
An Exercise in Program

JAYADEV MISRA

The University of Texas at Austin

Explanation

A combination of program-proving ideas and stepwise refinement is used to develop and explain an
algorithm which uses a variation of the sieve method for computing primes.

Key Words and Phrases: primes, algorithms, proofs of programs
CR Categories: 5.24, 5.25, 5.29

1. INTRODUCTION

An algorithm tha t computes the set of prime numbers less than or equal to some
given n _ 2 is developed and explained in this paper. The algorithm employs a
variation of the sieve technique; however, every nonprime is generated and
removed precisely once from the set, resulting in an algorithm with running time
linear in n. This efficiency is achieved at the expense of maintaining a more
complex data structure and assuming tha t multiplication (of positive integers
smaller than n) requires unit time. The algorithm is simpler to explain and prove
than a linear algorithm appearing in [1].

The purpose of this note is to show how a combinat ion of program-proving
ideas and stepwise refinement can be used to describe and explain an algori thm
completely. The explanation is given by first postulating a suitable invariant.
Hypothesizing an invariant is one of the most creative tasks in program construc-
tion; however, program construction becomes almost purely mechanical given a
suitable invariant. The explanation given here is adequate for a reader to
construct his own formal proof.

For this problem Pri tchard [4] reports an asymptotical ly sublinear algorithm
which uses no multiplication.

2. PROBLEM DESCRIPTION AND THE INVARIANT

The problem is to construct

S = {x 1 2 _< x __ n, x prime} for any given n __ 2. (2.1)

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
Author's address: Department of Computer Sciences, College of Natural Sciences, The University of
Texas at Austin, Austin, TX 78712.
@) 1981 ACM 0164-0925/81/0100-0104 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981, Pages 104-109.

An Exercise in Program Explanation 105

We actually construct the following set from which the set in (2.1) may be
deduced.

S = {x] 1_< x__ n, x = 1 or x prime}. (2.2)

In order to describe the invariant, we define certain functions on any set of
positive integers Z.

E :: Denotes the usual membership test. (2.3)
succ : : For any t E Z, succ(t) is defined to be the next larger number

than t in Z; succ(t) is undefined if t is the largest in Z. (2.4)"
p r e d :: For any t E Z, p r e d (t) is the next smaller number than t in

Z; pred(t) is undefined when t is the smallest in Z. (2.5)
remove :: For any t E Z, remove(t) sets Z to Z - {t}. (2.6)

In addition, we define a function on integers greater than 1:

sd :: For any integer x > 1, sd(x) is the smallest integer greater
than 1 that evenly divides x. (2.7)

OBSERVATION 1. sd(x) = x i f f x pr ime.

The intuitive idea behind the algorithm is as follows. Start ing with p = 2, every
iteration removes all remaining multiples of p, a prime number, from the set S. p
is then increased to the next prime number and the iterations are continued as
long as p has some multiple in S. In order to remove all remaining multiples of p,
we maintain r such that p . r _< n and r is the largest number in S having this
property. We will show (1) t h a t p has a multiple in S if and only i f p <_ r and (2)
tha t a multiple ofp , s a y p . t , is in S if and only i f p _ t _ r and t E S.

The program is built around the invariant

S - - { x l l < _ x _ _ n , x = l or x prime or sd(x) >_ p}
a n d p _> 2 a n d p E S
a n d r is the largest number in S such t h a t p . r _< n. (2.8)

We first show that this invariant is equivalent to another invariant which is easier
to manipulate in proofs.

LEMMA 2. Given the invar iant (2.8), succ(r) is de f ined and p . succ (r) > n.

PROOF. We use a ra ther deep theorem due to Chebyshev [2] which states tha t
for any positive integer i > 1 there is a prime v, i < v < 2i. From the invariant,
p __ 2 and p . r _< n. Hence r ___ [n/2J. If [n/2J = 1, r = 1 and succ(r) = 2. Otherwise,
according to Chebyshev's theorem there exists a prime y, [n/2J < y < 2. [n/2J, y
E S and y > r. Therefore succ(r) is defined. Since r is the largest number in S for
w h i c h p . r _ < n, p . succ(r) > n. []

Using Lemma 2 we may rewrite the invariant (2.8) as follows:

I : : S = { x l l _ < x _ _ n , x = l or x prime or sd(x) >_ p}
a n d p __ 2 a n d p ~ S
a n d r E S a n d p . r <_ n < p .succ(r) . (2.9)

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

106 Jayadev Misra

OBSERVATION 3. Given I, p is a p r ime .

PROOF. Since p ___ 2, p E S, e i ther p is pr ime or s d (p) >_p. Hence p is p r ime in
ei ther case. []

3. TOWARD SYNTHESIS OF A PROGRAM

We postula te the following p rogram structure:

initialize;
while B do loop body od; (3.1)

Init ialization is easy. Set t ing

forces us to set

p := 2; (3.2)

S : = (x l l _ < x < n } ; (3.3)

r := [n/2J; (3.4)

We next consider the loop body portion, which mus t r emove all the mult iples
o f p in each iteration. To this end, we give a character izat ion of mult iples o f p in
S, f rom which we derive the loop body and the condit ion B.

THEOREM 4. Given I, p . t E S a n d t >_ 2 i f a n d only i f t E S a n d p <_ t <_ r.

PROOF. Suppose p . t E S and t >_ 2. Since p . t is not prime, exceeds 1, and is in
S, s d (p . t) >_ p . Since s d (p) = p (Observat ion 3), sd(t) >_ p .

Fur thermore , since p . t <_ n and t _ 2, 2 ___ t __ n. Therefore , t E S. Also, p . t _<
n < p . s u c c (r) . Hence t < succ(r); t ha t is, t <_ r. sd (t) >_p means t >_p. There fo re
t E S a n d p < _ t < _ r .

Conversely, suppose t E S and p _< t _ r. t _> p means t _ 2. Since t E S, e i ther
t is a p r ime (sd(t) = t >_ p) or sd(t) >_ p. In ei ther case, sd(t) >_ p . s d (p) = p;
therefore s d (p . t) = p. p . t <_ p . r <_ n; therefore p . t E S. []

Th is is the central t heo rem around which the sieve me thod works; by proper ly
enumera t ing t - - t h e e lements of S be tween p and r - - a n d removing p . t f rom S, we
can guarantee tha t every nonpr ime will be genera ted and r emoved precisely once.

T h e o r e m 4 implies tha t S has a t least one nonpr ime if p ___ r. We prove a
s t ronger result below which allows us to derive the condit ion B for execut ion of
the loop.

THEOREM 5. Given I, S has a n o n p r i m e >1 i f a n d only i f p <_ r.

PROOF. I f p --< r, the result follows f rom T h e o r e m 4. Conversely, we show i f p
> r, then S has no nonpr ime >1. Since p E S, r ~ S, a n d p > r, t h e n p _ succ(r) .
Since p . s u c c (r) > n, we have p . p > n. Using this in conjunct ion with the
definition of S in /, the result follows f rom an e l emen ta ry resul t in n u m b e r
theory. []

We thus derive f rom T h e o r e m 5 tha t condition B for the cont inuat ion of the
loop is

B : : p < _ r . (3.5)

ACM Transact ions on Programming Languages and Systems, Vol. 3, No. 1, J a n u a r y 1981.

An Exercise in Program Explanation 107

The partial program at this stage looks as follows.

Program : :
p : - - 2 ; S : = { x I I_<x_<n}; r : - - [n /2 j ;
while p _< r do loop body od; (3.6)

4. SYNTHESIZING THE LOOP BODY

We postulate the following structure of the loop body.

loop body ::
remove all multiples ofp from S;
reestablish L

Note. As long as p increases in the loop body in each iteration, since p . r _ n
the loop is bound to terminate.

4.1 Removing All Multiples of p from S

I t follows from Theorem 4 that we can enumerate all t E S, p _ t _< r, and remove
p . t for every such t enumerated. However, the procedure would be incorrect if we
enumerated t in i ncreas ing order from p to r and removed every p . t. Consider,
for instance, the situation in which t ' E S a n d p _ t ' _ r a n d p . t ' _< r a n d p 2 . t '
_ n. When t ' is enumerated, p . t ' will be removed, and hence p2. t ' will never be
removed. Gries and Misra [1] suggest the following solution.

Enumera te t E S a n d t _> p in ascending order. For each t enumerated, remove
all p k . t < n, k _> 1. The advantage of this strategy is tha t r need not be
maintained; we simply stop the process when p . t > n. Furthermore, there is a
symmet ry in enumeration: For fixed values of p and t we first enumerate k
until pk. t > n; then t is increased to its next value in S and the above step is
repeated until p . t > n; then p is increased to its next value in S and the above
steps are repeated until p . p > n.

We propose the following simpler strategy since r is available to us.

Enumera te t E S in decreasing order from r to p and remove p . t when t is
enumerated.

Thus, the corresponding program for removing multiples of p looks like the
following:

t := r;
while p _< t do

remove(p, t);
t := pred(t)

od (4.1)

Correctness of (4.1) may be established by using the invariant

p . q ~ S, q _> 2 iff q E S , p <_ q <_ t. (4.2)

Note. The only instance in which the presence of 1 in S is useful is when p =
2. The final iteration is started with t = 2, 4 is removed from S, and t is set to 1.

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

108 Jayadev Misra

Note. I t follows t h a t at the end of (4.1) we can asser t S = (x I 1 ___ x _< n, x = 1
or x p r ime or sd(x) > p } a n d p E S , p _> 2 a n d p . r _< n a n d p . (the next n u m b e r
larger t h a n r in S) > n.

Note. W e cannot asser t fol lowing {4.1) t h a t r E S, since r m i g h t have b e e n a
mul t ip le o f p and hence migh t have been removed .

4.2 Reestablishing /

In o rder to es tabl ish I, we consider each c o m p o n e n t asser t ion of I in turn . S =
(x I 1 _< x _< n, x = 1 or x p r ime or sd(x) >_ p} can be es tab l i shed f r o m S = (x I
1 __ x _< n, x -- 1 or x p r ime or sd(x) > p} by se t t ing

p := succ(p) (4.3)

Th i s also preserves p >_ 2 and p E S.
I n o rder to rees tabl i sh r E S, we pe r fo rm a l inear search.

w h i l e r tE S d o r := r - 1 o d (4.4)

We can asser t on t e r m i n a t i o n of (4.4) t h a t r E S a n d p . s u c c (r) > n, since p .
(next larger n u m b e r t h a n r in S) > n pr ior to execu t ion of (4.4).

Finally, in o rder to es tabl ish p . r ___ n, we can e m p l o y a l inear sea rch in which
r decreases m o r e rap id ly t h a n in (4.4):

w h i l e p . r > n d o r := pred(r) o d (4.5)

Note. (4.5) does no t d is turb the t r u t h of p ropos i t ions r E S a n d p . s u c c (r) > n.

Note. (4.4) c anno t e m p l o y r := pred(r) since p r e d is appl icable on ly for r in S.

Note. T e r m i n a t i o n proofs for b o t h (4.4) and (4.5) are s t r a igh t fo rward and
hence left to the reader .

5. THE COMPLETE ALGORITHM

p : = 2 ; S : = {x I I _ < x _ < n } ; r : = [n / 2 j ;
whi le p _< r do

t := r;
whi le p _< t do

remove(p, t);
t := pred(t)

od;
p := succ(p);
while r ~ S do r := r - 1 od;
whi le p . r > n do r :=pred(r) od

od

6. DISCUSSION

6.1 Data Structure for S

Severa l different da t a s t ruc tu res for S have b e e n p roposed in [1], each of wh ich
is appl icable in the a lgor i thm p roposed here. T h e s imples t is r ep resen t ing S by a
doub ly l inked list. E a c h e l e m e n t a r y set ope ra t ion can be p e r f o r m e d in un i t t ime
on such a s t ruc ture . See Mis ra [3] for a m o r e careful choice o f the d a t a s t ruc tu re
which takes the to ta l n u m b e r of bits o f s torage and a r r ay access ing t ime into
account .

ACM Transactions on Programming Languages and Systems, Vol. 3, No. 1, January 1981.

An Exercise in Program Explanation 109

6.2 Running Time Estimation

We show that no s ta tement in the program is executed more than n times. This
is certainly true for p := succ (p) , which strictly increases p each time it is
executed, and p cannot increase more than once beyond [~nl. Similarly,
r := r - 1 and r := p r e d (r) are executed at most n times in total, r e m o v e (p , t)
removes one nonprime from S, and hence it and t := p r e d (t) cannot be executed
more than n times. Similar remarks apply to the tests in the loops.

6.3 A Conjecture

The algorithm could be simplified if the following conjecture were true.

C o n j e c t u r e 6. Given / , r and p r e d (r) cannot both be multiples ofp .

We may thus initially save

r l := p r e d (r) (6.1)

After removal of multiples of p, we can reestablish r E S by the following, since
both r and r l could not have been removed:

i f r ~ S t h e n r := r l fi; (6.2)

Note tha t p . succ(r) > n after this step.
We may then reestablish p . r _< n by

w h i l e p . r > n do r := p r e d (r) od; (6.3)

The complete algorithm then is the following.

p : = 2 ; S = { x l l - < x ~ n } ; r = [n / 2 J ;
while p _< r do

r l :=pred(r); t := r;
while p _ t do

rernove (p . t);
t := pred(t)

od;
p := succ(p);
i f r ~ S then r := r l fi;
while p . r > n do r :=pred(r) od

od (6.4)

REFERENCES

1. GRIES, D., AND MISRA, J. A linear sieve algorithm for finding prime numbers. Commun. A C M
21, 12 (Dec. 1978), 999-1003.

2. LEVEQUE, W.J. Topics in Number Theory, Vol. 1. Addison-Wesley, Reading, Mass., 1956.
3. MISRA, J. Space time trade-off in implementing certain set operations. Inf. Process. Lett. 8, 2

(Feb. 1979), 81-85.
4. PRXTCHARD, P. A sublinear additive sieve for finding prime numbers. Tech. Rep. No. 10, Dep.

Computer Science, Univ. Queensland, Australia, Dec. 1979.

Received October 1979; revised March and September 1980; accepted October 1980

ACM Transactions on Programming Languages and Systems, Vol. 3, No. I, January 1981.

