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A combination of program-proving ideas and stepwise refinement is used to develop and explain an
algorithm which uses a variation of the sieve method for computing primes.
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1. INTRODUCTION

An algorithm that computes the set of prime numbers less than or equal to some
given n = 2 is developed and explained in this paper. The algorithm employs a
variation of the sieve technique; however, every nonprime is generated and
removed precisely once from the set, resulting in an algorithm with running time
linear in n. This efficiency is achieved at the expense of maintaining a more
complex data structure and assuming that multiplication (of positive integers
smaller than n) requires unit time. The algorithm is simpler to explain and prove
than a linear algorithm appearing in [1].

The purpose of this note is to show how a combination of program-proving
ideas and stepwise refinement can be used to describe and explain an algorithm
completely. The explanation is given by first postulating a suitable invariant.
Hypothesizing an invariant is one of the most creative tasks in program construc-
tion; however, program construction becomes almost purely mechanical given a
suitable invariant. The explanation given here is adequate for a reader to
construct his own formal proof.

For this problem Pritchard [4] reports an asymptotically sublinear algorithm
which uses no multiplication.

2. PROBLEM DESCRIPTION AND THE INVARIANT

The problem is to construct

S = {x|2 = x = n, x prime} for any given n = 2. (2.1)
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We actually construct the following set from which the set in (2.1) may be
deduced.

S= {x|1=x=n,x=1or x prime}. (2.2)

In order to describe the invariant, we define certain functions on any set of
positive integers Z.

€:: Denotes the usual membership test. (2.3)
succ :: For any t € Z, succ(t) is defined to be the next larger number

than ¢ in Z; succ(t) is undefined if ¢ is the largest in Z. (2.4)°
pred :: For any t € Z, pred (t) is the next smaller number than ¢ in

Z; pred (t) is undefined when ¢ is the smallest in Z. (2.5)
remove ::  For any t € Z, remove(t) sets Z to Z — {t}. (2.6)
In addition, we define a function on integers greater than 1:
sd:: For any integer x > 1, sd(x) is the smallest integer greater

than 1 that evenly divides x. (2.7)

OBSERVATION 1. sd(x) = x iff x prime.

The intuitive idea behind the algorithm is as follows. Starting with p = 2, every
iteration removes all remaining multiples of p, a prime number, from the set S. p
is then increased to the next prime number and the iterations are continued as
long as p has some multiple in S. In order to remove all remaining multiples of p,
we maintain r such that p.r < n and r is the largest number in S having this
property. We will show (1) that p has a multiple in S if and only if p < r and (2)
that a multiple of p, say p-t,isin Sifand onlyifp<t=<randt€S.

The program is built around the invariant

S={x|1=x=<n,x=1or x prime or sd(x) = p}
andp=2andpeS
and r is the largest number in S such that p-r < n. (2.8)

We first show that this invariant is equivalent to another invariant which is easier
to manipulate in proofs.

LeMMA 2. Given the invariant (2.8), succ(r) is defined and p-succ(r) > n.

Proor. We use a rather deep theorem due to Chebyshev [2] which states that
for any positive integer { > 1 there is a prime v, i < v < 2i. From the invariant,
p=2andp-r<n.Hencer=<|n/2). If [n/2] = 1,r = 1 and succ(r) = 2. Otherwise,
according to Chebyshev’s theorem there exists a prime y, |n/2] <y < 2-[n/2}, y
€ S and y > r. Therefore succ(r) is defined. Since r is the largest number in S for
which p.-r<n, p-suce(r) >n. O

Using Lemma 2 we may rewrite the invariant (2.8) as follows:

I:: S={x|1=x=n,x=1orxprime or sd(x) = p)
andp=2andpe S
and r € Sand p.r < n < p-succ(r). (2.9)
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OBSERVATION 3. Given I, p is a prime.

ProoF. Since p = 2, p € S, either p is prime or sd(p) = p. Hence p is prime in
either case. [

3. TOWARD SYNTHESIS OF A PROGRAM

We postulate the following program structure:

initialize;
while B do loop body od; 3.1)

Initialization is easy. Setting

pi=2 (3.2)

forces us to set
S:={x|1=x<n}; (3.3)
r:=|n/2]; (3.4)

We next consider the loop body portion, which must remove all the multiples
of p in each iteration. To this end, we give a characterization of multiples of p in
S, from which we derive the loop body and the condition B.

THEOREM 4. Given I, p-t€E Sandt=2ifandonlyift€c Sandp=t=r.

PRroOF. Suppose p-t € S and £ = 2. Since p- ¢ is not prime, exceeds 1, and is in
S, sd(p-t) = p. Since sd(p) = p (Observation 3), sd(t) = p.

Furthermore, since p-t <nand t = 2, 2 < t < n. Therefore, t € S. Also, p-t <
n < p-succ(r). Hence t < succ(r); that is, £ < r. sd(t) = p means ¢t = p. Therefore
teSandp=<t=r.

Conversely, suppose t €E Sand p <t < r.t = p means ¢t = 2. Since t € S, either
t is a prime (sd(f) = ¢ = p) or sd(t) = p. In either case, sd(¢) = p. sd(p) = p;
therefore sd(p-t) = p. p-t < p.r < n; therefore p-t € S. O

This is the central theorem around which the sieve method works; by properly
enumerating {—the elements of S between p and r—and removing p- ¢ from S, we
can guarantee that every nonprime will be generated and removed precisely once.

Theorem 4 implies that S has at least one nonprime if p < r. We prove a
stronger result below which allows us to derive the condition B for execution of
the loop.

THEOREM 5. Given I, S has a nonprime >1 if and only ifp < r.

Proor. If p < r, the result follows from Theorem 4. Conversely, we show if p
> r, then S has no nonprime >1. Since p € S, r € S, and p > r, then p = succ(r).
Since p-succ(r) > n, we have p-p > n. Using this in conjunction with the
definition of S in I, the result follows from an elementary result in number
theory. [

We thus derive from Theorem 5 that condition B for the continuation of the
loop is

B:: p=r. (3.5)
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The partial program at this stage looks as follows.

Program : :
p=2;8:={x|1=<x=<n};r=|n/2j
while p < r do loop body od; (3.6)

4. SYNTHESIZING THE LOOP BODY
We postulate the following structure of the loop body.

loop body ::
remove all multiples of p from S;
reestablish I.

Note. As long as p increases in the loop body in each iteration, since p.-r < n
the loop is bound to terminate.

4.1 Removing All Multiples of p from S

It follows from Theorem 4 that we can enumerate all t € S, p < ¢ < r, and remove
p-tfor every such ¢t enumerated. However, the procedure would be incorrect if we
enumerated ¢ in increasing order from p to r and removed every p-t. Consider,
for instance, the situation in which ¢’ € Sandp<t' <rand p-t’' < r and p*-t’
< n. When ¢’ is enumerated, p-¢’ will be removed, and hence p*.¢’ will never be
removed. Gries and Misra [1] suggest the following solution.

Enumerate ¢ € S and ¢ = p in ascending order. For each ¢ enumerated, remove
all p*.t < n, £ = 1. The advantage of this strategy is that r need not be
maintained; we simply stop the process when p-¢ > n. Furthermore, there is a
symmetry in enumeration: For fixed values of p and ¢ we first enumerate £
until p*.¢ > n; then ¢ is increased to its next value in S and the above step is
repeated until p-¢ > n; then p is increased to its next value in S and the above
steps are repeated until p-p > n.

We propose the following simpler strategy since r is available to us.

Enumerate ¢ € S in decreasing order from r to p and remove p-t when ¢ is
enumerated.

Thus, the corresponding program for removing multiples of p looks like the
following:

t:=r;
while p < t do
remove(p-t);
t := pred(t)
od 4.1)

Correctness of (4.1) may be established by using the invariant

P-gES, ¢g=2 iff ge8S,p=qg=t (4.2)

Note. The only instance in which the presence of 1 in S is useful is when p =
2. The final iteration is started with £ = 2, 4 is removed from S, and ¢ is set to 1.
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Note. It follows that at the end of (41) wecanassert S={x|1l=x=n,x=1
or x prime or sd(x) >p} and p € S,p =2 and p.r = n and p- (the next number
larger than rin S) > n.

Note. We cannot assert following (4.1) that r € S, since r might have been a
multiple of p and hence might have been removed.

4.2 Reestablishing /

In order to establish I, we consider each component assertion of I in turn. S =
{x|]1=x=n,x=1or x prime or sd(x) = p} can be established from S = {x|
1=x=<n,x=1or x prime or sd(x) > p} by setting

Dp = succ(p) (4.3)

This also preserves p =2 and p € S.
In order to reestablish r € S, we perform a linear search.

whiler € Sdor:=r—1od (4.4)

We can assert on termination of (4.4) that r € S and p-succ(r) > n, since p-
(next larger number than r in S) > n prior to execution of (4.4).

Finally, in order to establish p.r < n, we can employ a linear search in which
r decreases more rapidly than in (4.4):

while p-r > n do r := pred(r) od (4.5)
Note. (4.5) does not disturb the truth of propositions r € S and p-suce(r) > n.

Note. (4.4) cannot employ r := pred(r) since pred is applicable only for r in S.

Note. Termination proofs for both (4.4) and (4.5) are straightforward and
hence left to the reader.

5. THE COMPLETE ALGORITHM
p=2S={x|l=sx=n};r:=n/2j;
while p = rdo
ti=r;
while p < ¢t do
remove(p-t);
t ;= pred(t)
od;
D = succ(p);
whiler €S dor:=r—1od;
while p.r > n do r := pred(r) od
od

6. DISCUSSION

6.1 Data Structure for S

Several different data structures for S have been proposed in [1], each of which
is applicable in the algorithm proposed here. The simplest is representing S by a
doubly linked list. Each elementary set operation can be performed in unit time
on such a structure. See Misra [3] for a more careful choice of the data structure
which takes the total number of bits of storage and array accessing time into
account.
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6.2 Running Time Estimation

We show that no statement in the program is executed more than n times. This
is certainly true for p := succ(p), which strictly increases p each time it is
executed, and p cannot increase more than once beyond [\/; 1. Similarly,
r:=r — 1and r ;= pred(r) are executed at most n times in total. remove(p-t)
removes one nonprime from S, and hence it and ¢ .= pred(¢) cannot be executed
more than n times. Similar remarks apply to the tests in the loops.

6.3 A Conjecture

The algorithm could be simplified if the following conjecture were true.
Conjecture 6. Given I, r and pred(r) cannot both be multiples of p.
We may thus initially save
rl = pred(r) (6.1)

After removal of multiples of p, we can reestablish r € S by the following, since
both r and r1 could not have been removed:

ifr&é Sthenr:=rlfi (6.2)

Note that p-succ(r) > n after this step.
We may then reestablish p.r < n by

while p-r > n do r := pred(r) od; (6.3)
The complete algorithm then is the following.

p=2S={x|l1=sx=n);r=\n/2);
while p < r do
rl:=pred(r); t :=r;
while p < t do
remove(p-t);
t := pred(t)
od;
p = succ(p);
if r € S then r := r1 fi;
while p-r > n do r := pred(r) od
od (6.4)
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