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A combination of program-proving ideas and stepwise refinement is used to develop and explain an 
algorithm which uses a variation of the sieve method for computing primes. 
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1. INTRODUCTION 

An algorithm tha t  computes  the set of prime numbers  less than  or equal to some 
given n _ 2 is developed and explained in this paper. The  algorithm employs a 
variation of the sieve technique; however, every nonprime is generated and 
removed precisely once from the set, resulting in an algorithm with running time 
linear in n. This efficiency is achieved at the expense of maintaining a more 
complex data structure and assuming tha t  multiplication (of positive integers 
smaller than  n) requires unit  time. The  algorithm is simpler to explain and prove 
than a linear algorithm appearing in [1]. 

The  purpose of this note is to show how a combinat ion of program-proving 
ideas and stepwise refinement can be used to describe and explain an algori thm 
completely. The  explanation is given by first postulating a suitable invariant. 
Hypothesizing an invariant is one of the most  creative tasks in program construc- 
tion; however, program construction becomes almost purely mechanical  given a 
suitable invariant. The  explanation given here is adequate  for a reader to 
construct  his own formal proof. 

For this problem Pri tchard [4] reports an asymptotical ly sublinear algorithm 
which uses no multiplication. 

2. PROBLEM DESCRIPTION AND THE INVARIANT 

The problem is to construct 

S = {x 1 2 _< x __ n, x prime} for any given n __ 2. (2.1) 
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An Exercise in Program Explanation 105 

We actually construct  the following set from which the set in (2.1) may  be 
deduced. 

S = {x] 1_< x__ n, x = 1 or x prime}. (2.2) 

In order to describe the invariant, we define certain functions on any set of 
positive integers Z. 

E :: Denotes  the usual membership test. (2.3) 
succ : : For any t E Z, succ(t) is defined to be the next larger number  

than t in Z; succ(t) is undefined if t is the largest in Z. (2.4)" 
p r e d  :: For any t E Z, p r e d  (t) is the next smaller number  than  t in 

Z; pred( t )  is undefined when t is the smallest in Z. (2.5) 
remove :: For any t E Z, remove(t)  sets Z to Z - {t}. (2.6) 

In addition, we define a function on integers greater than 1: 

sd  :: For any integer x > 1, sd(x)  is the smallest integer greater 
than 1 that  evenly divides x. (2.7) 

OBSERVATION 1. sd(x)  = x i f f  x pr ime.  

The intuitive idea behind the algorithm is as follows. Start ing with p = 2, every 
iteration removes all remaining multiples of p, a prime number,  from the set S. p 
is then increased to the next prime number  and the iterations are continued as 
long as p has some multiple in S. In order to remove all remaining multiples of p, 
we maintain r such that  p . r  _< n and r is the largest number  in S having this 
property. We will show (1) t h a t p  has a multiple in S if and only i f p  <_ r and (2) 
tha t  a multiple ofp ,  s a y p . t ,  is in S if and only i f p  _ t _ r and t E S. 

The program is built around the invariant 

S - -  { x l l < _ x _ _ n , x =  l or x prime or sd(x) >_ p} 
a n d  p _> 2 a n d  p E S 
a n d  r is the largest number  in S such t h a t p . r  _< n. (2.8) 

We first show that  this invariant is equivalent to another  invariant which is easier 
to manipulate in proofs. 

LEMMA 2. Given the invar iant  (2.8), succ(r) is de f ined  and  p . succ ( r )  > n. 

PROOF. We use a ra ther  deep theorem due to Chebyshev [2] which states tha t  
for any positive integer i > 1 there is a prime v, i < v < 2i. From the invariant, 
p __ 2 and p .  r _< n. Hence r ___ [n/2J. If  [n/2J = 1, r = 1 and succ(r) = 2. Otherwise, 
according to Chebyshev's  theorem there exists a prime y, [n/2J < y < 2. [n/2J, y 
E S and y > r. Therefore succ(r) is defined. Since r is the largest number  in S for 
w h i c h p . r _ <  n, p . succ(r )  > n. [] 

Using Lemma 2 we may  rewrite the invariant (2.8) as follows: 

I : :  S =  { x l l _ < x _ _ n , x =  l or x prime or sd(x) >_ p} 
a n d  p __ 2 a n d  p ~ S 
a n d  r E S a n d  p . r  <_ n < p .succ(r ) .  (2.9) 
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106 Jayadev Misra 

OBSERVATION 3. Given  I, p is a p r ime .  

PROOF. Since p ___ 2, p E S, e i ther  p is pr ime or s d ( p )  >_p. Hence  p is p r ime in 
ei ther  case. [] 

3. TOWARD SYNTHESIS OF A PROGRAM 

We postula te  the following p rogram structure:  

initialize; 
while B do loop body od; (3.1) 

Init ialization is easy. Set t ing 

forces us to set  

p := 2; (3.2) 

S : =  ( x l l _ < x < n } ;  (3.3) 

r := [n/2J; (3.4) 

We next  consider the loop body portion, which mus t  r emove  all the mult iples  
o f p  in each iteration. To  this end, we give a character izat ion of mult iples  o f p  in 
S, f rom which we derive the loop body and the  condit ion B. 

THEOREM 4. Given  I, p .  t E S a n d  t >_ 2 i f  a n d  only  i f  t E S a n d  p <_ t <_ r. 

PROOF. Suppose p .  t E S and t >_ 2. Since p .  t is not  prime,  exceeds 1, and is in 
S, s d ( p . t )  >_ p .  Since s d ( p )  = p (Observat ion 3), sd( t )  >_ p .  

Fur thermore ,  since p .  t <_ n and t _ 2, 2 ___ t __ n. Therefore ,  t E S. Also, p .  t _< 
n < p . s u c c ( r ) .  Hence  t < succ(r); t ha t  is, t <_ r. sd ( t )  >_p means  t >_p. There fo re  
t E S a n d p < _ t < _ r .  

Conversely,  suppose t E S and p _< t _ r. t _> p means  t _ 2. Since t E S, e i ther  
t is a p r ime (sd( t )  = t >_ p)  or sd( t )  >_ p.  In  ei ther  case, sd( t )  >_ p .  s d ( p )  = p; 
therefore  s d ( p .  t) = p.  p . t  <_ p . r  <_ n; therefore  p .  t E S. [] 

Th is  is the central  t heo rem  around which the sieve me thod  works; by  proper ly  
enumera t ing  t - - t h e  e lements  of S be tween  p and r - - a n d  removing  p .  t f rom S, we 
can guarantee  tha t  every nonpr ime  will be genera ted  and r emoved  precisely once. 

T h e o r e m  4 implies tha t  S has  a t  least  one nonpr ime  if p ___ r. We prove  a 
s t ronger  result  below which allows us to derive the  condit ion B for execut ion of 
the  loop. 

THEOREM 5. Given  I, S has  a n o n p r i m e  >1 i f  a n d  only  i f  p <_ r. 

PROOF. I f p  --< r, the result  follows f rom T h e o r e m  4. Conversely,  we show i f p  
> r, then  S has  no nonpr ime >1. Since p E S, r ~ S, a n d p  > r, t h e n p  _ succ(r) .  
Since p . s u c c ( r )  > n, we have  p . p  > n. Using this in conjunct ion with the  
definition of S in /, the  result  follows f rom an e l emen ta ry  resul t  in n u m b e r  
theory.  [] 

We thus  derive f rom T h e o r e m  5 tha t  condition B for the cont inuat ion of the  
loop is 

B : :  p < _ r .  (3.5) 
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The partial program at this stage looks as follows. 

Program : : 
p : - - 2 ; S : = { x  I I_<x_<n}; r : - - [n /2 j ;  
while p _< r do loop body od; (3.6) 

4. SYNTHESIZING THE LOOP BODY 

We postulate the following structure of the loop body. 

loop body :: 
remove all multiples ofp from S; 
reestablish L 

Note.  As long as p increases in the loop body in each iteration, since p .  r _ n 
the loop is bound to terminate. 

4.1 Removing All Multiples of p from S 

I t  follows from Theorem 4 that  we can enumerate  all t E S, p _ t _< r, and remove 
p .  t for every such t enumerated.  However, the procedure would be incorrect if we 
enumerated t in i ncreas ing  order  from p to r and removed every p .  t. Consider, 
for instance, the situation in which t '  E S a n d p  _ t '  _ r a n d p . t '  _< r a n d p 2 . t  ' 
_ n. When t '  is enumerated, p .  t '  will be removed, and hence p2.  t '  will never be 
removed. Gries and Misra [1] suggest the following solution. 

Enumera te  t E S a n d  t _> p in ascending order. For each t enumerated,  remove 
all p k . t  < n, k _> 1. The advantage of this strategy is tha t  r need not  be 
maintained; we simply stop the process when p .  t > n. Furthermore,  there is a 
symmet ry  in enumeration: For  fixed values of p and t we first enumerate  k 
until pk.  t > n; then t is increased to its next value in S and the above step is 
repeated until p .  t > n; then p is increased to its next value in S and the above 
steps are repeated until p . p  > n. 

We propose the following simpler strategy since r is available to us. 

Enumera te  t E S in decreasing order from r to p and remove p .  t when t is 
enumerated.  

Thus, the corresponding program for removing multiples of p looks like the 
following: 

t := r; 
while p _< t do 

remove(p, t); 
t := pred(t)  

od (4.1) 

Correctness of (4.1) may  be established by using the invariant 

p . q  ~ S, q _> 2 iff q E S ,  p <_ q <_ t. (4.2) 

Note.  The only instance in which the presence of 1 in S is useful is when p = 
2. The  final iteration is started with t = 2, 4 is removed from S, and t is set to 1. 
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108 Jayadev Misra 

Note. I t  follows t h a t  at  the  end of  (4.1) we can  asser t  S = (x I 1 ___ x _< n, x = 1 
or  x p r ime  or  sd(x) > p }  a n d p  E S , p  _> 2 a n d p . r  _< n a n d p .  ( the next  n u m b e r  
larger  t h a n  r in S) > n. 

Note. W e  cannot  asser t  fol lowing {4.1) t h a t  r E S, since r m i g h t  have  b e e n  a 
mul t ip le  o f p  and  hence  migh t  have  been  removed .  

4.2 Reestablishing / 

In  o rder  to  es tabl ish I, we consider  each  c o m p o n e n t  asser t ion  of  I in turn .  S = 
(x I 1 _< x _< n, x = 1 or  x p r ime  or  sd(x) >_ p} can  be es tab l i shed  f r o m  S = (x I 
1 __ x _< n, x -- 1 or  x p r ime  or  sd(x) > p} by  se t t ing  

p := succ(p) (4.3) 

Th i s  also preserves  p >_ 2 and  p E S. 
I n  o rder  to  rees tabl i sh  r E S, we pe r fo rm  a l inear  search.  

w h i l e  r tE S d o  r :=  r - 1 o d  (4.4) 

We  can  asser t  on  t e r m i n a t i o n  of  (4.4) t h a t  r E S a n d p . s u c c ( r )  > n, since p .  
(next larger  n u m b e r  t h a n  r in S)  > n pr ior  to  execu t ion  of  (4.4). 

Finally,  in o rder  to  es tabl ish  p .  r ___ n, we can  e m p l o y  a l inear  sea rch  in which  
r decreases  m o r e  rap id ly  t h a n  in (4.4): 

w h i l e  p .  r > n d o  r := pred(r)  o d  (4.5) 

Note. (4.5) does no t  d is turb  the  t r u t h  of  p ropos i t ions  r E S a n d p . s u c c ( r )  > n. 

Note. (4.4) c anno t  e m p l o y  r := pred(r )  since p r e d  is appl icable  on ly  for  r in S. 

Note. T e r m i n a t i o n  proofs  for b o t h  (4.4) and  (4.5) are  s t r a igh t fo rward  and  
hence  left to  the  reader .  

5. THE COMPLETE ALGORITHM 

p : = 2 ; S : =  {x I I _ < x _ < n } ; r : = [ n / 2 j ;  
whi le  p _< r do  

t := r; 
whi le  p _< t do  

remove(p, t); 
t := pred(t) 

od; 
p := succ(p); 
while  r ~ S do r := r - 1 od; 
whi le  p . r  > n do r :=pred(r) od 

od 

6. DISCUSSION 

6.1 Data Structure for S 

Severa l  different  da t a  s t ruc tu res  for S have  b e e n  p roposed  in [1], each  of  wh ich  
is appl icable  in the  a lgor i thm p roposed  here.  T h e  s imples t  is r ep resen t ing  S by  a 
doub ly  l inked list. E a c h  e l e m e n t a r y  set  ope ra t ion  can  be p e r f o r m e d  in un i t  t ime  
on such  a s t ruc ture .  See Mis ra  [3] for  a m o r e  careful  choice  o f  the  d a t a  s t ruc tu re  
which  takes  the  to ta l  n u m b e r  of  bits o f  s torage  and  a r r ay  access ing t ime into 
account .  
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6.2 Running Time Estimation 

We show that  no s ta tement  in the program is executed more than n times. This 
is certainly true for p := succ (p ) ,  which strictly increases p each time it is 
executed, and p cannot increase more than  once beyond [~nl.  Similarly, 
r := r - 1 and r := p r e d ( r )  are executed at most  n times in total, r e m o v e ( p ,  t) 
removes one nonprime from S, and hence it and t := p r e d ( t )  cannot  be executed 
more than  n times. Similar remarks apply to the tests in the loops. 

6.3 A Conjecture 

The algorithm could be simplified if the following conjecture were true. 

C o n j e c t u r e  6. Given / ,  r and p r e d ( r )  cannot  both be multiples ofp .  

We may  thus initially save 

r l  := p r e d ( r )  (6.1) 

After removal  of multiples of p, we can reestablish r E S by the following, since 
both  r and r l  could not have been removed: 

i f  r ~ S t h e n  r := r l  fi; (6.2) 

Note tha t  p .  succ(r )  > n after this step. 
We may  then reestablish p .  r _< n by 

w h i l e  p .  r > n do  r := p r e d ( r )  od; (6.3) 

The complete algorithm then is the following. 

p : = 2 ; S =  { x l l - < x ~ n } ; r = [ n / 2 J ;  
while p _< r do 

r l  :=pred(r); t := r; 
while p _ t do 

rernove (p . t); 
t := pred(t)  

od; 
p := succ(p); 
i f r  ~ S then r := r l  fi; 
while p . r  > n do r :=pred(r)  od 

od (6.4) 
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