanation

JAYADEV MISRA
The University of Texas at Austin

A combination of program-proving ideas and stepwise refinement is used to develop and explain an
algorithm which uses a variation of the sieve method for computing primes.

Key Words and Phrases: primes, algorithms, proofs of programs
CR Categories:; 5.24, 5.25, 5.29

1. INTRODUCTION

An algorithm that computes the set of prime numbers less than or equal to some
given n = 2 is developed and explained in this paper. The algorithm employs a
variation of the sieve technique; however, every nonprime is generated and
removed precisely once from the set, resulting in an algorithm with running time
linear in n. This efficiency is achieved at the expense of maintaining a more
complex data structure and assuming that multiplication (of positive integers
smaller than n) requires unit time. The algorithm is simpler to explain and prove
than a linear algorithm appearing in [1].

The purpose of this note is to show how a combination of program-proving
ideas and stepwise refinement can be used to describe and explain an algorithm
completely. The explanation is given by first postulating a suitable invariant.
Hypothesizing an invariant is one of the most creative tasks in program construc-
tion; however, program construction becomes almost purely mechanical given a
suitable invariant. The explanation given here is adequate for a reader to
construct his own formal proof.

For this problem Pritchard [4] reports an asymptotically sublinear algorithm
which uses no multiplication.

2. PROBLEM DESCRIPTION AND THE INVARIANT

The problem is to construct

S = {x|2 = x = n, x prime} for any given n = 2. (2.1)

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

Author’s address: Department of Computer Sciences, College of Natural Sciences, The University of
Texas at Austin, Austin, TX 78712.

© 1981 ACM 0164-0925/81/0100-0104 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981, Pages 104-109.

An Exercise in Program Explanation . 105

We actually construct the following set from which the set in (2.1) may be
deduced.

S= {x|1=x=n,x=1or x prime}. (2.2)

In order to describe the invariant, we define certain functions on any set of
positive integers Z.

€:: Denotes the usual membership test. (2.3)
succ :: For any t € Z, succ(t) is defined to be the next larger number

than ¢ in Z; succ(t) is undefined if ¢ is the largest in Z. (2.4)°
pred :: For any t € Z, pred (t) is the next smaller number than ¢ in

Z; pred (t) is undefined when ¢ is the smallest in Z. (2.5)
remove :: For any t € Z, remove(t) sets Z to Z — {t}. (2.6)
In addition, we define a function on integers greater than 1:
sd:: For any integer x > 1, sd(x) is the smallest integer greater

than 1 that evenly divides x. (2.7)

OBSERVATION 1. sd(x) = x iff x prime.

The intuitive idea behind the algorithm is as follows. Starting with p = 2, every
iteration removes all remaining multiples of p, a prime number, from the set S. p
is then increased to the next prime number and the iterations are continued as
long as p has some multiple in S. In order to remove all remaining multiples of p,
we maintain r such that p.r < n and r is the largest number in S having this
property. We will show (1) that p has a multiple in S if and only if p < r and (2)
that a multiple of p, say p-t,isin Sifand onlyifp<t=<randt€S.

The program is built around the invariant

S={x|1=x=<n,x=1or x prime or sd(x) = p}
andp=2andpeS
and r is the largest number in S such that p-r < n. (2.8)

We first show that this invariant is equivalent to another invariant which is easier
to manipulate in proofs.

LeMMA 2. Given the invariant (2.8), succ(r) is defined and p-succ(r) > n.

Proor. We use a rather deep theorem due to Chebyshev [2] which states that
for any positive integer { > 1 there is a prime v, i < v < 2i. From the invariant,
p=2andp-r<n.Hencer=<|n/2). If [n/2] = 1,r = 1 and succ(r) = 2. Otherwise,
according to Chebyshev’s theorem there exists a prime y, |n/2] <y < 2-[n/2}, y
€ S and y > r. Therefore succ(r) is defined. Since r is the largest number in S for
which p.-r<n, p-suce(r) >n. O

Using Lemma 2 we may rewrite the invariant (2.8) as follows:

I:: S={x|1=x=n,x=1orxprime or sd(x) = p)
andp=2andpe S
and r € Sand p.r < n < p-succ(r). (2.9)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

106 . Jayadev Misra

OBSERVATION 3. Given I, p is a prime.

ProoF. Since p = 2, p € S, either p is prime or sd(p) = p. Hence p is prime in
either case. [

3. TOWARD SYNTHESIS OF A PROGRAM

We postulate the following program structure:

initialize;
while B do loop body od; 3.1)

Initialization is easy. Setting

pi=2 (3.2)

forces us to set
S:={x|1=x<n}; (3.3)
r:=|n/2]; (3.4)

We next consider the loop body portion, which must remove all the multiples
of p in each iteration. To this end, we give a characterization of multiples of p in
S, from which we derive the loop body and the condition B.

THEOREM 4. Given I, p-t€E Sandt=2ifandonlyift€c Sandp=t=r.

PRroOF. Suppose p-t € S and £ = 2. Since p- ¢ is not prime, exceeds 1, and is in
S, sd(p-t) = p. Since sd(p) = p (Observation 3), sd(t) = p.

Furthermore, since p-t <nand t = 2, 2 < t < n. Therefore, t € S. Also, p-t <
n < p-succ(r). Hence t < succ(r); that is, £ < r. sd(t) = p means ¢t = p. Therefore
teSandp=<t=r.

Conversely, suppose t €E Sand p <t < r.t = p means ¢t = 2. Since t € S, either
t is a prime (sd(f) = ¢ = p) or sd(t) = p. In either case, sd(¢) = p. sd(p) = p;
therefore sd(p-t) = p. p-t < p.r < n; therefore p-t € S. O

This is the central theorem around which the sieve method works; by properly
enumerating {—the elements of S between p and r—and removing p- ¢ from S, we
can guarantee that every nonprime will be generated and removed precisely once.

Theorem 4 implies that S has at least one nonprime if p < r. We prove a
stronger result below which allows us to derive the condition B for execution of
the loop.

THEOREM 5. Given I, S has a nonprime >1 if and only ifp < r.

Proor. If p < r, the result follows from Theorem 4. Conversely, we show if p
> r, then S has no nonprime >1. Since p € S, r € S, and p > r, then p = succ(r).
Since p-succ(r) > n, we have p-p > n. Using this in conjunction with the
definition of S in I, the result follows from an elementary result in number
theory. [

We thus derive from Theorem 5 that condition B for the continuation of the
loop is

B:: p=r. (3.5)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

An Exercise in Program Explanation . 107

The partial program at this stage looks as follows.

Program : :
p=2;8:={x|1=<x=<n};r=|n/2j
while p < r do loop body od; (3.6)

4. SYNTHESIZING THE LOOP BODY
We postulate the following structure of the loop body.

loop body ::
remove all multiples of p from S;
reestablish I.

Note. As long as p increases in the loop body in each iteration, since p.-r < n
the loop is bound to terminate.

4.1 Removing All Multiples of p from S

It follows from Theorem 4 that we can enumerate all t € S, p < ¢ < r, and remove
p-tfor every such ¢t enumerated. However, the procedure would be incorrect if we
enumerated ¢ in increasing order from p to r and removed every p-t. Consider,
for instance, the situation in which ¢’ € Sandp<t' <rand p-t’' < r and p*-t’
< n. When ¢’ is enumerated, p-¢’ will be removed, and hence p*.¢’ will never be
removed. Gries and Misra [1] suggest the following solution.

Enumerate ¢ € S and ¢ = p in ascending order. For each ¢ enumerated, remove
all p*.t < n, £ = 1. The advantage of this strategy is that r need not be
maintained; we simply stop the process when p-¢ > n. Furthermore, there is a
symmetry in enumeration: For fixed values of p and ¢ we first enumerate £
until p*.¢ > n; then ¢ is increased to its next value in S and the above step is
repeated until p-¢ > n; then p is increased to its next value in S and the above
steps are repeated until p-p > n.

We propose the following simpler strategy since r is available to us.

Enumerate ¢ € S in decreasing order from r to p and remove p-t when ¢ is
enumerated.

Thus, the corresponding program for removing multiples of p looks like the
following:

t:=r;
while p < t do
remove(p-t);
t := pred(t)
od 4.1)

Correctness of (4.1) may be established by using the invariant

P-gES, ¢g=2 iff ge8S,p=qg=t (4.2)

Note. The only instance in which the presence of 1 in S is useful is when p =
2. The final iteration is started with £ = 2, 4 is removed from S, and ¢ is set to 1.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

108 . Jayadev Misra

Note. It follows that at the end of (41) wecanassert S={x|1l=x=n,x=1
or x prime or sd(x) >p} and p € S,p =2 and p.r = n and p- (the next number
larger than rin S) > n.

Note. We cannot assert following (4.1) that r € S, since r might have been a
multiple of p and hence might have been removed.

4.2 Reestablishing /

In order to establish I, we consider each component assertion of I in turn. S =
{x|]1=x=n,x=1or x prime or sd(x) = p} can be established from S = {x|
1=x=<n,x=1or x prime or sd(x) > p} by setting

Dp = succ(p) (4.3)

This also preserves p =2 and p € S.
In order to reestablish r € S, we perform a linear search.

whiler € Sdor:=r—1od (4.4)

We can assert on termination of (4.4) that r € S and p-succ(r) > n, since p-
(next larger number than r in S) > n prior to execution of (4.4).

Finally, in order to establish p.r < n, we can employ a linear search in which
r decreases more rapidly than in (4.4):

while p-r > n do r := pred(r) od (4.5)
Note. (4.5) does not disturb the truth of propositions r € S and p-suce(r) > n.

Note. (4.4) cannot employ r := pred(r) since pred is applicable only for r in S.

Note. Termination proofs for both (4.4) and (4.5) are straightforward and
hence left to the reader.

5. THE COMPLETE ALGORITHM
p=2S={x|l=sx=n};r:=n/2j;
while p = rdo
ti=r;
while p < ¢t do
remove(p-t);
t ;= pred(t)
od;
D = succ(p);
whiler €S dor:=r—1od;
while p.r > n do r := pred(r) od
od

6. DISCUSSION

6.1 Data Structure for S

Several different data structures for S have been proposed in [1], each of which
is applicable in the algorithm proposed here. The simplest is representing S by a
doubly linked list. Each elementary set operation can be performed in unit time
on such a structure. See Misra [3] for a more careful choice of the data structure
which takes the total number of bits of storage and array accessing time into
account.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

An Exercise in Program Explanation 109

6.2 Running Time Estimation

We show that no statement in the program is executed more than n times. This
is certainly true for p := succ(p), which strictly increases p each time it is
executed, and p cannot increase more than once beyond [\/; 1. Similarly,
r:=r — 1and r ;= pred(r) are executed at most n times in total. remove(p-t)
removes one nonprime from S, and hence it and ¢ .= pred(¢) cannot be executed
more than n times. Similar remarks apply to the tests in the loops.

6.3 A Conjecture

The algorithm could be simplified if the following conjecture were true.
Conjecture 6. Given I, r and pred(r) cannot both be multiples of p.
We may thus initially save
rl = pred(r) (6.1)

After removal of multiples of p, we can reestablish r € S by the following, since
both r and r1 could not have been removed:

ifr&é Sthenr:=rlfi (6.2)

Note that p-succ(r) > n after this step.
We may then reestablish p.r < n by

while p-r > n do r := pred(r) od; (6.3)
The complete algorithm then is the following.

p=2S={x|l1=sx=n);r=\n/2);
while p < r do
rl:=pred(r); t :=r;
while p < t do
remove(p-t);
t := pred(t)
od;
p = succ(p);
if r € S then r := r1 fi;
while p-r > n do r := pred(r) od
od (6.4)

REFERENCES

1. Grigs, D., AND Misr4, J. A linear sieve algorithm for finding prime numbers. Commun. ACM
21, 12 (Dec. 1978), 999-1003.

2. LEVEQUE, W.J. Topics in Number Theory, Vol. 1. Addison-Wesley, Reading, Mass., 1956.

3. Misra, J. Space time trade-off in implementing certain set operations. Inf. Process. Lett. 8, 2
(Feb. 1979), 81-85.

4, PRITCHARD, P. A sublinear additive sieve for finding prime numbers. Tech. Rep. No. 10, Dep.
Computer Science, Univ. Queensland, Australia, Dec. 1979.

Received October 1979; revised March and September 1980; accepted October 1980

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

